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Abstract: A number of techniques have been used to provide functional connectivity estimates for a
given fMRI data set. In this study we compared two methods: a ‘rest-like’ method where the functional
connectivity was estimated for the whitened residuals after regressing out the task-induced effects, and a
within-condition method where the functional connectivity was estimated separately for each experimen-
tal condition. In both cases four pre-processing strategies were used: 1) time courses extracted from
standard pre-processed data (standard); 2) adjusted time courses extracted using the volume of interest
routines in SPM2 from standard pre-processed data (spm); 3) time courses extracted from ICA denoised
data (standard denoised); and 4) adjusted time courses extracted from ICA denoised data (spm
denoised). The temporal correlation between time series extracted from two cortical regions were statisti-
cally compared with the temporal correlation between a time series extracted from a cortical region and
a time series extracted form a region placed in CSF. Since the later correlation is due to physiological
noise and other artifacts, we used this comparison to investigate whether rest-like and task modulated
connectivity could be estimated from the same data set. The pre-processing strategy had a significant
effect on the connectivity estimates with the standard time courses providing larger connectivity values
than the spm time courses for both estimation methods. The CSF comparison indicated that for our data
set only rest-like connectivity could be estimated. The rest-like connectivity values were similar with con-
nectivity estimated from resting state data. Hum Brain Mapp 29:1040–1052, 2008. VVC 2007 Wiley-Liss, Inc.

Key words: functional connectivity; time course selection; ICA denoising

INTRODUCTION

Functional connectivity has been defined as the ‘‘tempo-
ral correlation between spatially separated neurophysiolog-
ical measurements’’ [Friston et al., 1993a]. In the case of
functional magnetic resonance imaging (fMRI), estimates
of functional connectivity are derived from correlations
between series of scans that measure the flow of oxygen-
ated blood in the brain at discrete time intervals. Measures
of functional connectivity can be augmented with a model

Contract grant sponsor: NHMRC; Contract grant numbers: 236025,
400317; Contract grant sponsors: Garnett Passe and Rodney Wil-
liams Memorial Foundation; NARSAD, New York

*Correspondence to: Maria Gavrilescu.
E-mail: maria@pcomm.hfi.unimelb.edu.au

Received for publication 12 March 2007; Revised 15 May 2007;
Accepted 8 June 2007

DOI: 10.1002/hbm.20446
Published online 12 October 2007 in Wiley InterScience (www.
interscience.wiley.com).

VVC 2007 Wiley-Liss, Inc.

r Human Brain Mapping 29:1040–1052 (2008) r



of directional influences within a given network to esti-
mate effective connectivity, defined as ‘‘the influence one
neuronal system exerts over another’’ [Friston et al.,
1993b]. Effective connectivity in fMRI data can be esti-
mated by applying anatomical constraints prior to struc-
tural equation modeling [Bullmore et al., 2000; Gavrilescu
et al., 2004; Gonçalves and Hall, 2003; McIntosh and Gon-
zales-Lima, 1994], or by exploiting the temporal relation-
ships between the correlated time series [Abler et al., 2006;
Sato et al., 2006]. Alternatively, dynamic causal modelling
[Friston et al., 2003; Mechelli et al., 2004] has been used to
measure the modulatory influence of activity in one brain
region on the functional connectivity between other pairs
of regions. In all these methods, accurate estimation of
functional connectivity is an important prerequisite for
estimation of effective connectivity.
Although various estimates of functional connectivity

have been used to characterize the functional integration
of different brain areas, at present there is no consensus
regarding the definition and measurement of this construct
[Horwitz, 2003; Lee et al., 2003]. There are several factors
contributing to this situation. First, functional connectivity
is assumed to originate in the correlated firing rates of a
network of interconnected neurons. Since fMRI data are
measures of changes in metabolism via the blood oxygen-
ation level-dependent (BOLD) signal, a proper characteri-
zation of functional connectivity in the fMRI data depends
upon our understanding of the mechanisms that relate
neuronal level activity with the metabolic changes. Many
aspects of these mechanisms have yet to be elucidated
[Leopold et al., 2003; Logothetis et al., 2001]. This means
that it is not clear which aspect of the correlation between
fMRI time series reflects underlying neuronal connectivity.
Specifically, there is a lack of agreement regarding which
temporal components of the correlation between two fMRI
time series are most relevant to the estimation of func-
tional connectivity. While many studies have implicated
the low frequency components of time series correlations
[Cordes et al., 2000; Lowe et al., 2000; Xiong et al., 1999],
others have isolated correlated components at the highest
temporal frequencies, represented by changes in activation
between successive scans [Horwitz, 1991].
The estimation of functional connectivity in fMRI studies

using activation tasks presents additional problems, since
the general definition of functional connectivity does not
distinguish between inter-regional correlations due to a
common response to the external task, and correlations
between other components of a time series that are not
associated with the task. Functional connectivity has been
estimated in these data sets by keeping the task-induced
responses within the time series [Bullmore et al., 2000;
Whalley et al., 2005]. However, it has been argued that
since task-dependent relationships may usefully be charac-
terized as ‘‘co-activation,’’ they do not necessarily imply
any connection between two regions [Lowe et al., 1998]. In
the extreme case, common input from distal sense organs
alone may generate similar responses in disparate brain

