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José P. Marques,1,2* José Rebola,1 Patrı́cia Figueiredo,1,3 Alda Pinto,4

Francisco Sales,5 and Miguel Castelo-Branco1

1Visual Neuroscience Lab, IBILI, University of Coimbra, Portugal
2Centre d’Imagerie BioMédicale, EPFL, Switzerland
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Abstract: In this study, we introduce a new approach to process simultaneous Electroencephalography
and functional Magnetic Resonance Imaging (EEG-fMRI) data in epilepsy. The method is based on the
decomposition of the EEG signal using independent component analysis (ICA) and the usage of the
relevant components’ time courses to define the event related model necessary to find the regions
exhibiting fMRI signal changes related to interictal activity. This approach achieves a natural data-
driven differentiation of the role of distinct types of interictal activity with different amplitudes and
durations in the epileptogenic process. Agreement between the conventional method and this new
approach was obtained in 6 out of 9 patients that had interictal activity inside the scanner. In all cases,
the maximum Z-score was greater in the fMRI studies based on ICA component method and the extent
of activation was increased in 5 out of the 6 cases in which overlap was found. Furthermore, the three
cases where an agreement was not found were those in which no significant activation was found at
all using the conventional approach. Hum Brain Mapp 30:2986–2996, 2009. VVC 2009 Wiley-Liss, Inc.
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INTRODUCTION

The possibility to record the Electroencephalogram
(EEG) inside the Magnetic Resonance (MR) scanner [Ives

et al., 1993; Krakow et al., 2000b; Lemieux et al., 1997] has
opened the possibility to the study of brain function
through simultaneous acquisition of EEG and functional
Magnetic Resonance Imaging (fMRI). Although some stud-
ies with event related potentials (ERP’s) recorded on the
EEG have recently appeared in the literature [Debener
et al., 2005], showing a relationship between the ERP am-
plitude and fMRI hemodynamic activation, it is the re-
cording of physiological brain rhythms [Goldman et al.,
2002; Laufs et al., 2003a,b] and spontaneous epileptic
spiking activity [Hoffmann et al., 2000; Krakow et al.,
2000a; Seeck et al., 1998; Warach et al., 1996) that have
proved to be the most relevant fields of application so
far. Because of its clinical potential in the localization of
the sources of interictal epileptiform activity, synchronous
EEG-fMRI is becoming a more common tool in the study
of epilepsy.
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*Correspondence to: José P. Marques, Visual Neuroscience Lab,
IBILI, University of Coimbra, Portugal.
E-mail: jose.marques@epfl.ch

Received for publication 8 March 2008; Revised 27 November
2008; Accepted 1 December 2008

DOI: 10.1002/hbm.20723
Published online 26 January 2009 in Wiley InterScience (www.
interscience.wiley.com).

VVC 2009 Wiley-Liss, Inc.

r Human Brain Mapping 30:2986–2996 (2009) r



It is still not clear to what extent localization results
from the two approaches (EEG and fMRI) can be
expected to be concordant. On a more fundamental
approach, Logothetis et al. have reported a good correla-
tion between the fMRI signal and local field potentials
within the brain [Logothetis et al., 2001; Logothetis, 2003],
which are linked to the EEG potentials observed on the
scalp [Niedermeyer and Lopes Da Silva, 1999]. In mon-
keys, Disbrow et al. [2000] have found a spatial overlap
of 55% between electrophysiogical measurements on the
cortex and fMRI responses in monkeys. Such invasive
studies are inherently difficult to conduct in humans, for
obvious reasons.
Some initial EEG-fMRI reports of patients with epi-

lepsy showed a good agreement between fMRI signal
increase and EEG source localization [Lemieux et al.,
2001]. Others [Bagshaw et al., 2006] noticed that when
comparing spatiotemporal dipole modeling with EEG-
fMRI activations and deactivations, on average, the
dipoles were 58.5 mm from the voxel with the highest
positive t-value and 32.5 mm from the nearest activated
voxel. These values are considerably higher than is gen-
erally observed with ERP studies, probably as a result of
the relatively widespread field, which can lead to artifi-
cially deep dipoles. Better concordance was found when
comparing the EEG-fMRI localizations and stereotaxic
EEG (SEEG) [Bénar et al., 2006]. Recently a study com-
paring concordance between distributed source models
and EEG-fMRI [Grova et al., 2008] showed that good cor-
relation can be found in most patients (6 of 7) but only
for few of the clusters (64% of the clusters found in the
fMRI showed no correlation).
Nonparametric analysis of the EEG-fMRI data has been

