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Abstract: Estimation of noise-induced variability in diffusion tensor imaging (DTI) is needed to objectively
follow disease progression in therapeutic monitoring and to provide consistent readouts of pathophysiol-
ogy. The noise variability of nonlinear quantities of the diffusion tensor (e.g., fractional anisotropy, fiber
orientation, etc.) have been quantified using the bootstrap, in which the data are resampled from the ex-
perimental averages, yet this approach is only applicable to DTI scans that contain multiple averages from
the same sampling direction. It has been shown that DTI acquisitions with a modest to large number of
directions, in which each direction is only sampled once, outperform the multiple averages approach.
These acquisitions resist the traditional (regular) bootstrap analysis though. In contrast to the regular boot-
strap, the wild bootstrap method can be applied to such protocols in which there is only one observation
per direction. Here, we compare and contrast the wild bootstrap with the regular bootstrap using Monte
Carlo numerical simulations for a number of diffusion scenarios. The regular and wild bootstrap methods
are applied to human DTI data and empirical distributions are obtained for fractional anisotropy and the
diffusion tensor eigensystem. Spatial maps of the estimated variability in the diffusion tensor principal
eigenvector are provided. The wild bootstrap method can provide empirical distributions for tensor-
derived quantities, such as fractional anisotropy and principal eigenvector direction, even when the exact
distributions are not easily derived. Hum Brain Mapp 29:346—-362, 2008.  ©2007 Wiley-Liss, Inc.
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INTRODUCTION

Regardless of the sampling scheme used, it is important
to properly characterize the amount of uncertainty in

derived quantities from the estimated diffusion tensor. For
quantities of interest based on linear combinations of ele-
ments in the diffusion tensor, such as mean diffusivity,
one can quantify variability through confidence intervals
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derived from the noise properties of magnitude images
and the theory of linear models [Salvador et al., 2005].
However, quantities based on nonlinear combinations of
elements from the diffusion tensor (e.g., eigenvalues,
eigenvectors, fractional anisotropy, etc.) are not easily
obtained analytically' and computational methods are uti-
lized instead. When a relatively low number of gradient
directions are sampled, it is common to obtain multiple
measurements in each direction during the scanning ses-
sion. If this is the case, then the bootstrap [Efron, 1981;
Efron and Tibshirani, 1993] has been used to help quantify
uncertainty in scalar summaries of DTI [Heim et al., 2004;
Jones, 2003; Pajevic and Basser, 2003]. Uncertainty in the
diffusion tensor is also very important for tractography
[Behrens et al., 2003] and the bootstrap has already been
successfully applied [Jones and Pierpaoli, 2005; Jones et al.,
2005].

The bootstrap method, as previously implemented in
DTI, requires multiple observations per gradient direction
in order to perform the resampling. With sampling
schemes acquiring a large number of directions being used
more and more in a clinical setting [Jones, 2004; Jones
et al., 1999a], it is becoming less likely that more than one
measurement per gradient direction is obtained—exclud-
ing the application of this particular implementation of the
bootstrap (we call this the regular bootstrap from now on).
An investigation into how many repeat acquisitions are
required to gain accurate results from the regular boot-
strap concluded that no benefit in accuracy or precision
was gained by using more than seven repeat acquisitions
and fewer than four repeat acquisitions resulted in poor
precision with significant errors [O’Gorman and Jones,
2005]. For example, with a whole-brain acquisition proto-
col taking 10-15 min to acquire a single volume, it would
be difficult to push the number of repeat acquisitions toler-
ated by patients with mild disorders beyond three or four.
Being able to apply resampling procedures to either (a)
fewer repeat acquisitions or (b) acquisitions with a rela-
tively high number of gradient directions with no repeated
measurements without losing the ability to characterize the
intrinsic variability of statistical summaries of DTI is
highly desirable.

We introduce model-based resampling techniques
[Davison and Hinkley, 1997], in particular, the wild boot-
strap [Flachaire, 2005; Liu, 1988], that may be applied to
the residuals from the multiple linear regression model
used to estimate elements of the diffusion tensor at each
voxel. The wild bootstrap is specifically designed to work
when the model is heteroscedastic; that is, when the var-
iance of the errors is not constant for all observations. In
the case of DTI, this corresponds to the assumption of non-
constant variance for the log-transformed NMR signal
[Basser et al., 1994; Salvador et al., 2005]. The relationship

! We assume that the diffusion tensor contains non-zero off diago-
nal elements.

between noise and b-value and their influence on quanti-
ties derived from the diffusion tensor, such as fractional
anisotropy, was recently described in Jones and Basser
[2004]. A simple modification to the basic model-based
bootstrap allows this methodology to be applied when
multiple measurements are acquired in each gradient
direction. Thus, the model-based bootstrap techniques pre-
sented here may be applied to both research and clinical
DTI protocols assuming that more than six gradient direc-
tions have been acquired or that a six-direction gradient
encoding scheme has been acquired more than once.

Statistical methods, such as the bootstrap, are not the
only way to quantify uncertainty in DTI. There are numer-
ous references based on analytical techniques, such as
“propagation of errors”. First and second-order corrections
to the eigenvalues and eigenvectors from perturbation
theory were used to correct for noise distortions in Ander-
son [2001]. Measures of anisotropy, obtained without diag-
onalizing the tensor, were studied using propagation of
errors to compare sampling schemes in Poonawalla and
Zhou [2004]. Numerical methods, such as Monte Carlo
simulation, have also been used to investigate the effect of
noise on quantitative measurements of anisotropy espe-
cially those based on eigenvalues (i.e., the sorting bias)
[Batchelor et al., 2003; Pierpaoli and Basser, 1996; Skare
et al., 2000].