regions. Accordingly, strategies have been developed to
remove the task-related variance from fMRI time series
and use the residual variance to estimate a rest-like con-
nectivity [Arfanakis et al., 2000; Fair et al., 2007]. More-
over, separate inter-regional correlation matrices can be
derived for each experimental condition (within-condition
functional connectivity) to study modulation in connectiv-
ity induced by the tasks under study [Büchel and Friston,
1997; Gonçalves and Hall, 2003; Honey et al., 2002, 2003;
Maguire et al., 2000; Rogers et al., 2004; Schlösser et al.,
2003, Kondo et al., 2004]. In principle, it should be possible
to use the same data set to estimate both correlated spon-
taneous fluctuations in BOLD signal (rest-like connectivity)
and the modulation in these fluctuations induced by the
task under study.
Finally, a major source of variation between studies

arises from differences in data preprocessing prior to con-
nectivity analysis. These include temporal filtering, spatial
smoothing, representative time course selection, and arti-
fact removal. The fMRI noise can have two opposite effects
on functional connectivity estimation. The temporal corre-
lation between two time courses can be spuriously
increased or decreased depending on the similarity of
drifts, head motion, and contributions from the physiologi-
cal noise across the investigated regions. Therefore, the
choice of preprocessing parameters is very important in
the context of functional connectivity estimation, since it
determines how the fMRI signal divides into useful signal
and noise. With so many different parameters and prepro-
cessing implementations to choose from, it is very likely
that the measured connectivity depends upon the prepro-
cessing strategy, and it may be very difficult to select an
optimal strategy for a given data set. To summarize, when
confronted with functional connectivity estimation for a
particular data set, the researcher is asked to choose
between a multitude of operational definitions of func-
tional connectivity that differ both conceptually and in the
details of implementation. To our knowledge, there is at
present no objective justification for the selection of a par-
ticular functional connectivity estimation method or of a
particular preprocessing strategy. This selection is of par-
ticular importance for studies comparing connectivity esti-
mates across groups of participants (e.g., between patients
and healthy controls), since in this case, it is expected that
the spatial and temporal patterns of variance are different
across groups and these differences can contaminate the
observed connectivity differences.
The problem is further complicated by the fact that the

effects of preprocessing strategy cannot be interpreted
based solely on comparing the estimated correlation val-
ues across strategies, since, depending on the nature of
the modeled noise, the estimated correlation values can ei-
ther increase or decrease. In this study, we used a simple
statistical comparison to help with this selection. Cordes
et al. [2001] convincingly demonstrated that the temporal
correlations of a seed region placed in CSF with the rest
of the brain were driven by physiological noise. We have
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compared the correlation estimated between time series
extracted from two cortical regions against the correlation
estimated between a time series extracted from a cortical
region with a time series extracted from a region placed
in CSF. Further, we have employed the CSF comparison
to investigate whether both rest-like and task modulation
in connectivity could be estimated from the same task
activation data set. If both methods would provide signifi-
cantly higher cortico-cortical than cortico-CSF correlation
values, we can conclude that both connectivity types are
estimable form the same data set. This would be an im-
portant finding, since it can reduce the fMRI scanning
time. Usually, a ‘‘localizer’’ functional run with a simple
relevant task needs to be used to identify the ROIs for
resting state connectivity and then data from another
functional run with a more complex paradigm is used to
investigate the modulation of connectivity by the experi-
mental manipulations.
The aim of this study is two-fold: (i) to investigate if

indeed the choice of preprocessing strategy has a signifi-
cant impact on functional connectivity estimates and
(ii) to explore whether rest-like connectivity and task-
induced modulation in connectivity can be estimated
from the same task activation data set. The data set used
to explore these issues came from a study of interhemi-
spheric functional connectivity between the secondary
auditory cortices.

METHODS

Data Description

Seven healthy subjects (average age 37 6 8.6, four
females) with no history of neurological deficits were
scanned while passively listening to semantically neutral
words. Gradient echo planar images were recorded using a
3T G.E. Signa LX whole body scanner with the following
imaging parameters: TR 5 3 s, TE 5 40 ms, FA 5 60, FOV 5
24 cm; 128 3 128 matrix with 1.88 3 1.88 mm2 in plane reso-
lution; 25 trans-axial slices 4.5 mm thick with 0.5 mm gap.
Two scanning sessions were acquired for each participant.
The word stimuli were presented as a block design with
three active conditions and a resting state baseline. All four
conditions were presented in each block. While the baseline
condition was always placed at the end of the block, the
order of the active conditions was pseudo-randomized
across blocks using a Latin square design (see Fig. 2). Dur-
ing the active conditions, semantically neutral words were
presented to the subjects either monaurally (to the left or to
the right ear) or binaurally. The stimuli were presented
using electrodynamic speakers compatible with the MRI
environment [Baumgart et al., 1998; http://www.mr-confon.
de]. The mean duration of the words was 516 ms, and they
were adjusted to produce equal loudness. Six words were
presented per condition with an interstimulus interval of
�1 s (the total duration of each condition was 9 s allowing
the acquisition of three full brain images). The duration of

the rest condition was also 9 s. Data was acquired for 14
blocks per subject (seven blocks per session). The subjects
were instructed to relax with their eyes closed and listen to
the stimuli.