used to prove the robustness of the activation maps
obtained by the conventional analysis, by showing that
interictal discharges lead to a BOLD response that is sig-
nificantly different to that obtained by examining random
‘‘events" [Waites et al., 2005]. The meaning of the activa-
tion maps obtained in EEG-fMRI studies of epilepsy is still
a matter of debate. They are expected to be correlated with
the regions of epileptogenesis of interictal activity which
might or might not be related to those areas of ictal excit-
ability. Surprisingly, interictal activity can result in either
positive or negative activations (in terms of the amplitude
of the signal changes) [Aghakhani et al., 2004; Archer
et al., 2003). Recent studies observed that deactivations
were often found (10/43) in regions associated with the
default network, which suggests that those should not be
over-interpreted as clues to regions underlying ictal activ-
ity [Kobayashi et al., 2006]. Data obtained with BOLD and
arterial spin labelling (ASL) suggests that negative BOLD
responses related to interictal epileptic discharges (IED)
may arise from the larger blood flow decrease relative to
the oxygen consumption decrease, as observed for motor
task induced negative BOLD responses in healthy volun-
teers [Stefanovic et al., 2005]. Bénar et al., [2006] have
found that the sign of the fMRI response correlates with

the low frequency (from 0.5 to 5 Hz) content of the stereo-
taxic EEG (SEEG) epileptic transients, the latter being a
reflection of the slow waves (a higher proportion of energy
in the low frequencies of the SEEG was recorded in
regions with positive BOLD compared with those of nega-
tive BOLD response). This could reflect an increase of me-
tabolism linked to the presence of slow waves (although
these are commonly associated with inhibition of neuronal
activation). Accordingly, it should be taken into account
that increased inhibition can induce positive changes in
BOLD response because of enhanced synaptic activity,
even if firing rates are overall maintained or even
decreased (suffice it to say that if there is a lot of hyperpo-
larization caused by the activity of inhibitory interneurons,
this will cause enhanced neurotransmitter release and syn-
aptic activity with ensuing increased metabolic consump-
tion and a paradoxically lower number of firing pyramidal
neurons).
Other studies using EEG-fMRI data of epileptic patients

with IED’s have been directed toward investigating the
relevance of using different models of the haemodynamic
response function (HRF) in the event related design.
Although some have proposed patient-specific HRFs
[Kang et al., 2003], others have varied the lag of the HRF
[Bagshaw et al., 2004]. The first approach showed an
increase in the detectability, but no significant changes in
the location of the active regions. The second strategy
showed that the canonical response function is sufficiently
robust to detect positive BOLD responses, whilst the nega-
tive BOLD response seems to be more efficiently detected
by using larger lags (up to 9 s).
The utility of temporal clustering analysis (TCA) in the

analysis of resting state fMRI of patients with temporal
lobe epilepsy [Morgan et al., 2004] has also been shown.
Recently [Rodionov et al., 2007) a study showed very good
correlation between ICA-based fMRI (using some prior
constraints regarding BOLD-like spatial and temporal
characteristics) and GLM based analysis of EEG-fMRI of
patients with focal epilepsy. The problem with a solely
data driven approach is the lack of causality or model
behind it.
In this study, Independent Component Analysis (ICA)

[Comon, 1994] of the EEG data was evaluated as a poten-
tial semiblind (data driven) method to characterize the
electric activity of spikes, bursts of spikes and slow waves
with different amplitudes and durations. The core mathe-
matical concept of ICA is to minimize the mutual informa-
tion amongst the data projections. It simply tries to find a
coordinate system in which the data projections have mini-
mal temporal overlap.
ICA is already a popular technique to remove artifacts

such as eye blinks [Vigário, 1997], eye movement or mus-
cular activity, but because of the high amplitude of interic-
tal activity, and the fact that its sources can be generally
considered static, it can also prove important in the sepa-
ration and identification of such activity [Kobayashi et al.,
1999; Urrestarazu et al., 2006]. Ultimately, this method
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presents a semiautomated approach to detect interictal ac-
tivity, which might allow reduction of the subjectivity of
the evaluation and identification of the epileptiform activ-
ity performed by a neurophysiologist.