This study investigates the ability of model-based resam-
pling, in particular, the wild bootstrap, to provide reasona-
ble estimates of variability for derived quantities of the dif-
fusion tensor when one or more measurements per gradi-
ent direction are available. Two sampling schemes, six
directions and 60 directions, are used to produce both
simulated and clinical DTI data. Comparisons are made
for regular and wild bootstrap estimates of variability on
the eigenvalues, fractional anisotropy, and fiber orientation
derived from the diffusion tensor. With standard errors
based on the bootstrap now available for all image acquisi-
tion schemes, it is hoped that reporting both parameter
estimates and standard errors for summaries of anisotropy
will become more widespread.

THEORY

The regular bootstrap is a general statistical technique
where an observed set of measurements is sampled with
replacement over-and-over again in order to characterize a
statistic of interest [Davison and Hinkley, 1997; Efron and
Tibshirani, 1993]. The regular bootstrap places equal prob-
ability on independent observations when resampling, and
is therefore only appropriate when more than one mea-
surement per direction is available (although this is not
strictly true, a point which we move onto later). This
framework is common in DTI scans when the acquisition
sequence contains relatively few gradient directions (e.g.,
six) but becomes less clinically feasible as the number of
gradient directions increases. Further details and examples
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concerning the implementation of the regular bootstrap in
DTI data analysis may be found in Pajevic and Basser
[2003] and Heim et al. [2004].

Although six gradient directions are the minimum num-
ber to estimate the unique elements of the diffusion tensor,
there are numerous sampling schemes that have been rec-
ommended with many more gradient directions [Batchelor
et al., 2003; Hasan and Narayana, 2003; Jones et al., 1999a,
b] or it is common practice to obtain several measurements
in each direction when a relatively low number of gradient
directions are sampled. Because of the constraints in a clin-
ical setting there are relatively few DTI scans with a large
number of directions and repeated measurements. Hence,
obtaining estimates of standard errors for scalar quantities
of interest based on the diffusion tensor are not available
using the regular bootstrap. This leads us to consider alter-
native bootstrap methodology that operates within the log-
linear relationship between echo attenuation and the diffu-
sion model.

Model-Based Resampling: Homoscedastic Errors

First, we describe the theory around the model-based
resampling of errors in a linear regression model and then
introduce the wild bootstrap. Model-based resampling in
linear regression is a popular nonparametric technique to
infer properties of the parameter estimates from the linear
model. Let us assume that the standard model for signal
intensity in DTI is given by S(x;) =Sy exp (—bxiTDx,-),
where D is the diffusion tensor, x; = (x;1, Xj, xl-3)T is the
gradient direction for the ith observation (i = 1,...,N) and
b is the diffusion weighting. Applying the log transform to
both sides allows us to use notation for a multiple linear
regression model [Basser et al., 1994]

y = Xd +¢, (1)

to estimate the diffusion tensor from observed data. In
Eq. (1) y is a length N vector of the log-transformed signal
intensities, X is a N x 7 direction matrix

—2bx11x13 1
72bX22X23 1

—2bx11x13
72bX21X23

—beHJCu
—2bx21 X2

2 2 2
—bxil —bx%z —bx%3
—bx3;, —bx3, —bx3,

—2bJCN1XN2 —ZbXleNQ, —beNszg 1
)

d = [Dxx Dy, D;; Dy, Dy Dy, log(So)]T and ¢ is a length N
vector of errors. The ordinary least-squares (OLS) estimate
of d is given by d=(X"X) 'XTy. After the initial OLS
operation, a weighting matrix W may be calculated via

2 2 2
—bxyy; —bxg, —bxgs

W =1Iy exp(Xd), (3)

where Iy is the N x N identity matrix. The weighted
least-squares (WLS) estimate of d is then given by

d=(X"W-2X) 'X"W~2y [Salvador et al., 2005]. This imple-
mentation of WLS is similar to the approach found in
Basser et al. [1994], the difference being that fitted values
from the least-squares regression are used instead of the
observations in constructing the weighting matrix W.

The assumptions we make on the structure of & determine
which bootstrap method is appropriate. Under the assump-
tion that € is a vector of independent and identically distrib-
uted (IID) random variables with zero mean, the linear
regression would be termed homoscedastic and we would be
able to randomly sample with replacement from the errors.
Model-based resampling of the errors would take the form

yi=(Xd);+¢, i=1,...,N, 4)
where (Xd); is the product of the ith row of X and d, and €}
is a random sample from the residuals of the original regres-
sion model. Performing WLS on y* will produce a model-
based bootstrap estimate of the tensor d*. Repeating these
steps, resampling and estimation, builds up a collection of
tensors called a (model-based) bootstrap distribution. Sum-
mary statistics from this empirical distribution can be used
to describe the original parameter estimate.