Preprocessing Strategies for Time

Course Extraction

The images from all subjects were motion-corrected
using a rigid body six degrees of freedom transformation
in SPM2. To explore the impact of preprocessing strategies
on the functional connectivity estimation, we compared
the results based on time courses extracted from images
after spatial normalization and spatial smoothing (classic
preprocessed data), with those based on time courses
extracted from images after applying an ICA-based denois-
ing procedure (denoised data). In principle, ICA can iden-
tify imaging artifacts produced by ghosting, slice drop out,
and B0 effects that may contaminate temporal correlation
values. These artifacts are difficult to identify based on
simple image inspection.
We created the denoised data set by performing a spa-

tial independent components analysis (ICA) for each sub-
ject, using the ICA as implemented in Melodic2 (http://
www.fmrib.ox.ac.uk/fsl/melodic). An effective data
denoising requires as a first step the identification of the
task-induced effects. The task-related components were
identified by ranking the components after the correlation
with the experimental paradigm [Esposito et al., 2002] and
after the number of activated voxels in the regions of inter-
est [Esposito et al., 2003]. All the temporal courses and
associated spatial patterns were visually inspected to iden-
tify artifacts (slice drop-outs, gradient instability, EPI
ghost, high frequency noise, head motion, B0 field inhomo-
geneity, eye-related artifacts, spin history artifacts). The
components that were significantly correlated with the
motion parameters [r > 0.5, Van de Ven et al., 2004] and
had spatial patterns around the brain edges, as well as
components expressing strong temporal drifts, or other
identified artifacts were then removed from the data by
projecting the data set onto the remaining components.
The two data sets (original and denoised data) were

then preprocessed in a similar manner using SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). For each subject, the
images were normalized to the EPI template, interpolated
to a resolution of 2 3 2 3 2 mm3, and spatially smoothed
using an 8 3 8 3 8 mm3 Gaussian kernel. In this way, we
obtained two preprocessed data sets: standard prepro-
cessed data (motion correction followed by spatial normal-
ization and spatial smoothing) and denoised data (motion
correction followed by ICA denoising, spatial normaliza-
tion, and spatial smoothing).
We extracted the time courses for both standard and

denoised data in the relevant regions of interest (ROIs) in
two ways: (1) based on SPM2 volume of interest (VOI)
extraction routine (spm time courses) and (2) by extracting
the same voxel values directly from the images used for
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analysis (standard time courses). The spm time courses
were adjusted for the effects of interest, and for serial cor-
relation via an autoregressive model of order one [AR(1)]
model; the representative time course was then calculated
as the first eigenvariate of a singular value decomposition
across the voxels. The standard time courses were mean-
centered, variance-normalized, and high pass-filtered to
remove the contributions from extremely low frequencies
(frequencies < 0.01 Hz), since fMRI data are prone to arti-
facts in this frequency range [Cordes and Nandy, 2003].
The same routine used for high pass-filtering in SPM2
(based on discrete cosine transform basis functions) was
employed to filter the standard time courses. Mean center-
ing and variance normalization were applied within ses-
sion and the time courses were concatenated across the
two sessions. The representative time course was then cal-
culated by averaging all time courses in a given region of
interest.
The combination of two data sets (standard and

denoised) with two time course extraction methods (stand-
ard and spm time course) provided us with four prepro-
cessing strategies for time course extraction: (1) standard
extracted time courses (standard); (2) spm-extracted time
courses (spm); (3) standard time courses extracted from
denoised data (standard denoised), and (4) spm time
courses extracted from denoised data (spm denoised).
The statistical significance of the differences in the correla-

tion values produced by using different preprocessing strat-
egies was assessed using a one-way repeated measures
ANOVA analysis on the left secondary auditory cortex (A2L)
to right secondary auditory cortex (A2R) correlation values.

Regions of Interest

The statistical analysis of both standard and denoised
data sets was performed using SPM2 by employing a
high pass temporal filter with 100 s cut off and an AR(1)
model to account for temporal autocorrelation in the
data.
For the two data sets, we selected the ROIs based on the

SPM2 F-maps of the effects of interest at P < 0.001, uncor-
rected probability threshold. We identified for each subject,
4 mm radius spherical ROIs over the secondary auditory
cortex (see Fig. 1A) both in the left (A2L) and the right
(A2R) hemispheres. The center of each region was selected
based on visual inspection of the SPM F-maps, rather than
automatically selecting the voxel with the highest statistical
score, to avoid placing the center of the sphere at the bor-
der of the ROI.

Functional Connectivity Estimation

We estimated the functional connectivity in two ways.
Firstly, we estimated a rest-like functional connectivity
based on calculating the correlation coefficient (r) between
residuals after the task effects were removed from the

data. The task-induced effects were identified by averaging
the representative time course of a given ROI within the
blocks of task presentation. To account for the hemody-
namic delay, we shifted each block by 6 s (2 3 TR) and
we performed an average across sessions (14 blocks, see
Fig. 2A,B). The task effects were estimated separately for
each region and for each subject to take into account inter-
subject variability as well as within subject spatial varia-
tions in the hemodynamic response as suggested by Hand-
werker et al. [2004]. The task effect was then regressed out
from the representative time course of each region and
functional connectivity was estimated as the correlation
between the residuals.
The power spectra of the spm regressors for the left,

right, and binaural condition, and of the sum of these
three regressors had peaks in the frequency intervals 0.02–
0.04 Hz, 0.05–0.06 Hz, and 0.07–0.08 Hz. The sum of the
areas under the graph for these three frequency intervals
was estimated from the power spectra of the original time
courses before the task effects were regressed out. This
sum was also estimated for the time courses after the task
effects were regressed out. The statistical comparison of
these areas enabled us to assess whether indeed our
method was effective in removing the task-induced effect.
In addition, we compared the rest-like connectivity esti-

mates with functional connectivity estimated from the rest-
ing state data (TR 5 2 s; matrix 64 3 64 with 3 3 3 mm2

in plane resolution; 25 trans-axial slices 4.5 mm with 0.5
mm gap; FOV 5 24 cm; FA 5 60; 146 images/subject) for
the same ROIs. Resting state data were available for five
subjects and we performed this comparison for the stand-
ard preprocessed data. After motion correction, the resting
state data were coregistered with the motion-corrected task
activation data and smoothed with a 5 3 5 3 5 mm3 Gaus-
sian kernel. The coordinates of ROIs defined in the spa-
tially normalized task activation data were then projected
back to the native space to allow the use of the same ROI
coordinates in the resting state data.

