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capabilities for the (meta-) analysis of 
public gene-expression data sets. It was 
also designed to serve as a ‘commons’ for 
engaging diverse segments of the biomedical 
research community to help build a 
comprehensive and reusable repository of 
meta-information (e.g., sample groups, pairs 
and their annotations)—essential building 
blocks for constructing data compendia and 
performing meta-analyses (Fig. 1a). OMiCC 
can further serve as an educational tool to 
help students learn new biology by exposing 
them to hands-on exploration of large-scale 
data sets. This didactic mission is particularly 
important as biology is increasingly 
dominated by ‘big data’-driven approaches.

More than 26,000 pre-normalized and 
quality-checked human and mouse studies 
comprising ~690,000 expression profiles 
from the Gene Expression Omnibus 
(GEO) (Supplementary Note 2) are now 
accessible through OMiCC. A core feature 
is the ability to easily create, annotate and 
share comparison group pairs (CGPs; Fig. 
1b). A CGP comprises two collections 
(called sample groups) of gene expression 
profiles from a study, for example, blood 
transcriptomes of diabetic patients and of 
healthy controls. OMiCC provides easy-
to-use interfaces for constructing sample 
groups and CGPs and for annotating them 
using medical subject headings (MeSH)10, a 
standardized biomedical vocabulary used by 
PubMed, so that the resulting annotations are 
more easily interpretable and reusable by the 
community. Once a CGP is formed, OMiCC 
can compute significantly differentially 
expressed genes and a differential expression 
profile (DEP) capturing the differences 
in expression values for all genes between 
the sample groups (Fig. 1b). In contrast 
to approaches that use only statistically 
significant differentially expressed genes 
for comparison among CGPs4,11, DEPs can 
be collated across CGPs spanning one or 
more studies to form a data matrix operable 
by existing analysis tools and algorithms, 
including clustering and gene set enrichment 

To the Editor:
Advances in high-throughput technologies 
have led to a rapid increase in the amount 
of data generated on a molecular, cellular 
and organismal scale1,2. The reuse and 
meta-analysis of large-scale data from 
multiple independent studies can increase 
the statistical power to obtain new and 
robust biological insights, compared with the 
analysis of any one study, and may serve as a 
productive starting point for informing the 
design of experiments3. Previous studies have 
successfully combined publicly available data 
from published studies to both reposition 
drugs4 and identify robust gene-expression 
signatures of transplant rejection5, infection 
status6,7, tumor subtypes and cancer 
progression8. However, these meta-analysis 
approaches are not trivial, often requiring 
study-related information that is not always 
available, as well as computational and 
statistical expertise that could discourage 
direct, hands-on participation of many 
biologists.

Here we present OMics Compendia 
Commons (OMiCC) (https://omicc.niaid.nih.
gov), a freely available tool, aimed at biologists 
with limited bioinformatics training, that uses 
a crowdsourcing approach to help overcome 
some of these challenges. OMiCC enables the 
broader biomedical research community to 
generate and test hypotheses through reuse 
and (meta-) analysis of existing data sets. 
Annotations, metadata and components of 
cross-study data compendia created by users 
are stored and made available to other users 
of the platform so that they may build on 
previous analyses and contribute their own 
annotations and analysis designs. In this way, 
OMiCC may help bring down barriers across 
communities and encourage a culture of 
sharing and openness in biomedical research.

Millions of gene expression profiles reside 
in public databases1,2. These data could 
potentially be used to generate, assess or 
replicate hypotheses, even if the experiments 
were not originally designed to answer the 
same research questions. For example, data 

for evaluating the effect of a drug (in which 
drug-treated versus untreated subjects are 
compared) could be used to investigate 
the effects of gender on drug treatment. In 
addition, meta-analysis approaches9 will 
become increasingly effective for drawing 
robust conclusions from similar data sets 
generated from independent studies.

However, the wealth of information 
available in public databases remains largely 
untapped, particularly by experimental 
biologists. One reason for this is that the 
steps involved in retrieving, processing and 
analyzing these data can be computationally 
and statistically complex for many biologists. 
Numerous resources have been created to 
enable the reuse and analysis of large-scale 
expression data (Supplementary Note 1), 
but they are generally limited to one or a 
subset of analytical steps, and therefore 
additional programming is still required 
for most workflows. Although commercial 
software has been developed to address some 
of these limitations, the algorithms are often 
proprietary, which makes incorporating 
external data into any analysis difficult, if not 
impossible. Furthermore, fee-based services 
could limit the size and diversity of the user 
community; less well-funded groups and 
research areas, as well as organizations from 
developing countries, tend to have less access.