Model-Based Resampling: Heteroscedastic Errors

The assumption of homoscedasticity is not valid for DTI
when a linear regression model is used to estimate the dif-
fusion tensor. This violation is induced by applying the
logarithmic transform in order to achieve the linear rela-
tionship in Eq. (1) and is overcome through the use of
WLS regression, as originally noted in Basser et al. [1994].
When the assumption of IID errors is not valid, the regres-
sion model is termed heteroscedasticc. When a relatively
small number of gradient directions are used to acquire
the data, a simple modification to the basic model-based
bootstrap procedure can adapt to the situation where mul-
tiple measurements per direction are available. We call
this technique “resampling within gradient directions”
(RWGD). Rewrite the vector of observations (log-trans-
formed signal intensities) as being indexed by gradient
directions and measurements per direction
T

y= [yo,1 Yo2  Yom Y11 Y12 - Yim - Y61 Y62 " Yem
=yoyi Y6]T7 (5)

in this specific case y, denotes the b = 0 acquisitions and
V1, - Y6 denote the acquisitions corresponding to six gradi-
ent directions. For convenience, assume that the rows of X
may be indexed the same way. The RWGD bootstrap sam-
ple would take the form

y;k:(Xd)]-‘kJra;, j=0,1,...,6; k=1,...,m, (6)
so that each subvector y; conforms with Eq. (4), thus
ensuring that all resampling is kept within each gradient
direction.
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The wild bootstrap [Liu, 1988] is a method for model-
based resampling in heteroscedastic linear regression with
an unknown form; i.e., when the errors have an arbitrary
variance structure. Model-based resampling, using the
wild bootstrap, is given by

yi = (Xd); +auef, i=1,...,N, (7)
where a; is a weight in order to produce a heteroscedastic-
ity consistent covariance matrix estimator (HCCME), u; is
the residual and €} is drawn from the distribution F. The
HCCME is required because a standard assumption of lin-
ear regression models—the error terms have a constant
variance—is violated here [MacKinnon and White, 1985].
Instead of resampling from the residuals of the linear
regression, only valid in the homoscedastic case, the wild
bootstrap samples from an auxiliary distribution F and
multiplies this random variable with a rescaled version of
the residual a;u; using a local estimate of the covariance
matrix. Examples of such HCCMEs include

n 1 ‘ 1

aj = n*p7 ai = 17]/[]‘7

where 1 is the total number of observations, p is the num-
ber of estimated parameters, and #; is the ith diagonal ele-
ment from H=X(X"X) ! X', the so-called hat matrix from
OLS regression. Detailed explanations of the HCCMEs are
beyond the scope of this study and can be found in MacK-
innon and White [1985]. Briefly, the first form in Eq. (8)
comes from a degrees of freedom correction and the sec-
ond and third forms can be derived from jackknife-based
estimators of the covariance matrix. The bootstrap per-
formance between the different versions is discussed in
Flachaire [2005] and results from DTI-specific simulations
are provided in this article.

The random variable e* obtained from the auxiliary dis-
tribution must satisfy

E(e") =0, ©)

(10)

that is, its first moment is zero and its second moment is
one, to ensure that the residual from the wild bootstrap in
Eq. (7) retains the same first and second moments as the
true residual. An additional condition

E(€?) =1, (11)
its third moment is one, is commonly added to help define
this distribution. It has been shown, assuming Egs. (9)-
(11), that the first three moments of the bootstrap distribu-
tion of an HCCME-based test statistic agree with those
from the true distribution of the statistic up to order n!
[Liu, 1988]. Two suggestions for the auxiliary distribution
F are

Fpgt { —(v5-1)/2  with probability p=(v5—1)/(2v5),

"7 1(V5+1)/2  with probability 1 —p;
(12)
[Mammen, 1993] and the Rademacher distribution
_+_ |1 withprobability 0.5,
Farei = { ~1  with probability 0.5; (13)

[Davidson and Flachaire, 2001; Liu, 1988]. Simulation stud-
ies in Davidson and Flachaire [2001] have indicated that
the wild bootstrap using F, outperforms the wild bootstrap
using F;, especially when the errors follow a skewed dis-
tribution. Additional proposals for auxiliary distributions
may be found in Liu [1988] and Mammen [1993].

Note the residuals are no longer resampled in Eq. (7) to
generate the wild bootstrap sample, unlike the ordinary
model-based bootstrap sample in Eq. (4). This respects the
heteroscedasticity in the model but still produces enough
variability to draw inference about the parameters (diffu-
sion tensor elements) in the multiple linear regression
model. An example of the wild bootstrap applied to a sin-
gle voxel, taken from Whitcher et al. [2005], is provided in
Figure 1. The original voxel was chosen because it deviates
from isotropy (FA = 0.85). The fit from the multiple linear
regression model is provided along with the individual
measurements. The residuals u; are then calculated and
modified via a;u;ef, where a; = (1 - h,-)fl/z, to produce the
wild bootstrap residuals. The wild bootstrap residuals are
then added back to the fitted model to produce a new
model-based resampling of the data. Estimating the diffu-
sion tensor via multiple linear regression produces a new
fit from which scalar summaries may be derived (e.g., FA
= 0.9). Performing this operation a number of times gener-
ates a wild bootstrap distribution for the parameter of in-
terest, in this case FA.

MATERIALS AND METHODS
Simulation of DTI Data

Signal intensities, assumed to be taken from magnitude
images, for single voxels were simulated using two sources
of uncertainty. Euler angles of the principal eigenvector
were drawn from a normal (Gaussian) distribution with
mean p = 45° and variance ¢ = 9°. Measurement error
was drawn from the Rician distribution for each gradient
direction with a signal-to-noise ratio of SNR € {5,10,20} for
the b = 0 images. Sampling from the Rician distribution is
relatively straightforward, computationally, because of its
relationship to the noncentral y> distribution with two
degrees of freedom and the fact that random number gen-
erators for the noncentral y? distribution are widely avail-
able. Three sets of simulations were performed, one for
each type of tensor: prolate (A1, Ay, \3) = (1.5, 0.4, 0.4)
pm?/ms, oblate (\, Ao, A\3) = (0.9, 0.8, 0.6) um?/ms, and
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Figure 1.