Figure 1.

(A) The SPM2 F map of the effects of interest for one subject

(P < 0.001, uncorrected probability threshold). The red circles

indicate the placement of ROIs and the arrows indicate the sec-

ondary auditory cortices. (B) The CSF region defined manually

using MRIcro. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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Secondly, we estimated a within-condition functional
connectivity. The representative time courses for each
region, and each subject, were split into conditions after
applying a temporal shift of 6 s (2 3 TR) to account for
the hemodynamic delay (Fig. 2C,D). The block segments
were then concatenated within each region to form three
time courses for the stimulus presented to the left ear
(left), stimulus presented to the right ear (right), and stim-
ulus presented binaurally (binaural), respectively. To mini-
mize the effects of the hemodynamic delay at the block
edges [Homae et al., 2003], we also discarded the first time
point from each block leaving 28 time points per condition
for each subject and each region. The connectivity corre-
sponding to the baseline condition was not estimated,
since the duration of this condition is shorter than the
BOLD undershoot.

Statistical Comparison of the Cortico-Cortical

Correlation With the Cortico-CSF Correlation

To compare the performance of the two functional con-
nectivity estimation methods, we implemented a simple
statistical comparison of the estimated correlation between
A2L and A2R with the correlation between A2L and a
region defined in CSF (left lateral ventricle). Cordes et al.
[2001] have shown that CSF-cortical temporal correlations
have major contributions from respiratory and cardiac
noise. Thus, a significant increase in cortico-cortical tempo-
ral correlation relative to CSF-cortical correlation would
indicate that the cortico-cortical correlation originates from
other sources; and may in principle represent true func-
tional connectivity provided that these cortical areas are
indeed functionally connected.

Figure 2.

The functional connectivity estimation methods. For simplicity,

only one session is represented. The rest-like method: (A) The

demeaned time courses extracted from A2R in one subject. A

delayed box-car model (2 3 TR) is superposed on the time

course (dotted line). The experimental paradigm is represented

at the top of the panel; each condition lasted for 9 s (3 3 TR)

and is represented by a different color: red-binaural presenta-

tion; blue-left ear presentation; green-right ear presentation;

black-baseline. (B) The residual time course after the stimulus

induced response estimated as the average across the seven

blocks in (A) was regressed out. The within-condition method:

(C) The demeaned time course extracted from A2R in one sub-

ject with the delayed box-car regressor for the binaural condi-

tion represented by the dotted line. (D) The time points corre-

sponding to the binaural condition extracted from the time

course in (C). Prior to connectivity estimation, the first volume

in each block was discarded and the remaining time points were

concatenated to create the time course corresponding to the

binaural condition. The time courses corresponding to the left

and right ear presentation were estimated in a similar way.

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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The CSF region was manually defined (see Fig. 1B) for
each subject using MRIcro software (http://www.psycho-
logy.nottingham.ac.uk/staff/cr1/mricro.html). The time
course preprocessing methods and the functional connec-
tivity methods were applied identically for the CSF region.
The correlation between the A2L and A2R regions and

the correlation between the A2L with CSF regions were
compared using an appropriate statistical test [Williams’ t
test, Williams, 1959, see Appendix A] that accounts for the
interdependency of this comparison (A2L is a common
area in both correlation). An important assumption is that
the Williams’ t requires independent observations. There-
fore, we investigated the temporal autocorrelation function
to test for independence. Since SPM2 analysis employed
an AR(1) model, we expect the spm time courses to dem-
onstrate nonsignificant autocorrelation. For the standard
time courses, we have applied vector autoregressive mod-
els (VAR, see Appendix B) to create noncorrelated resid-
uals. Given our method to construct the within-condition
time courses (only two images from each condition were
selected), we do not expect the temporal autocorrelation to
be significant for these time courses.

Group Level Statistical Test

To assess the significance of the validity test at the
group level, we have employed a statistical approach that
takes into account the scan level variance (via Williams’ t)
and the hierarchical structure of the data. Williams’ t val-
ues were combined at the group level to calculate a group
Z statistic based on a meta-analytic approach according to
Winer [1971]

Z ¼
PM
i¼1

ti

PM
i¼1

dfi
dfi�2

� �1=2

where M is the number of subjects and df represents the
degrees of freedom for the Williams’ t, df 5 N 2 3, where
N is the number of scans. The Z score calculated based on
the Winer formula also requires independent observations.
This approach combines the probability at the group level
and has been demonstrated to provide superior power
characteristics [McNamee and Lazar, 2004; Rosenthal,
1991].

RESULTS

Statistical Analysis and Region of

Interest Selection

The word stimuli produced statistically significant
BOLD activation in the auditory cortices for all investi-
gated subjects (see Fig. 1A for an example of an individual
F-map) allowing us to define the ROIs based on the indi-

vidual functional maps. The coordinates of the ROIs (from
the effects of interest maps, p < 0.001, uncorrected) were
in the range of coordinates previously reported for A2
[Griffiths and Warren, 2002].