METHODS

Studies were performed using a 32 channel MRI compat-
ible EEG system (Micromed, Italy), and a 1.5 T MRI scan-
ner (Siemens Symphony, Erlangen, Germany). The EEG ac-
quisition was performed at 2048 Hz. Along with the fMRI
data acquisition, structural images were acquired to allow
coregistration of the functional maps to the high resolution
structural image. The MRI sequence used for acquiring
structural images was MPRAGE, 256 3 256 3 104 matrix
with a resolution of 0.8 3 0.8 3 1 mm3, whilst the func-
tional studies were carried out using echo planar imaging
(EPI) with the following parameters: TE 5 40 ms; BW 5
1698 Hz/Px; flip angle 5 82 degrees; matrix dimensions of
64 3 64 and a spatial resolution of 3 3 3 3 4 mm3. The
TR was set to 2.0 s when 24 slices sufficed to perform
whole brain coverage (Patients 1-5 and 7 in Table I) and to
2.5 s when 30 slices were needed (Patients 6, 8, and 9 in
Table I). The TE was shorter than in most of fMRI experi-
ments at 1.5 T because the region of interest for most sub-
jects was the temporal lobe. The significant through slice
dephasing in such regions reduces the apparent transverse
relaxation time, T2*. Three runs of 360 volumes each (dura-
tion of 12–15 min) were performed inside the scanner for
each patient. As a (further) validation procedure, one mon-
itoring EEG study of variable length was performed out-
side the scanner to evaluate the scalp topography of the
interictal activity of each subject in an environment free
from cardiobalistogram, gradient and movement artifacts.
Fifteen patients who had revealed a very high rate of

interictal spike activity in previous monitoring sessions
were selected for this study. Out of those fifteen patients,
only 10 displayed sufficient interictal activity (five had 1
IED or none and all others had over 6 IED in at least one
of the fMRI acquisitions) during our study to allow
the fMRI processing to be performed. Out of the 10, one
patient had no identifiable interictal activity outside the
scanner during the monitoring session that preceded
the fMRI study, and as the IED patterns identified during
the EEG-fMRI study had different topographies compared
to earlier monitoring sessions, this patient was also
excluded. All procedures followed the Declaration of Hel-
sinki, and informed consent was obtained from each
patient according to the approved guidelines of the Ethical
Committees of the Faculty of Medicine of Coimbra and of
the University Hospital of Coimbra.
The EEG data was postprocessed using a Matlab tool-

box, EEGLAB (Delorme and Makeig, 2004). The EEG data
acquired inside the MRI scanner were corrected for gradi-
ent artifacts using the methodology suggested by Allen
et al., [2000] (using a Gaussian-weighted mean artifact),

followed by the detection of the QRS complex and removal
of the cardiobalistogram artifact using algorithms imple-
mented by Niazy [Allen et al., 1998; Niazy et al., 2005).
The EEG data was bandpass filtered (1 to 45 Hz), and then
down sampled to 128 Hz.
ICA decomposition of the data was performed using the

infomax function as implemented on the EEG toolbox
[Makeig et al., 1997]. Components with scalp topographies
that were consistent both outside and inside the scanner
(the ICA decomposition was performed after having con-
catenated the three EEG-fMRI runs), and that were also
found to be concordant with interictal activity as classified
by an epilepsy expert neurophysiologist (only a reduced
number of classifications by the neurophysiologist is
needed), were selected for further analysis.
To evaluate, by visual inspection, if the component was

contaminated with noise because of movement of the sub-
ject, the six motion correction parameters (obtained using
FLIRT, FSL) were plotted along with the time course of the
main components found by the ICA algorithm. Two meth-
ods in conjunction were used to reduce noise introduced
on the EEG signal by subject head movement: (i) the fMRI
and EEG data where movement between consecutive
images was larger than 0.5 mm were removed from the
analysis and only stretches of data of at least 100 consecu-
tive volumes were kept for further analysis; (ii) ICA com-
ponents that were consistently present only inside the
scanner, and that were found to be closely related to
movement artifacts using the method described at the start
of the paragraph, were used to decide when the EEG data
should be zeroed (because motion artifacts, due to their
amplitude and nonlocalized nature, often appear spread
through various components of the decomposition).
Two event related models were considered:

a. A model based on spikes and bursts as classified by
the neurophysiologist, characterized as a block with a
fixed width (100 ms) and amplitude (bursts of spikes
were modeled as a succession of independent spikes).

b. A model based on the one or two ICA components
that most strongly contribute to explaining the IED
activity. The model only considers the signal which is
over three standard deviations from the mean of the
respective channel, and in those regions, the wave-
form of the component is kept.