Graphical illustration of the wild bootstrap on a single voxel where b = 0 for indices |-10 and
b = 700 s/mm? for indices |1-70; (a) observations and fitted values from the diffusion tensor,
(b) original and bootstrap residuals from the model fit, (c) bootstrap observations with new fit-
ted values, and (d) bootstrap distribution of fractional anisotropy. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

isotropic (A1, Az, A\3) = (0.767, 0.767, 0.767) ptmz/ms. All
tensor models have the same trace, ¥; \; = 2.3 pumz/ ms,
and are based on previously reported normal values
[Pierpaoli et al., 1996].

The first stage of the simulation procedure produced
1,000 Monte Carlo simulations in order to obtain sufficient
“ground truth” for comparison with the proposed boot-
strap techniques. A single realization from the Monte
Carlo sample was drawn at random and 999 bootstrap
iterations were computed based on that realization. Sum-
mary statistics, based on the eigenvalues (or functions of
them) and eigenvectors, were computed for each set of
MC and bootstrap realizations. This first stage was per-
formed 250 times to provide a measure of uncertainty in
the MC and bootstrap procedures. Thus, a total of 1,000 x
250 = 250,000 iterations were run and summaries of the
simulation-based results involve 250 values for each statis-
tic of interest.

Two simulation scenarios were considered (all with b =
700 s/mm?” unless otherwise specified): one with a modest

number of acquisitions, 14 in total, either two b = 0 and 12
diffusion-weighted with six gradient directions (NEX =
10) or two b = 0 and 12 diffusion-weighted with 12 gradi-
ent directions [Jones et al.,, 1999b]; and one with a rela-
tively large number of acquisitions, 70 in total, either 10 b
= 0 and 60 diffusion-weighted with six gradient directions
(NEX = 10) or 10 b = 0 and 60 diffusion-weighted with 60
gradient directions. When implementing the regular boot-
strap on the 6-direction data (NEX = 10), each regular
bootstrap realization produced 70 diffusion-weighted
images (10 T2 + 60 diffusion-weighted) drawn with
replacement from the original 70 images. Similarly, when
NEX = 2 each regular bootstrap realization produced 14
diffusion-weighted images (2 T2 + 12 diffusion-weighted)
drawn with replacement from the original 14 images.

The sampling scheme proposed in this article is equiva-
lent to the specific case of r; = n;, for all i, using the nota-
tion from Pajevic and Basser [2003] and corresponds
exactly with the bootstrap method provided in Heim et al.
[2004]. When implementing the wild bootstrap on the 60-
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direction data, the two-point distribution F, was used
exclusively to generate €; the heteroscedasticity consistent
covariance matrix estimator used was a =1/v/1 —h where
h is the diagonal element vector from the hat matrix) and
u=y-— Xd defined the residual vector.

Human MR Imaging

Data were acquired from one normal subject (28-year-
old male Caucasian) in a Siemens Allegra 3.0 Tesla scan-
ner using a single channel head coil. The data were col-
lected using a protocol approved by the Massachusetts
General Hospital Internal Review Board. The participant
provided informed consent in writing prior to the scan
session. Two sets of images were obtained: the first
consisted of 10 measurements of six gradient directions
(b = 700 s/mm?) and 10 T2 images (b = 0) and the second
consisted of a single measurement of 60 gradient direc-
tions (b = 700 s/mm?) and 10 T2 images (b = 0). For both
scans, however, the slice prescription was identical: 64 sli-
ces acquired in the AC-PC plane, TR/TE = 7,900/83 ms,
Smax = 31 mT/m, FoV = 256 x 256, base resolution = 128
x 128, 8.0 mm? isotropic voxels. Acquisition time for each
scan was 9:21. The specific choices required to implement
the wild bootstrap were identical to the simulated DTI
data. Note that cardiac gating was not used in the acquisi-
tion protocol.

Computational Details

To clarify notation and terminology, we use the term
multiple linear regression model to denote Eq. (1). We
reserve the term “multivariate” for the model below. Put-
ting aside, for the moment, the resampling of residuals
here we focus on estimating the diffusion tensor for a large
number of voxels. There are clear advantages in the com-
putational efficiency of DTI data analysis over a slice, or
indeed the whole volume, when one formulates the model
in Eq. (1) for all voxels as a multivariate multiple linear
regression

Y =XA +¢, (14)
where Y is a N x V response matrix with each column rep-
resenting the log-transformed signal intensity from a differ-
ent voxel, A is a 7 x V matrix with each column being the
diffusion tensor estimates, along with the b = 0 term. The
advantage of organizing the data in this way facilitates a
single application of linear algebra techniques, such as the
QR or singular-value decomposition, to estimate the diffu-
sion tensors for all voxels simultaneously. This eliminates
the need to loop over the voxels in order to perform a single
multiple linear regression and produces much more effi-
cient algorithms in common data analysis packages (such
as Matlab or R) where loops, especially nested loops, are
slow.