Another major barrier for both 
experimental and computational biologists 
alike is that structured, meta-information 
critical for data reuse and cross-study analyses 
is typically not readily available. It is often 
necessary to determine which samples from 
a study can be grouped, which groups can 
be meaningfully compared (e.g., a particular 
type of tumor samples versus normal), and 
what groups can be collated or compared 
within and across studies. Constructing such 
sample groups and comparison pairs requires 
biological expertise specific to the biological 
domain of the study; doing so en masse for 
all available studies is thus enormously time-
consuming and challenging.

OMiCC provides programming-free 
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analysis12. Assessing expression patterns 
using DEPs instead of individual expression 
profiles can also potentially help mitigate 
study-specific effects, thereby improving data 
comparability across studies11.

Sample groups and CGPs are stored 
permanently on the OMiCC server and can 
be made available to the broader community 
of users. This crowdsourcing approach 
can thus harness the collective biological 
expertise of the research community to create 
structured, reusable content. For example, 
a researcher working on juvenile idiopathic 
arthritis would be more aware of disease 
subtypes, such as oligoarticular, polyarticular 
and systemic juvenile idiopathic arthritis than 
non-experts, and thus, would be more able to 
accurately and rapidly annotate and construct 
sample groups and CGPs. Over time, this 
approach could amass a large number of 
biologically relevant and publicly searchable 
CGPs (and the corresponding sample groups) 

that may aid future research.
To encourage the creation and sharing 

of reusable CGPs by users, OMiCC tracks 
and publicizes, if the user permits, the 
number of sample groups and CGPs a user 
has shared with the community. We also 
encourage users to share information about 
their scientific expertise on user profiles 
by providing links to their homepages, 
professional social network profiles and 
PubMed search terms for accessing their 
publications. Such information could be 
helpful for the community to gauge whether 
the contents shared by a user match well with 
their scientific expertise. OMiCC currently 
displays the usage statistic of sharable 
contents (e.g., the number of compendia 
a CGP is being used in). Together, these 
features can help users share and reuse 
sample groups and CGPs.

Data processing and computation in 
OMiCC are fully automated, but if desired, 

computational and statistical parameters can 
be customized by means of the web interface 
(Supplementary Note 2). Once a DEP data 
matrix is created, the user can also generate 
basic visualizations and export the underlying 
raw data for analysis outside of OMiCC using 
other tools, such as GenePattern13, GENE-E14 
and R/Bioconductor15 (GENE-E can be 
launched directly from OMiCC with data 
pre-loaded). To help ensure reproducibility, 
OMiCC tracks computational runs and 
associated parameters; analysis results can 
also be shared with the community using 
publicly accessible web links.

To illustrate how OMiCC can enable 
biologists to use public data to address real-
world questions, we describe in Box 1 a step-
by-step example involving the meta-analysis 
of inflammatory bowel disease (IBD) across 
multiple independent studies to obtain and 
validate robust gene expression and pathway 
signatures.

Figure 1  Overview of OMiCC (a) OMiCC has two main aims: first, to directly empower biomedical researchers to address biological questions and develop 
hypotheses through hands-on reuse, integration and (meta-) analyses of publicly available large-scale gene expression data sets across one or more studies 
without performing programming; and second, to serve as a community, crowdsourcing resource to enable meta-information and data-compendia component 
reuse. OMiCC comprises two major components: first, a database containing pre-processed gene expression data sets from GEO, meta-information authored 
by the user community (e.g., CGPs; see (b) below for details) and user-defined compendia (a collection of CGPs from one or more studies); and second, a web 
interface that interacts with the OMiCC database and enables users to create and (meta-) analyze gene expression compendia across studies and platforms. 
It also enables a user to download collated data sets and analysis results for further analysis outside of OMiCC, using other tools. (b) OMiCC enables the 
creation, annotation and sharing of CGPs, each of which comprises two collections of gene expression profiles from a study. For each CGP, OMiCC computes the 
differential expression profile (DEP) reflecting the gene-expression difference for all genes/probes between the two groups in the CGP. Sample groups and CGPs 
are permanently stored on the OMiCC server and can be shared among users for use in different projects and thus can be used as building blocks of compendia.
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Although OMiCC was designed to allow 
non-specialists to carry out a range of 
computational analyses, accurate and robust 
interpretation of results will require a certain 
degree of statistical expertise. To support the 
didactic mission of the platform, the OMiCC 
website provides a tutorial containing a 
step-by-step guide and several videos to help 
researchers use the platform. The tutorial 
also contains background information on 
and discussions of relevant analysis issues 
and statistical concepts, such as platform 
selection, hypothesis testing, multiple testing 
correction and meta-analysis. In addition, 
OMiCC has a context-sensitive, ‘take-a-tour’ 
feature in some key pages (e.g., CGP and 
data compendia creation) to guide users 
interactively through the main workflows.