These distinct models of neural activity were then con-
volved with the canonical HRF to obtain a general linear
model (GLM) of the BOLD time course, and the functional
data were then processed using FEAT (FMRIB’s Software
Library, http://www.fmrib.ox.ac.uk/fsl). The following
preprocessing steps were applied to the time series of
BOLD imaging volumes comprising each dataset: motion
correction [Jenkinson et al., 2002]; nonbrain removal
[Smith, 2002]; spatial smoothing (using a Gaussian kernel
with 6 mm full-width-half-maximum); mean-based inten-
sity normalization of all volumes by the same factor; and
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nonlinear high-pass temporal filtering (using Gaussian-
weighted least squares straight line fitting, with 50 sec cut-
off). A general linear model (GLM) approach with local
autocorrelation correction [Woolrich et al., 2001] was used
to test for model related activity changes. The first deriva-
tives in respect to time of the models were also included
as a regressor, in order to account for any potential vari-
ability in the delay of the hemodynamic response across
the brain and between subjects. Translation movement
parameters and their derivatives were included in the
GLM as covariates of no interest. Time-series statistical
analysis was carried out using FILM with local autocorre-
lation correction [Woolrich et al., 2001]. Z- (Gaussian nor-
malized T/F) statistic images were thresholded using
clusters determined by Z > 3.0 and a (corrected) cluster
significance threshold of P 5 0.05 [Worsley et al., 1992].
Higher-level analysis of the multiple datasets collected
from each subject was carried out using a fixed effects
model, by forcing the random effects variance to zero in
FLAME (FMRIB’s Local Analysis of Mixed Effects) [Wool-
rich et al., 2001].

RESULTS

All the individual results shown hereafter refer to one
patient (patient number 7 from Table I), in order to clarify
the relevance of all the steps presented in the methodol-
ogy.
Figure 1 shows the first eight components obtained

by applying ICA decomposition to the EEG data outside
(Fig. 1a) and inside the MR scanner after preprocessing
(Fig. 1b). The patient had been reported to have right
medial temporal epilepsy, which is concordant with the
components 7 and 3 outside (Fig. 1a) and inside (Fig. 1b)
the scanner respectively (note that the order of the compo-
nents is not necessarily the same). The preprocessed EEG
data, acquired both in- and outside the scanner, was
handed to an experienced neurophysiologist who marked
the IED’s using the location of maximum amplitude as the
time reference. Figure 2 shows the good agreement
between the average spike activity measured inside the
scanner in the case where all available EEG information is
used and in the case when only the main spike-related
component (component 3 shown in Fig. 1b) is projected
back in the data.
The next step is to evaluate the level of contamination of

the main components by the different sources of noise
inside the scanner: cardiobalistogram, gradient and move-
ment related artifacts. To evaluate the possible contamina-
tion of selected components by cardiac or gradient noise,
each component time series was epoched around the cor-
responding QRS peak as detected by the electrocardiogram
(ECG) or scanner trigger. Event related potential (ERP)
images were created to control for residual gradient and
ballistocardiogram artifacts that might have been isolated
in one component. Figure 3 shows the ERP images of the

first four components (the topology of these components is
shown in Fig. 1b) when considering the cardiac QRS com-
plex peak as a trigger. On the vertical axis, the various car-
diac triggers are given whilst the horizontal axis represents
time in ms following the cardiac trigger. It can be observed
that in components 2 and 4 activity is found which is
highly consistent with the cardiac trigger. This is likely to
be a residual of the cardiobalistogram artifact which is

Figure 1.