RESULTS
Simulated DTI Data

Figures 2-4 show boxplots® of the simulation study com-
paring MC simulations with regular and wild bootstrap
realizations for the 6-direction data (NEX = 10) and 60-
direction data (NEX = 1) for SNR =~ 20. Horizontal lines
indicate the true value when available. The figures shown
here utilize the second choice of HCCME from Eq. (8); i.e.,
a; = (1-h;)"'/2. Simulations were performed using all three
HCCMEs with no substantial difference between the char-
acteristics of the eigenvalues or FA.

For the prolate tensor, averages for \, and \; exhibit a
small amount of bias due to sorting while \; is much less
affected [Pierpaoli and Basser, 1996]. Both regular and
wild bootstrap estimates of the average show much more
variability, but this is to be expected since they are based
on a single observation, whereas the MC averages have
1,000 observations. Standard deviations of the eigenvalues
indicate a difference in sampling schemes, although not
enough to be clinically meaningful. The regular bootstrap
estimates of the eigenvalue SD are negatively biased for
the 6-direction scheme and are much more variable than
the wild bootstrap results for the 60-direction scheme,
even though the former has 10 measurements per gradient
direction. This may be due purely to the number of direc-
tions sampled, not the bootstrap methodology, with the
60-direction scheme producing more stable estimates of
the diffusion tensor elements from which these eigenval-
ues are based; as noted previously by Jones [2004].

One potential source of variability comes from the fact
that the regular and wild bootstrap procedures were
applied to separate data sets. An additional step was
included where the wild bootstrap was applied to the data
from the 6-direction scheme without altering the algo-
rithm. No difference in performance, as measured by esti-
mates of the average and SD of the eigenvalues, was
detected when the wild bootstrap was applied to the data
from the 6-direction scheme compared to the regular boot-
strap procedure.

Average fractional anisotropy (FA) is accurately esti-
mated by the wild bootstrap for 60-direction data with
increased precision when compared with the regular boot-
strap for the 6-direction data (the true value of FA is
~0.69). The SD of estimated FA values is less for the 60-
direction scheme and its bootstrap estimate of SD appears
to be much less biased than the results from the regular
bootstrap on the 6-direction scheme. When looking at the
so-called cone of uncertainty [Jones, 2003], neither boot-
strap technique adequately estimates the 95 percentile

% The box portion of each boxplot element captures the interquar-
tile range (25% to 75%) of the observations and the line roughly in
the middle corresponds to the median of the observations. Obser-
vations beyond 1.5 times the interquartile range, in either direc-
tion, are drawn as individual points.
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Figure 2.

Summary statistics derived from 250 iterations of the simulation
study using a prolate tensor (\;, Ay, A3) = (1.5, 0.4, 0.4) um?*/ms,
FA =~ 0.69, SNR = 20. The average and standard deviation (SD)
were computed for all three eigenvalues, fractional anisotropy, and
the 95 percentile in the minimum angle subtended, under both ac-
quisition schemes (6- and 60-directions) and the three methods

(Monte Carlo simulation, regular bootstrap, and wild bootstrap).
The labels correspond to, from left to right, 6-directions (NEX =
10) using MC simulation, 6-directions (NEX = 10) using the regu-
lar bootstrap, 60-directions using MC simulation, and 60-directions
using the wild bootstrap. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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Figure 3.

Summary statistics derived from 250 iterations of the simulation
study using an oblate tensor (A, Ay, A\3) = (0.9, 0.8, 0.6) um?%/
ms, FA ~ 0.20, SNR = 20. The average and standard deviation
(SD) were computed for all three eigenvalues, fractional anisot-
ropy, and the 95 percentile in the minimum angle subtended,

from the MC simulations. Instead, both techniques are at
least 2° less (20%) when comparing median values (solid
bar in the boxplot) with the MC simulation results. Such

under both acquisition schemes (6- and 60-directions) and the
three methods (Monte Carlo simulation, regular bootstrap, and
wild bootstrap). The labels are identical to those in Figure 2.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

discrepancies, between the MC simulations and bootstrap
samples, are not apparent in the other univariate summa-
ries of the diffusion tensor model displayed but those
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Figure 4.

Summary statistics derived from 250 iterations of the simulation
study using an isotropic tensor (\|, Ay, \3) = (0.767, 0.767,
0.767) wm?*ms, SNR = 20. The average and standard deviation
(SD) were computed for all three eigenvalues, fractional anisot-
ropy, and the 95 percentile in the minimum angle subtended,

quantities are inherently more stable; e.g., the mean and
standard deviation. Given that the bootstrap estimates of
the 95 percentile are based on a single realization of the

under both acquisition schemes (6- and 60-directions) and the
three methods (Monte Carlo simulation, regular bootstrap, and
wild bootstrap). The labels are identical to those in Figure 2.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

prolate tensor model, instead of 1,000 realizations, there is
not enough information to accurately reproduce more diffi-
cult quantities such as extreme values.
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The oblate tensor in Figure 3 shows the usual sorting
bias in the average for all three eigenvectors by both boot-
strap methods, with similar precision but slightly more
bias in A\; and \; for the wild bootstrap. The regular boot-
strap for the 6-direction data and the wild bootstrap for
the 60-direction data produced similar quality estimates of
eigenvalue SD for all three eigenvalues, with a slight nega-
tive bias in the regular bootstrap. This is likely due to the
number directions in the encoding scheme and not specifi-
cally attributable to the bootstrap methodology. Average
FA shows a slight positive bias for both sampling schemes,
with the wild bootstrap on the 60-direction data being less
precise when compared with the regular bootstrap applied
to the 6-direction data. The SD of estimated FA shows
only minor differences between the two bootstrap proce-
dures, with a slight negative bias for the wild bootstrap.
Estimates of angular difference for the cone of uncertainty
are much improved versus the prolate tensor. Both boot-
strap methods demonstrate a negative bias when estimat-
ing the 95 percentile of the minimum angle subtended;
this is similar to the case of the prolate tensor and is most
likely due to the difficulties in estimating extremes from
the bootstrap applied to a single realization.