Time Courses Whitening

As expected, the within-condition time courses demon-
strated autocorrelation values within 95% confidence inter-
val for all preprocessing strategies. For six out of seven
subjects, the autocorrelation values for the spm time
courses were also nonsignificant. However, one subject
(subject no. 3) demonstrated significantly large autocorrela-
tion values for all three regions (A2L, A2R, and CSF) both
for standard and denoised data. An AR(4) model rendered
white residuals for this subject. Table I shows the values
of AR coefficients for lag j 5 1 as estimated in SPM2 for
the standard preprocessed data. In SPM2, the AR model is
estimated globally across all voxels identified as activated
during the first pass [Friston et al., 2002]. Therefore, SPM2
employs the same AR coefficients across all voxels for a
given subject (i.e., the spm time courses for A2L and A2R
were whitened using the same A1 coefficient).
A VAR(1) model produced white residuals for the stand-

ard time courses in all subjects, except subject no. 3, where a
VAR(4) model was used to obtain white residuals. The cor-
responding Williams’ t test values were calculated taking
into account that four degrees of freedom were lost for a
VAR(1) model, while the VAR(4) model for subject no. 3
implied the loss of 10 degrees of freedom (see Appendix B).
Table I shows the values of the VAR coefficients for the
standard preprocessed data (A and B coefficients in relations
B1 and B2, see Appendix B) for lag j 5 1. The VAR coeffi-
cients were estimated separately for A2L and A2R.

TABLE I. The AR and VAR coefficients across

subjects (lag j 5 1)

Subject

SPM2 (AR)

VAR

A2L A2R

A1 A1 B1 A1 B1

1 0.37 0.30 0.09 0.08 0.30
2 0.20 0.31 20.20 20.03 0.12
3a 0.37 0.78 20.29 0.74 20.37
4 0.26 0.42 0.17 0.02 0.62
5 0.37 0.61 0.02 0.20 0.45
6 0.37 0.39 0.30 0.17 0.24
7 0.37 0.22 0.13 20.02 0.26

a Subject no. 3 needed an order 4 model to provide white residuals
both for spm and standard preproccesed time courses. The A1

coefficients when using an AR(4) model for the spm time courses
of this subject were 0.5198 for A2L and 0.5173 for A2R. The VAR
coefficients included in the table for subject no. 3 were estimated
using an VAR(4) model.
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Task Removal Efficiency

The area under the graph, corresponding to the three
intervals where the task regressors exhibited peaks, was
measured in the power spectra of the original time course
before the task effects were regressed out. This area was
then remeasured in the residual time courses after the
task-induced effects were regressed out. Statistical compar-
ison of these areas was based on separate 2 way ANOVAs
for A2L and A2R (factors: task removal with two levels
before and after; and preprocessing strategy with four lev-
els). For both regions, the contributions to the power spec-
tra at the stimulus frequency was significantly reduced
after task removal (F1,48 5 12.9, p < 0.0001 for A2L; F1,48 5
15.95, p < 0.0001 for A2R) showing that the task effects
were effectively removed.
The comparison of the rest-like and resting state esti-

mates for A2L to A2R connectivity across five subjects
showed that these estimates were not significantly different:
rrest-like 5 0.496 0.06, rresting state 5 0.48 6 0.15, p5 0.9.

The Preprocessing Effects on Functional

Connectivity Estimates

ICA decomposition identified for our data set compo-
nents showing extremely low frequency drifts (<0.01 Hz),
strong correlation with the motion parameters, slice drop
out, and components with large number of voxels in areas
susceptible to B0 artifacts. These components were

removed from the data by projecting the data set onto the
remaining component.
For the rest-like connectivity estimation, the one-way

ANOVA (factor: preprocessing strategy with four levels)
indicated a significant preprocessing effect (F3,24 5 4.40, p 5
0.01) with the correlation coefficients for the standard classic
time courses significantly larger than those for the spm time
courses. The standard denoised time courses also yielded
significantly larger correlations than the spm time courses
both with standard and denoised data (Fig. 3A).
The connectivity estimates based on the within-condition

method were investigated for significant preprocessing
effects with separated one-way ANOVAs for each active
condition. For the left ear presentation condition, the one-
way ANOVA indicated again a significant preprocessing
effect (F3,24 5 3.31, p 5 0.04), with standard time courses
providing significantly larger correlation coefficients than
spm time courses both with standard and denoised data
(Fig. 3B). For the right ear presentation, the effect of pre-
processing strategy was significant (F3,24 5 6.49, p 5 0.002)
with spm time courses giving significantly lower correla-
tion coefficients than the standard time courses for both
standard and denoised data (Fig. 3C). A similar trend was
obtained for the binaural condition, the effect was how-
ever, not significant (F3,24 5 1.54, p 5 0.200, see Fig. 3D).
In summary, the preprocessing strategy had a significant

impact on the connectivity estimates. The standard time
courses gave significantly larger connectivity values than
the spm extracted time courses, and data denoising showed
no significant effect over the standard preprocessing.

Figure 3.

The box plots of the functional

connectivity estimates across

preprocessing strategies. (A)

rest-like method; (B) within-

condition method, left ear pre-

sentation; (C) within-condition

method, right ear presentation;

(D) within-condition method,

binaural presentation; 1, stand-

ard preprocessing; 2, spm pre-

processing; 3, standard denoised

preprocessing; 4, spm denoised

preprocessing. [Color figure can

be viewed in the online issue,

which is available at www.inter-

science. wiley.com.]
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Statistical Comparison of the Cortico-Cortical

Correlation With the Cortico-CSF Correlation

The two methods of functional connectivity estimation
differed markedly when we statistically compared the cor-
tico-cortical connectivity with the cortico-CSF connectivity.
The rest-like method produced significantly higher

group level correlation values for A2L-A2R correlation
than for A2L-CSF correlation for all preprocessing strat-
egies with a very small number of subjects showing not
significant results (see Table II).
The within-condition functional connectivity estimation

method produced significant group level results only for

the standard time courses (see Table II for left ear presen-
tation condition; similar results were obtained for right ear

and binaural presentation). None of the individual subjects
had significant t values for the spm time courses (Table
III). In general, the individual subject t values were mark-

edly lower than for the residuals method. No consistent
pattern of variance in connectivity values with the stimu-

lus laterality was observed across subjects for the within-

condition method with any preprocessing strategy.
Group level statistical values (Winer’s Z) were generally

slightly higher for the standard time courses when com-
pared with the spm time courses and also for the denoised
data compared with standard preprocessing. At the subject
level data denoising had variable effects. For example, in
Table II, subject no. 6 had not significant t values for the
standard data, whilst data denoising rendering the t values
for this subject as highly significant. However, the t test
for subject no. 7 became not significant for the spm time
courses after denoising, although this subject had a signifi-
cant t value without denoising.
All the validity tests were repeated comparing A2L-A2R

correlation to A2R-CSF correlation with similar results.