Example of the first eight (out of 32) component scalp maps

obtained from ICA decomposition of the EEG data acquired: (a)

outside the scanner; (b) inside the scanner (after all gradient and

cardiobalistogram artifacts having been removed, and the data

having been temporally filtered); (c) inside the scanner after

time regions of the EEG data of high activity in components 2

and 4 in the earlier decompositions and movement (as detected

by the motion correction) have been set to zero. The black

circles highlight the components that were considered to be

related to the epileptic spiking activity.
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known to peak at 200 ms. On the other hand, components
1 and 3 (which is the component of interest, as it carries
most of the spiking activity related information) don’t
show such a vertical structure, which means that they do
not contain information correlated with the QRS complex.
The same analysis can be performed using the volume
trigger as an onset for the ERP images to detect compo-
nents with residual gradient related artifacts. In this spe-
cific dataset, no components were found to have signifi-
cant gradients noise associated with it, and therefore the
analysis is not shown. This type of analysis was done in
all the subjects and the same conclusion can be taken, no
significant gradient or cardiac noise was found on the
component attributed to the IEDs.
In Figure 4 (Bottom half), the temporal derivatives of

movement parameters along x and z are plotted against
time. This allows a visual comparison with the activity of
components 2 and 4, shown above (relating to the ICA
decomposition of Fig. 1b) for the same interval. The com-
ponents are again obtained from the ICA decomposition
in Figure 1b. Despite the different sampling rates, it is
possible to observe that components 2 and 4 are highly
correlated with the movement parameters. As artifacts
arising from head movement are highly complex, it is not
surprising that those artifacts are not explained by just
one or two independent components. In fact, there is of-
ten bleeding into a significant number of other compo-
nents, including those of interest. From our experience,
the topologies of components 2 and 4 were found to be

highly correlated with movement. For this reason, compo-
nents with topologies such as 2 and 4 were used to detect
movement artifacts: whenever the activity of such compo-
nents was above a certain threshold, the original EEG
data was given the value zero. Finally, a new ICA decom-
position was performed, the results of which are shown
in Figure 1c.
The choice of the component of interest can be evaluated

by looking at the ERP images associated with the spikes
marked by the neurophysiologist. Figure 5 shows such an
evaluation and it is clear that component 2 (corresponding
to the ICA decomposition of Fig. 1c) has the highest corre-
lation with the onset of IEDs identified by the neurophysi-
ologist. It can also be seen that this correlation is not con-
stant throughout the entire dataset, since the last reported
spikes, as well as a small region close to the 100th spike,
seem to be more correlated with component 3. This sug-
gests that our method, in addition to potentially being able
to detect lower amplitude IEDs (which won’t necessarily
be present on these epochs as they might not have been
identified by the neurophysiologist), is also able to dis-
criminate stretches of data where the marking might have
been less accurate due to human error or separate IED’s
with different cortical origin.
To rank the level of coherence (vertical structure) of

each component, the following expression was used

Score ðiÞ ¼ max

PNtrials

k¼1

ICAði; t; kÞ=Ntrials

� �2

PNtrials

k¼1

ICAði; t; kÞ2
�

XNtrials

k¼1

ICAði; t; kÞ
�����

�����

0
BBBB@

1
CCCCA; t

2
66664

3
77775 ð1Þ

where ICA is now a three-dimensional matrix where the
first two dimensions represent the component number, i,
and the epoch time relative to a certain onset, t, and the
last dimension represents the IED/volume/QRS number,
k, and the notation max[f(i,t),t] means that the maximum is
taken along the time dimension. This expression in Eq. (1)
evaluates the existence of a vertical structure (across trials)
in the ERP image by checking the fraction of power con-

stant across trials (average),
PNtrials

k¼1

ICAði; t; kÞ=Ntrials

� �2

,

when compared to the overall power,
PNtrials

k¼1

ICAði; t; kÞ2 for

each given time point. However, time intervals or compo-
nents with good vertical structure but nonsignificant val-
ues of activation are not of interest. Thus, the ratio was
multiplied by the overall sum of the component’s activa-
tions for all trials in the time sample of analysis. In this
manner, some preference is given to high-power segments,
as it is in these segments that the vertical coherence is of
interest. As an example, for the ERP images shown in Fig-
ure 5 the following normalized scores were obtained for
the first eight components: 0.006; 1.000; 0.046; 0.005; 0.019;

Figure 2.

Time courses of the average spike in the different electrodes.