The isotropic tensor in Figure 4 exhibits pronounced
effects from sorting bias in the eigenvalues. Both bootstrap
techniques suffer from increased bias, positive for \; and
negative for N3, when compared with the MC simulations.
When comparing estimates of the SD for each eigenvalue,
the 60-direction scheme exhibits a larger SD, both in simu-
lation and through the wild bootstrap, but the positive
bias from the wild bootstrap does not appear to be much
larger than the positive bias present in the regular boot-
strap for the 6-direction data. The true FA for all simula-
tions is zero, but with the inclusion of Rician noise this is
not possible to attain and thus positive bias in estimates of
FA (whether from MC or bootstrap realizations) is to be
expected. Bias from the true value of zero is around 0.08
for the MC simulations, a little less for the 6-direction
scheme, and the bootstrap realizations exhibit positive bias
above and beyond that to be expected from the MC results
(on the order of 0.02-0.04 units FA). The estimated SD of
FA was very similar for the two sampling schemes for the
MC simulations, with a slight positive bias when applying
the bootstrap techniques. The wild bootstrap does exhibit
increased bias when compared with the regular bootstrap.
This is most likely due to the encoding scheme and not
the bootstrap methodology. With 10 acquisitions under the
six-direction scheme, there is more information about the
variability of the data instead of a single acquisition with
60 directions. Thus, the wild bootstrap, based on the 60-
direction data, is exhibiting increased variability when esti-
mating FA. The 95 percentile of the angular difference is
very close to 90 degrees, with a small negative bias for the
bootstrap techniques and a large left-hand tail in the
observed distribution of angles.

When the SNR was reduced to 5 or 10, the performances
of the regular and wild bootstrap methods, relative to their

MC simulations, follow the patterns observed in Figures
2-4 with a few notable differences (not shown). For the
prolate tensor, decreased SNR induces substantial negative
bias in the estimated major eigenvalue when using only
six directions, and thus, negative bias in FA. This is not
observed in estimates obtained from the 60-direction data.
The ability of either bootstrap method to accurately repro-
duce the uncertainty in the angular difference is much bet-
ter; a negligible bias is observed when compared with
high SNR. Patterns in the performance of either bootstrap
method did not appear to be differentially affected by
decreasing SNR for the oblate and isotropic tensors.

Human DTI Data

Statistical summaries of fractional anisotropy (FA) color
map and bootstrap standard error (SE), in grayscale, for
axial slices through the centrum semiovale (Fig. 5, panels
a—e, a’—e’; k-0, k’—0’) and through the caudal midbrain/
rostral pons (Fig. 5, panels f—, f'—j’; p—t, p’—t’) are dis-
played for both the 6- and 60-direction data. Minor differ-
ences between the two sampling schemes for the estimated
FA, colored by the direction of the principal eigenvector
[Pajevic and Pierpaoli, 1999], are apparent.

From motor cortex, the corticospinal tracts travel inferi-
orly through

. centrum semiovale in the cerebral hemispheres,

. posterior limb of the internal capsule,

. cerebral peduncles of the midbrain, and

. pons before reaching the medulla to form the pyra-
mids.

= W N =

The axial views in Figure 5 demonstrate the corticospi-
nal tracts in the cerebral hemispheres and brainstem.
Although the corticospinal tracts are well defined in the cer-
ebral peduncles, they are not as well defined in the areas of
the centrum semiovale and pons where other white matter
tracts intersect. To illustrate, the FA color map shows the
centrum semiovale as a mostly “blue” structure (oriented in
the superior-inferior direction) in superior slices, but inter-
secting “red” fibers (oriented left-right) can be seen in infe-
rior slices (Fig. 5, panels a—e, white arrows). Arrows are
only shown on every other slice and in the six-direction
data only for simplicity. A similar trend is shown in the
transition from the caudal midbrain to the rostral pons (Fig.
5, panels f-j). Thus, we expected that lower bootstrap SE
would be found in voxels corresponding to the corticospinal
tracts of the cerebral peduncles as compared to either the
centrum semiovale or rostral pons in both the 6- and 60-
direction data. Figure 5, panels a’—e” and f'—g’ show that
this is indeed the case, although the results are more appa-
rent in the brainstem. Figure 6, a map of the bootstrap SE
for the principal eigenvector Euler angle, accentuates the
results from SE maps in Figure 5 and emphasizes the results
that angular uncertainty is low in regions where the white
matter bundles are uniform in direction and high in regions
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Figure 5.

Fractional anisotropy, colored by principal eigenvector, for a single
subject scanned using both 6-direction and 60-direction sequen-
ces. Standard errors from the regular bootstrap are provided for
the 6-direction sequence and from the wild bootstrap for the 60-
direction sequence. Both sets of bootstrap SEs are displayed in FA

where white matter bundles intersect (red arrows shown on
every other slice and in the six-direction data only for sim-
plicity). This agrees with previous results when using the
regular bootstrap [Jones, 2003].