DISCUSSION

We investigated whether data preprocessing had a sig-
nificant impact on the functional connectivity estimates in

TABLE II. Williams’ t test values for the statistical comparison between A2L-A2R and

A2L-CSF correlation

Subject

The ‘‘rest-like’’ method

Standard spm
Standard
denoised spm denoised

1 5.24 (<0.0001) 3.91 (0.0003) 5.85 (<0.0001) 3.39 (0.0015)
2 6.57 (<0.0001) 3.70 (0.0005) 6.04 (<0.0001) 5.46 (<0.0001)
3 7.85 (<0.0001) 8.00 (<0.0001) 10.42 (<0.0001) 8.53 (<0.0001)
4 6.10 (<0.0001) 5.10 (<0.0001) 6.46 (<0.0001) 4.96 (<0.0001)
5 6.13 (<0.0001) 3.26 (0.0022) 3.07 (0.0039) 3.63 (0.0001)
6 1.82 (0.0766) 0.81 (0.2867) 8.20 (<0.0001) 5.40 (<0.0001)
7 5.08 (<0.0001) 4.10 (0.0001) 4.70 (<0.0001) 1.78 (0.0828)
Group level 5.47 (� 1027) 4.10 (� 1024) 6.31 (� 10210) 4.67 (� 1026)

The correlation values were estimated using the rest-like method. The values in brackets represent the
associated probability values.

TABLE III. Williams’ t test values for the statistical comparison between

A2L-A2R and A2L-CSF correlation

Subject

The within-condition method

Standard spm
Standard
denoised spm denoised

1 3.20 (0.0045) 1.54 (0.1211) 3.05 (0.0065) 0.85 (0.2728)
2 0.99 (0.2385) 0.82 (0.2797) 1.42 (0.1434) 1.55 (0.1203)
3 1.42 (0.1434) 1.43 (0.1422) 3.16 (0.0050) 1.43 (0.1423)
4 2.58 (0.0184) 1.45 (0.1378) 2.72 (0.0135) 2.00 (0.0585)
5 4.60 (0.0001) 1.64 (0.1040) 2.77 (0.0122) 3.35 (0.0032)
6 1.40 (0.1511) 20.55 (0.3377) 4.55 (0.0002) 2.36 (0.0287)
7 2.52 (0.0209) 0.39 (0.3649) 3.22 (0.0043) 1.16 (0.1990)
Group level 2.19 (0.0359) 0.88 (0.2698) 2.75 (0.0092) 1.67 (0.0993)

The correlation values were estimated using the within-condition method and the values correspond to
the left ear stimulus presentation. The values in brackets represent the associated probability values.
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a task activation data set. To achieve this, we calculated
the correlation coefficient between time courses extracted
from left and right secondary auditory cortices from an
fMRI data set preprocessed in four different ways. We
have also explored the estimation of rest-like and task-
induced connectivity modulation in the same task activa-
tion data set. The correlation coefficients were estimated
by regressing out the task-induced responses and correlat-
ing the residuals (rest-like method) or separately for each
experimental condition (within-condition method).
Regarding the preprocessing effects, our results showed

that, in general, the preprocessing strategy had a signifi-
cant effect on the functional connectivity estimates regard-
less of the estimation method. The time courses extracted
directly from images (standard time courses) provided sig-
nificantly higher correlation coefficients than the time
courses extracted via the VOI routine in SPM2 (spm time
courses).
Taking into account the way we implemented the stand-

ard time course extraction and preprocessing, there are
two sources of difference between the standard and the
spm time courses. Firstly, for the spm time courses,
the representative time course of a ROI was calculated as
the first eigenvariate across all voxels in the ROI. For the
standard time courses, the representative time course was
calculated as the average across all voxels. Secondly, the
whitening procedure varied between the two preprocess-
ing strategies. The spm time courses were whitened using
the same AR coefficients for all voxels for a given subject
(see Table I). These coefficients are estimated globally
across all voxels identified as activated during the first
pass [Friston et al., 2002]. For the standard preprocessed
time courses, we sought to provide optimal whitening for
two given time courses at a time, and we effectively used
different whitening parameters for each time course (see
Table I). Moreover, we accounted for any variance in one
time course that might have been explained by the signal
history of the other (via B coefficients in relations B1 and
B2, see Appendix B). Thus, we estimated only the instanta-
neous influence between A2L and A2R. This instantaneous
influence between two regions is one of the measures esti-
mated by Goebel et al. [2003]. In this study, we were not
interested in estimating the Granger causality between
areas, as estimated in Goebel et al. [2003]. We did not
expect any difference in directional correlations from A2L
to A2R as compared to A2R to A2L at the temporal resolu-
tion of our data (TR 5 3 s).
It is very likely that the observed significant difference