The spikes were identified by an expert neurophysiologist. In

black, the average EEG data spike is shown whilst in gray only

the data resulting from the projection of component 3 (from

Fig. 1b) in the data space was used to calculate the average spike

activity.
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0.006; 0.022; 0.033. Such a quantitative evaluation of the
components allows a quick discrimination of the compo-
nent whose variability is correlated with a certain event
(this approach was used also used for detecting compo-
nents more highly correlated with the cardiobalistogram
and scanner artefacts). In this patient’s data, it was possi-
ble to find that the 11th component had high coherence
(Score(11) 5 0.21) despite not explaining much of the over-
all variability.
It should be remarked that the evaluation described

above is useful only as a validation of the ability of the
ICA to correctly detect interictal activity confirming the
overall agreement between the expert detected spikes and
the regions of high activity on the component of interest.
The next step is to create the models for the fMRI proc-

essing, based on the activity of the component found to
best explain the IED (in this case the choice was to use
component 2 from Fig. 1c). Because EEG is known to have
a typical 1/f noise distribution and one of the first steps in
the processing of the EEG data was to apply a band-pass
filter to the data, it seems arbitrary to convolve the compo-

nent projection information with the HRF. Such an
approach would enhance the relevance of low frequency
noise in the final model. As the amplitude of the activity is
one of the criteria to identify epileptiform activity, in this
study an amplitude threshold was used to define the time
course regions whose activity was relevant to model the
electrical activity of interest. The activity associated with
component i is given by ICA(i,t). Because of the arbitrary
sign of the components, the neuronal activity was taken to
be N(t) 5 |ICA(i,t)| and made zero when N(t) was lower
than n times the temporal standard deviation of the activ-
ity of component i. The parameter n was varied in the dif-
ferent analyses between values of 1 and 3, but the results
weren’t significantly different. All the results shown and
discussed refer to n 5 3.
In Figure 6, two activation maps obtained from the same

dataset are shown based on a conventional (a) and ICA
method (b). Although a difference in the extension of the
active area obtained with the different methods can be
seen, with the ICA method finding more activation in
lower slices and apparently losing sensitivity in more

Figure 3.

ERP images made using cardiac triggering of the components shown in Figure 1b. ERP images

are color-coded 2D matrices with time on the horizontal axis and different cardiac beats on the

vertical axis. Image high intensity corresponds to higher values and low intensities relate to low

or negative values. The arrows indicate regions with increased cardiac related artefacts.
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superior slices, the majority of the activation maps overlap,
(mainly the regions where the activations was found to be
most statistically significant). Overall, Figure 6 shows a
good agreement between the conventional and ICA
method. The increased z-scores and increased extent of
activated regions (see Table I) found when using the inter-
ictal related ICA component to model neural activity can
also be appreciated in Figure 6. It should be noted that to
obtain the results present in Figure 6a using the conven-
tional method, it was necessary to discard the fMRI data
corresponding to the IED’s over 200 (see Fig. 5) as on a
second inspection by the neurophysiologist, these were
found to be misclassified and naturally significantly
impaired the GLM. Such approach was only used for this
dataset, given the clear misidentification of the spiking activ-
ity. This fact demonstrates the robustness of the ICAmethod-
ology to avoid problems occurring from human error.
A more detailed overview of the results is given in Table

I, which presents a systematic comparison between the
results obtained using the conventional method to process
EEG-fMRI and our proposed ICA-based method.
The main observations that can be drawn from Table I

are that: (i) agreement was obtained in 6 of 9 patients; (ii)
in all cases the maximum Z-score was greater in the fMRI
studies based on ICA component method and the extent of
activation was increased in 5 of the 6 cases in which over-
lap was found; and (iii) furthermore the three cases where
an agreement was not found were those in which no sig-
nificant activation was found at all using the conventional
approach.
Figure 7 shows results from patients 2, 6, 8, and 9

reported in Table I. In Figure 7a,b, it is possible to observe
the good agreement between the conventional method and

Figure 4.

Plots of the activity of components 2 and 4 (relating to the ICA

decomposition of Fig. 1b), and of the temporal derivatives of the

movement parameters along x and z (bottom) during the same

interval (720 seconds). Note that the EEG activity was sampled

before the first volume of the EPI was acquired so that any interictal

activity preceding the first volume could still be used for general lin-

ear model purposes. The units on the y-axis of the movement plots,

and the component time courses are set such that they allow easy

visual inspection (each of the curves was normalized so their maxi-

mum amplitude is equal to 1). Vertical dashed gray lines represent

time points where there is a clear correlation between subject

movement and the activity of the selected components.

Figure 5.

ERP images considering IED marked by a neurophysiologist cor-

responding to the components with the scalp maps represented

in Figure 1c. ERP images are color-coded 2D matrices with time

on the horizontal axis and spikes registered inside the scanner

on the vertical axis. This patient had 218 spikes marked. The in-

tensity relates to the components’ activations. White corre-

sponds to high values and black relates to negative values.
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Figure 7.