Although these data were obtained from a healthy con-
trol subject, we found a single, unexpected hypointensity
in the region of the inferior temporal lobe near the fusi-
form gyrus in the b = 0 scan (data not shown; the lesion
was reported to the subject, who was encouraged to obtain
a follow-up with his physician). Follow-up T2 and FLAIR
scans failed to show any edema or white matter hyperin-
tensity, respectively, in the vicinity of the lesion. Interest-
ingly, the color maps show an apparent disruption in the

units (ranging from 0 to 0.175). Centrum semiovale (top rows)
and caudal midbrain/rostral pons (bottom rows) are demarcated
on alternating slices of the 6-direction sequence only (white
arrows). A region of FA disruption can be seen in the inferior tem-
poral lobe near the fusiform gyrus (yellow arrow).

FA surrounding the lesion (Fig. 5g, yellow arrow), and the
bootstrap maps, both regular and wild, indicate an
increase in the SE. However, the Euler angle map (Fig. 6g)
fails to show any remarkable difference in the SE of this
region.

It should be noted that cardiac gating was not used in
the acquisition of these data. Hence, quantification and vis-
ualization of effects attributable to cardiac pulsation is not
possible. The fact that the wild bootstrap operates on a sin-
gle set of measurements means that implementing cardiac
gating will not necessarily improve its performance. The
regular bootstrap, by definition, requires several measure-
ments and is therefore able to take advantage of such DTI
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(Continued)

acquisition schemes. One procedure is not necessarily opti-
mal for all situations and caution should be exercised
when deciding on the specific DTI acquisition scheme, not
only for data quality implications but also its impact on
data modeling and analysis.

DISCUSSION AND CONCLUSIONS

A collection of resampling techniques has been pro-
posed, which provides estimates of uncertainty in univari-
ate summaries of the estimated diffusion tensor, regardless
of the specific DTI acquisition method assuming that more
than six gradient directions have been acquired or a six-
direction gradient encoding scheme has been acquired
more than once. The performance of model-based resam-
pling schemes show no loss of precision or accuracy when
compared with the well-established regular bootstrap pro-

cedure in both simulations and human DTI data. It should
be noted that a negative bias (on the order of 20%) was
found in the cone of uncertainty for simulated prolate ten-
sors when a large number (e.g., 60) of diffusion-weighted
images are acquired, but not found in oblate or isotropic
tensor models, regardless of the bootstrap method used.
The reason for this is not clear at the moment, but it
should be noted that this disappeared with reduced SNR
in simulations. For prolate tensors, any bootstrap method
based on six-direction data produced highly variable esti-
mates of FA when compared to the 60-direction data. This
result reiterates the advantages of using a larger number
of gradient directions, even if only one measurement is
taken per direction.

Given the fact that errors in the linear regression model
of log-transformed signal intensity are not Gaussian, nor
symmetric, the choice of resampling distribution (F; or F»)
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Bootstrap estimates of the standard error (SE) for the principal
eigenvector Euler angle, obtained from the regular bootstrap for
the 6-direction acquisition and from the wild bootstrap for the
60-direction acquisition. The first and third rows show all values
from 0° < SE < 30° and the second and fourth rows only dis-
plays voxels with an FA > 0.4. Centrum semiovale (top rows)

may have an impact on the wild bootstrap. Bose and
Chatterjee [2002] compared variance estimates of regres-
sion parameters under several skewed error distributions.
The wild bootstrap was found to be inferior when com-
pared to alternative methods. However, in simulation
studies with highly skewed errors (from a noncentral y3
distribution) the wild bootstrap using F, performed simi-
larly to F;, and never worse when comparing errors in
rejection probabilities [Davidson and Flachaire, 2001]. Both
resampling distributions were applied in simulation stud-
ies with no visible difference between the estimated diffu-
sion tensor models or in univariate summaries of the diffu-

and caudal midbrain/rostral pons (bottom rows) are demarcated
on alternating slices of the 6-direction sequence only (red
arrows). The region of FA disruption in the inferior temporal
lobe near the fusiform gyrus that was seen in the FA color map is
delineated by the yellow arrow.

sion tensor. In most, if not all, of the simulations per-
formed for DTI data analysis here the wild bootstrap for
single-average acquisitions performed as well as the regu-
lar bootstrap for multiple acquisitions. Additional simula-
tion studies were also conducted in which the heterosce-
dasticity consistent covariance matrix estimator (HCCME)
was varied between three choices in the literature. No sub-
stantial differences in the performance of the wild boot-
strap were observed when duplicating the simulation stud-
ies on prolate, oblate, and spherical tensor models using
the three HCCME’s proposed in the section on Model-
Based Resampling: Homoscedastic Errors.
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(Continued)

Simulations were also performed to investigate the
resampling-within-gradient-directions (RWGD) and wild
bootstrap applied to the six-direction sampling scheme
with SNR =~ 20 (not shown here). For all three tensor
models (prolate, oblate, and isotropic) the RWGD and wild
bootstrap techniques exhibited minor differences in bias
for statistical summaries of the eigenvalues, and thus, frac-
tional anisotropy when compared with the regular boot-
strap. However, these differences were not great nor did
they follow an obvious pattern. The bootstrap techniques
(regular, model-based, and wild) produced essentially
identical results when applied to the six-direction clinical
data. A slight reduction in bias for the 95 percentile of the
angular difference was observed for the RWGD and wild
bootstrap, most notable in the oblate tensor model, but
these were in the order of 5-10% compared with the simu-
lated angular difference. These results provide an empiri-

cal validation of both model-based bootstrap techniques
compared to the established regular bootstrap for a variety
of clinically relevant tensors.