in our study between the connectivity estimated using
spm and standard time courses is generated from a combi-
nation of these effects. Since the standard preprocessed
time courses provided significantly larger connectivity esti-
mates (see Fig. 3) associated with slightly larger Williams’
t values (Table II), we can conclude that the standard pre-
processing was more effective in removing noise-induced
variance that was not similar across A2L and A2R time
courses. The implementation of our VAR method for brain

level connectivity might be computationally time-consum-
ing but is useful for a smaller network of regions.
For our data set, the ICA-based data denoising had no

significant effect on connectivity estimates, although the
correlation coefficients for the denoised time courses were
slightly larger than those without denoising. This result
suggests that for the data set under study, the removed
artifacts were not temporally similar across the ROIs. It is
worth mentioning that, in principle, removing ICA identi-
fied noise can decrease the correlation values when these
artifacts have similar temporal patterns across the investi-
gated brain regions. Therefore, the denoising results are
expected to be data set-dependent. An important observa-
tion is that the use of ICA for data denoising is highly sub-
jective and time-demanding, since the ultimate compo-
nents classification is based on visual inspection and
depends upon the experience of the investigator. Although
Melodic2 employs an objective method to estimate dimen-
sionality [Beckmann and Smith, 2004], the components
pertaining to each subject still need to be inspected and
classified.
Our second aim was to investigate whether rest-like

and task-modulated connectivity were estimable from the
same task activation data. The statistical comparison of
cortico-cortical correlation with cortico-CSF correlation
helped us to differentiate between the two functional con-
nectivity estimation methods. While the rest-like method
provided significantly larger cortico-cortical correlations
for all preprocessing strategies, the within-condition
method yielded significant results only for the standard
time courses. These two estimation methods target differ-
ent sources of functional connectivity and have different
applications; therefore, we do not want to imply that the
within-condition method is incorrect. For certain data
sets and experimental designs, the estimation of task-
induced modulation in connectivity might, however, not
be possible.
The resting state connectivity originates from the sponta-

neous firing of interconnected neurons [Xiong et al., 1999].
A similar connectivity measure can be estimated from
active task data sets under the assumption that the task-
induced effects can be effectively removed from the data.
Our study and previous research [Arfanakis et al., 2000;
Fair et al., 2007; Whalley et al., 2005] indicated that the re-
moval of the task-related effects can be effectively imple-
mented for block design data. A direct comparison
between rest-like and resting state connectivity can demon-
strate that indeed the spontaneous correlated fluctuations
in the BOLD signal (as measured by resting state connec-
tivity) can be recovered from task activation data. For our
study, the resting state and rest-like connectivity estimates
were similar suggesting that the rest-like functional con-
nectivity estimation method was successful in capturing
the spontaneous fluctuation in the BOLD signal for the
data set under study.
The estimation of rest-like connectivity from task activa-

tion data as implemented in this study and in previous
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studies [Arfanakis et al., 2000; Fair et al., 2007; Whalley
et al., 2005] is, however, based on the assumption of a lin-
ear superposition of task-related and spontaneous fluctua-
tions in the BOLD signal. Recently, Fox et al. [2006] dem-
onstrated the linearity of this superposition for the motor
cortex. Moreover, Fair et al. [2007] indicated that the stud-
ies published so far support this hypothesis for primary
sensory and motor regions. The assumption of linearity
might not hold, however, for different brain areas, or for
different experimental designs [Fair et al., 2007]. The direct
comparison of the rest-like connectivity estimated from
task activation data sets with the connectivity estimated
for the same ROIs in resting state data can help in assess-
ing the validity of the linearity assumption for a given
data set.
In principle, ICA may improve the removal of the task-

induced effects as used by Arfanakis et al. [2000], although
the inclusion of this approach is beyond the scope of the
current study. Note that methods based on the entire time
courses, such as the residuals method, have the advantage
of using all the temporal information, and can lead to
functional connectivity measures that take into account the
signal history as proposed by Lahaye et al. [2003] and Sato
et al. [2006].
The within-condition method can be used to investigate

the changes induced in connectivity by experimental
manipulation and is therefore of great importance in neu-
roimaging research. McIntosh [1999] suggested that this is
the preferred functional connectivity estimation method in
studies aiming to investigate effective connectivity with
SEM.
We found no statistically significant differences

between cortico-cortical and cortico-CSF correlation val-
ues estimated using the within-condition method. Since
only two time points per block were used to estimate the
within-condition connectivity, it is expected that this lim-
ited our sensitivity in detecting the task modulation
effects. The similarity of cortico-cortical and cortico-CSF
correlations for the within-condition method is therefore
likely to reflect the fact that the noise-related variance in
the split time courses was similar for A2L, A2R, and CSF
regions.
The performance of the within-condition method is

expected to be task-dependent and it would be appropri-
ate for some experimental designs. For example, tasks hav-
ing longer baseline and active conditions will have rela-
tively less signal superposition from one condition to
another due to the hemodynamic delay, such that the
BOLD signal in each condition can reach a steady state.
Skudlarski et al. [2000] found that the correlations between
contralateral brain areas in motor, auditory, and visual cor-
tices measured in short resting state or active conditions
time series (35 s) were similar with those obtained for very
long time series (up to 2,500 images). Moreover, Fair et al.
[2007] concluded that the connectivity estimated for the
rest condition between blocks of active task (after account-
ing for BOLD undershoot) was very similar to the connec-

tivity estimated from continuous resting state scanning.
Therefore, based on our results and previously published
studies, it can be concluded that reliable connectivity val-
ues can be estimated from block design data by splitting
the time series in segments corresponding to different ex-
perimental conditions under the strict assumption that
these segments are long enough to account for the overlap
of BOLD signal increase to the steady state value (around
10 s, Fair et al., 2007] and the undershoot at the end of an
active block (around 15 s, Fair et al., 2007].
For the within-condition functional connectivity estima-

tion, it is also very important to investigate the stability of
the experimentally induced modulation on connectivity
across subjects. If indeed experimental manipulation had a
significant impact on connectivity, this modulation effect
should be similar across subjects. In our study, the influ-
ence of stimulus laterality on connectivity was highly vari-
able across subjects and preprocessing strategy-dependent,
further suggesting that the within-condition method was
not appropriate for our data.
The statistical comparison of cortico-cortical and cortico-