Z- statistical maps overlaid on structural image from patient 2 (a,b), 6, 8, and 9 (c–e) using a

conventional IED event related approach (a), and using the proposed method (b–e) (note that

MR images are shown using the radiological convention).

Figure 6.

Z-statistical maps overlaid on structural image from patient 7 obtained (a) using a conventional

IED event related approach, and (b) using the proposed method (note that MR images are

shown using the radiological convention).
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the ICA based method respectively obtained with patient
2. Figures 7b–e show a qualitative congruency between the
EEG maps obtained using the ICA (that were found to be
highly correlated with spiking activity) and the regions
that showed a correlated hemodynamic activity. It should
be noted that in patients 6, 8, and 9 (Fig. 7c–e respec-
tively), no significant activation was found using the con-
ventional methodology but a clear congruency between
the classification of the epilepsy type based on prior stud-
ies (Table I) and regions found active with the proposed
methodology was found.
Negative activations were also found (see Fig. 7d, blue

overlay), but their locations were highly uncorrelated with
the topologies of the spiking activity and support the hypoth-
esis that spiking activity often occurs in areas associated with
the resting state network [Kobayashi et al., 2006].

DISCUSSION

The results of the ICA based method of decomposition
of EEG signal for fMRI processing presented here shows
very good agreement with the results of a conventional
data processing approach when used for EEG-fMRI analy-
sis and exhibits an increased sensitivity for the detection of
brain regions associated with interictal epileptic activity.
Several factors contribute to the increased sensitivity of the
ICA method described here, particularly the reduced sub-
jectivity in classification of the IED’s, which makes it less
prone to human error and the fact that lower amplitude
activity from the same region might be taken into account.
The fact the approach presented in this article is data
driven renders it less susceptible to biases introduced by
classification or fixed model driven approaches to detect
IED’s. Often the ability of ICA components to fully charac-
terize an IED is questioned, as in some cases the stationary
condition of the sources might not be met, but even in
these cases there will be components pinpointing the activity
in different regions of the path of the non stationary IED ac-
tivity, whose activity will be a fair representation of the corti-
cal activity underlying it. ICA decomposition also proved to
very reliably separate components that could have informa-
tion associated with gradient and cardiac noise from the IED
activity as was demonstrated in this article.
In a preliminary study, the two methods presented here

were compared with a third method resulting from the
product of the ICA model and the neurophysiologists
marking. In that study, it was observed that Z-scores
obtained using this third approach were comparable (Zmax

5 5.5) than to those obtained with the conventional
approach (Zmax 5 5.7), but lower than those obtained with
the proposed method (Zmax 5 7.2). Hence, we believe that
one of the reasons of the success of this method could be
related not only to the significant variability in amplitude
and duration of IED’s (which the ICA based methods
account for in the model used in the fMRI analysis) but
also enhanced by the detection of extra activity.

Another attribute of our multimodal method, compared
for example to the temporal cluster analysis approaches, is
that it benefits from combining analyses of two types of
signal and, although data driven on the EEG side, it never-
theless has the advantages associated with a model based
analysis of the fMRI data. Therefore the brain regions found
to be hemodynamically active can be associated to a certain
electrical activity observed in the EEG signal whose topogra-
phy is known and can be readily recognized or discarded by
the neurophysiologist that has followed the patient.
Given the challenges posed during detection of irregu-

lar, transient BOLD activity, in particular when the EEG
signal quality is degraded because of artefacts caused by
motion in the scanner and physiological noise, we believe
that our approach proves useful in the context of epilepsy.
The technique can be readily extended to other simultane-
ous EEG-fMRI studies such as physiological brain rhythms
studies [Marques et al., 2006] and cognitive ERP studies
coupled with rapid event related fMRI. For the application
to the study of brain rhythms, care should be taken in the
methodology used for decomposing the EEG signal. The
reason why the infomax algorithm is so successful at
detecting IED activity is because this algorithm is biased
towards supergaussian activity. Rhythmic activity is not
necessarily super gaussian (bursts of rhythmic activity
are), and therefore, algorithms more biased towards time
correlation in the data might prove more powerful [Barros
et al., 2000]. Again, the components obtained can be
expected to be more uncorrelated with physiological and
scanner noise, they are expected to have higher SNR
because of being already a combination of the activity in
different electrodes, which will improve the quality of the
model used for the event related fMRI design.
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