Not all DTI acquisition protocols can accommodate 60
diffusion-weighted images per scan, whether or not those
images come from a low number of gradient directions
with a large NEX or a high number of gradient directions
with a low NEX. Figure 7 summarizes a simulation study
where the performance of the regular and wild bootstraps
for the six-direction data (NEX = 2) and 12-direction data
(NEX = 1) were compared with MC simulations for SNR
~ 20. Individual eigenvalue results have been omitted and
only FA and the 95 percentile of the minimum angle sub-
tended are shown. Results on estimating the average FA
value follow the same trends established with looking at
six-direction data with NEX = 10. That is, the prolate ten-
sor is well estimated and the oblate and isotropic tensors
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Figure 7.

Summary statistics for fractional anisotropy and the 95 percen-
tile in the minimum angle subtended derived from 250 iterations
of the simulation study using all three diffusion tensor models
(prolate, oblate, and isotropic), SNR = 20. The labels corre-
spond to, from left to right, 6-directions (NEX = 2) using MC

exhibit substantial positive bias. The bias is even more pro-
nounced since only a fraction of the data (20%) are avail-
able for both the MC simulations and bootstrap proce-
dures compared to the MC simulations using a total of 70

simulation, 6-directions (NEX = 2) using the regular bootstrap,
6-directions (NEX = 2) using the wild bootstrap, |12-directions
using MC simulation, and |2-directions using the wild bootstrap.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

acquisitions per scan. The wild bootstrap performed better,
in general, in estimating the SD of FA in all three tensor
models when compared with the regular bootstrap on the
six-direction data and also performed well with the 12-

¢ 360 ¢



* The Wild Bootstrap in DTI ¢

direction data. This may be because the wild bootstrap
adds variability by flipping the residuals, thus causing
more variability than simply resampling such a low num-
ber (two) of acquisitions per gradient direction. For the
minimum angle subtended, the wild bootstrap performs
well for both the 6- and 12-direction data and the regular
bootstrap consistently underestimates the 95 percentile.

The linear model identified in Eq. (1) is used to estimate
the diffusion tensor elements, and thus, infer the white mat-
ter integrity at a voxel level. The true relationship between
signal intensity and the parameters of the diffusion tensor
model is a nonlinear one, the log transform is one way to
place the estimation problem onto the solid foundation of a
linear model, at the cost of transforming the noise distribu-
tion [Salvador et al., 2005]. Given the ever-increasing capa-
bilities of computing resources, it is fair to ask why parame-
ter estimation does not take place directly on the nonlinear
model. Arguments in favor of the linear model are that lin-
ear models have a direct solution via the theory of least
squares, computation is efficient and may be parallelized so
that the diffusion tensor elements for all are estimated
simultaneously (see the Computational Details section), and
optimization algorithms involve user-defined starting values
and may not converge. We have offered model-based resam-
pling in the linear regression model as a straightforward sta-
tistical technique that offers researchers the ability to gener-
ate empirical errors on quantities of interest in the familiar
framework of the diffusion tensor model. We acknowledge
that the linear regression model is suboptimal as the signal-
to-noise ratio goes down, especially since finer spatial reso-
lution is sought after, and are currently investigating estima-
tion techniques that respect the physical model and distribu-
tion of the noise.

Although we have focused on a small set of scalar sum-
maries of the diffusion tensor there are two areas of applica-
tion in DTI that may benefit from the proposed methodol-
ogy. Firstly, more complicated models based on the Gaus-
sian model of diffusion are amenable to the bootstrap but
additional work is required to incorporate heteroscedasticity
[Basford et al., 1997; Tuch et al., 2002]. Semiparametric or
nonparametric models of diffusion at the voxel level, such
as g-ball imaging [Tuch, 2004], will require careful applica-
tion of bootstrap methodology. The g-ball reconstruction
may also be interpreted in a linear regression framework.
The challenge will be to describe the angular and anisotropy
variability when there are multiple peaks. Also, since the
orientation distribution function (ODF) is treated as a proba-
bility density, one would need a framework to describe the
fact that the probability density is due to both the physical
model and the bootstrap variability. Secondly, the regular
bootstrap has already been applied to the area of fiber trac-
tography [Jones and Pierpaoli, 2005; Jones et al., 2005; Lazar
and Alexander, 2005]. Application of the wild bootstrap,
instead of the regular bootstrap, is possible when the diffu-
sion tensor is estimated from the DTI data using the model
of Basser et al. [1994] with preliminary results already pre-
sented [Jones, 2006].

By applying the bootstrap to the errors from the linear
regression model relating observed signal intensity to the
diffusion tensor, we have provided an alternative to the
most common method to estimate a diffusion tensor in
MRI. When applied to clinical data with several measure-
ments per gradient direction, the regular bootstrap and
model-based bootstrap perform equally well, thus giving
the researcher a choice in implementation without sacrific-
ing the accuracy nor the precision for estimates of uncer-
tainty. Even when only a single measurement is available
for each gradient direction, the wild bootstrap may be
applied to obtain estimates of uncertainty assuming that
more than six gradient directions have been acquired or a
six-direction gradient encoding scheme has been acquired
more than once.
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