OMiCC is not intended to replace 
collaborations with statistical and 
bioinformatics experts. Users should be 
aware of the potential pitfalls with cherry-
picking results and with multiple testing after 
applying different statistical tests, analysis 
parameters and significance cutoffs to 
assess a question using the same underlying 
data sets. Furthermore, statistical expertise 
will likely be needed on certain issues, 
such as how to interpret meta-analysis 
results from data sets with very different 
sample sizes and how to handle potential 
technical and biological heterogeneity 
across studies. We recommend that, when 
in doubt, users consult with bioinformatics 
experts on issues, such as multiple-testing 
correction, appropriate statistical tests to 
use for determining differentially expressed/
signature genes16, analysis parameter 
customization and statistical result 
interpretation. A discussion forum might be 
a helpful feature to add in the future to help 
connect experienced and novice users in the 
community.

Although OMiCC syncs and pre-
processes data from a large number of 
platforms, many platforms are used in a 
small number of studies, and some cover 
only a relatively small number of genes. 
OMiCC allows restricting searches for 
studies to certain platforms; to guide 
platform selection, OMiCC also visually 
highlights the most popular platforms 
based on the number of studies that used 
a platform. In general, restricting analyses 
to the most popular platforms is a prudent 
strategy as those platforms tend to be better 
developed, and the degree of gene overlap 
among them tends to be substantial.

Batch effects within studies can be 
prevalent17, particularly when using CGPs 
outside the realm of the original study 

Box 1  Meta-analysis of inflammatory bowel disease

IBD is a common disease characterized by chronic, relapsing intestinal inflammation and 
epithelial injury with both genetic and environmental contributions18. Using data from 11 
studies, a previous meta-analysis of Crohn’s disease and ulcerative colitis—two major IBD 
subtypes—identified genes differentially expressed in disease versus healthy controls19. To 
illustrate how OMiCC facilitates meta-analysis without requiring any computer programming 
by the user, we performed a meta-analysis of Crohn’s and ulcerative colitis (Supplementary 
Note 3). Using search criteria detailed in Supplementary Note 3, we used OMiCC’s search 
interface to find studies containing tissue samples from Crohn’s, ulcerative colitis and 
healthy subjects. We found four studies, from which four disease-versus-healthy CGPs for 
Crohn’s and ulcerative colitis were constructed using OMiCC’s web interface (Supplementary 
Table 1). Once CGPs were defined, OMiCC automatically mapped probes to genes for all 
platforms, performed meta-analysis for genes common across the CGPs, and reported 
results, which included average fold-changes and meta-analysis P-values (and corresponding 
false-discovery rates) reflecting combined signals from the CGPs.