CSF correlation is important, since the physiological noise
and imaging artifacts (signal drifts) may provide spurious
sources of temporal correlation [Lund, 2001]. Since Cordes
et al. [2001] found that CSF connectivity is driven mostly
by physiological noise, our finding of a significantly higher
correlation value between A2L and A2R indicates that this
relative increase in correlation has to come from a different
source. Moreover, the same study found that physiological
noise makes a negligible contribution (less than 10%) to
auditory cortex connectivity. Although in our data the
physiological noise components are likely to be aliased
(our TR 5 3 s), it is unlikely that the A2L to A2R correla-
tion was driven entirely by physiological noise, since there
is strong evidence in the literature that these two areas are
functionally connected. The auditory cortices are anatomi-
cally connected by transcallosal fibers crossing at the level
of splenium [Huang et al., 2005]. Resting state connectivity
studies have reported functional interhemispheric connec-
tivity for the auditory areas [Cordes et al., 2000]. More-
over, Cordes et al. [2001] showed that the physiological
noise had only a modest contribution (less than 10%) to
the connectivity maps associated with cortical areas
(motor, visual, auditory). For exploratory studies where no
a priori evidence of functional connectivity exists, we sug-
gest that a better way to deal with physiological noise con-
tamination would be to use a shorter TR or to effectively
remove the contributions from physiological noise prior to
connectivity estimation. This can be achieved either by
regressing the physiological noise measured during fMRI
scanning [Peltier and Noll, 2002] or as estimated from the
data [Lund and Hanson, 2001].
An important assumption when comparing cortico-corti-

cal to cortico-CSF correlation values is that similar correla-
tion values are not uniformly distributed across the brain,
but that higher correlation values are observed only for
brain regions that are functionally connected. In our data,
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large correlation values were not observed across the
whole brain.
Other brain regions (such as a region placed over a

major vein or artery) can be used to test the validity of
functional connectivity estimation. In this study, we used a
region in the lateral ventricle since this region is very easy
to identify in a T2* image.
In conclusion, our results indicated that functional con-

nectivity estimation significantly depends upon the prepro-
cessing strategy. The time courses extracted directly from
the spatially normalized images were characterized by sig-
nificantly larger correlation values. Furthermore, this study
suggests that comparing the connectivity between two
cortical areas with the CSF connectivity may be a valuable
tool to investigate what type of functional connectivity is
estimable from a given data set. For our data set, only the
rest-like connectivity was statistically estimable.
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APPENDIX A

Let X1, X2, and X3 be three variable (e.g., three time
courses). Williams’ t test [Williams, 1959] can be used to
statistically compare the correlation coefficient r1 between
X1 and X2 with the correlation coefficient r2 between X1

and X3 (Fig. A1).
Williams’ t test is defined as

t ¼ ðr1 � r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN � 1Þð1þ r3Þ
2 N�1

N�3

� �jRj þ �r2ð1� r3Þ3
s

ðA1Þ

where R is calculated as the determinant of the correlation
matrix

Figure A1.

Schematic representation of the correlation coefficients com-

pared using Williams’ t test. In this study, we have compared the

correlation between A2L and A2R (r1) with the correlation

between A2L and CSF (r2).
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R ¼ det
1 r1 r2
r1 1 r3
r2 r3 1

0
@

1
A ðA2Þ

and r2 is the square of the r1 and r2 average value

�r2 ¼ r1 þ r2
2

h i2
ðA3Þ

The Williams’ t test requires independent observations.
N represents the sample size. The corresponding probabil-
ity value can be calculated based on the probability distri-
bution function of the Student’s t test with N 2 3 degrees
of freedom.
Hittner and Silver [2003] performed a Monte Carlo sim-

ulation to compare different statistical tests for dependent
correlations and concluded that Williams’ t test had opti-
mal power and type I error rate.

APPENDIX B

We have employed vector autoregressive lagged regres-
sion models to render the observation independent. For

the estimation of the correlation coefficient r between two
time courses X(t) and Y(t), an order i vector autoregressive
model [VAR(i)] was first fitted to each time course
[Gujarati, 1995]

XðtÞ ¼ Cx þ
Xi

j¼1

AxjXðt� jÞ þ
Xi

j¼1

BxjYðt� jÞ þ ExðtÞ ðB1Þ

YðtÞ ¼ Cy þ
Xi

j¼1

AyjYðt� jÞ þ
Xi

j¼1

ByjXðt� jÞ þ EyðtÞ ðB2Þ

where Ax, Ay, Bx, and By are the regression coefficients, Cx

and Cy are constant terms, and Ex and Ey are the residuals.
Note that terms Y(t) and X(t) were not included in the
right side of Eqs. (B1) and (B2), respectively. Therefore, the
instantaneous influence between X and Y [Goebel et al.,
2003] can be estimated as the correlation of the residuals
Ex and Ey.
We have fitted these models using least square linear

regression and estimated the residuals Ex(t) and Ey(t). The

fit of an VAR(i) implies a reduction in the number of

degrees of freedom from N to N 2 (2i 1 2) for each time

course.
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