Despite potential technical and biological heterogeneity across studies, OMiCC detected 
2,213 and 1,778 genes with higher or lower expression in ulcerative colitis compared 
with healthy controls, respectively, as well as 1,750 and 1,214 such genes in Crohn’s 
disease (false-discovery rate (FDR) < 0.05; Supplementary Table 2 and Supplementary 
Note 3). These results are broadly consistent with those reported in a previous meta-
analysis of IBD19. We next took these differentially expressed genes (those with increased or 
decreased expression were considered separately) and assessed pathway enrichment using 
ToppGene20 (https://toppgene.cchmc.org/; Supplementary Table 3). As expected, given the 
infiltration and activation of immune cells, genes with increased expression in both Crohn’s 
and ulcerative colitis are highly enriched for immune and inflammatory processes as well 
as those associated with cell adhesion (FDR < 0.05). Interestingly, several peroxisome 
proliferator-activated receptors (PPARg, PPARa and PPARd) tended to have lower mRNA 
levels in Crohn’s (all FDR < 0.05; unadjusted P = 2.62 × 10-6, P = 6.67 × 10-4 and  
P = 2.7 × 10-4, respectively) as well as in ulcerative colitis compared with healthy controls 
(all FDR < 0.05; P = 0, P = 1.23 × 10–3 and P = 3.06 × 10–3, respectively). A previous 
report highlighted PPARg expression to be lower in ulcerative colitis, but not necessarily 
in Crohn’s patients21. Furthermore, other genes from the PPAR signaling pathway (as 
annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG)) as well as from 
various metabolic and catabolic processes, including those of lipids (Gene Ontology (GO) 
term GO:0006629), organic acids (GO:0006082), and small molecules (GO:0044282), 
tended to have lower mRNA levels in both Crohn’s and ulcerative colitis (FDR < 1 × 106; 
Supplementary Table 3). Although some of these pathway enrichment results might reflect 
the depletion in the relative frequency of colonic epithelial cells owing to immune cell 
infiltration in the inflamed sites, they are consistent with the decreased expression of PPARs 
as PPARs could regulate lipid signaling and metabolism22.

To replicate these observations, we used OMiCC to search for additional studies with 
ulcerative colitis but not Crohn’s samples (Supplementary Note 3). The search returned 
four independent ulcerative colitis studies. Using these data, we formed four CGPs 
(Supplementary Table 1) and performed meta-analysis within OMiCC (Supplementary 
Table 4). The replication analysis showed a high concordance of the average fold-
change (Supplementary Fig. 1; Pearson correlation = 0.85, r2 = 0.72, P < 2.2 × 10–16), 
a significant overlap in genes with increased or decreased expression (FDR < 0.05, 
Supplementary Fig. 2; 1,700 out of the 2,213 increased genes and 1,320 out of the 1,778 
decreased genes were replicated (P = 0 for both replications, Fisher’s exact test)); and a 
significant overlap in pathway enrichment results (Supplementary Fig. 3; for example, 1,451 
of the 1,951 significant GO Biological Process terms enriched in the discovery meta-analysis 
for genes with increased expression had FDR < 0.05 in the validation set (P = 0, Fisher’s 
exact test)). The specific findings from the discovery cohorts discussed above, including the 
observation that PPAR genes and genes in related pathways as well as those functioning in 
metabolic and catabolic processes had decreased expression in ulcerative colitis, were also 
replicated at the FDR < 0.05 level.

Thus, a meta-analysis of IBD using OMiCC revealed both known and potentially new 
differentially expressed genes and pathways. We have also demonstrated how performing 
additional meta-analyses using CGPs constructed from independent studies can be used 
to assess replicability. Similar analyses can be conducted using OMiCC for other biological 
phenotypes of interest.
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design; therefore, additional checks should 
be made by consulting metadata, the original 
publication and its authors on experimental 
design and batching information. Ultimately, 
results should be validated using independent 
data and experimental follow-up. However, 
meta-analysis can sometimes mitigate 
the effect of technical factors, such as 
experimental batch, on analysis results 
because these effects tend not to be consistent 
across studies, and therefore the results are 
robust if coherent signals can be detected 
across studies and platforms5,9. This was 
illustrated by our IBD use case (Box 1), 
where coherent signatures found using a 
set of ‘discovery’ studies were convincingly 
replicated using a collection of independent 
‘validation’ studies.

In summary, OMiCC provides a practical, 
easy-to-use toolkit and a crowdsourced, 
community-oriented framework to help 
democratize public gene-expression data 
reuse and meta-analysis. We are actively 
considering ways to further open up the 
platform so that others in the community 
can contribute to its future evolution and 
development (e.g., by providing an application 
programming interface or making it open 
source). We envision that as more users take 
advantage of OMiCC to drive biological 
hypothesis generation and discovery, more 
users will create and share sample groups and 
CGPs with the community. Thus, OMiCC 
has the potential to grow organically into 
an increasingly rich resource to help add 
cross-study, meta-analysis approaches to 
a biologist’s toolbox and thus enable more 
effective transformation of the increasing 
amounts of public data into biological 
insights.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper 
(doi:10.1038/nbt.3603).
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