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Abstract: Independent component analysis (ICA) of functional MRI data is sensitive to model order
selection. There is a lack of knowledge about the effect of increasing model order on independent com-
ponents’ (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA)
of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability
software and after clustering of components, centrotype components were used for further analysis.
Visual signal sources (VSS), default mode network (DMN), primary somatosensory (S1), secondary
somatosensory (S2), primary motor cortex (M1), striatum, and precuneus (preC) components were cho-
sen as components of interest to be evaluated by varying group probabilistic independent component
analysis (PICA) model order between 10 and 200. At model order 10, DMN and VSS components fuse
several functionally separate sources that at higher model orders branch into multiple components.
Both volume and mean z-score of components of interest showed significant (P < 0.05) changes as a
function of model order. In conclusion, model order has a significant effect on ICs characteristics. Our
findings suggest that using model orders �20 provides a general picture of large scale brain networks.
However, detection of some components (i.e., S1, S2, and striatum) requires higher model order estima-
tion. Model orders 30–40 showed spatial overlapping of some IC sources. Model orders 70 � 10 offer a
more detailed evaluation of RSNs in a group PICA setting. Model orders > 100 showed a decrease in
ICA repeatability, but added no significance to either volume or mean z-score results. Hum Brain Mapp
31:1207–1216, 2010. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

Recently, independent component analysis (ICA) as a
blind source separation technique has become a major

data-driven analysis tool for functional MRI (fMRI) studies
[Biswal and Ulmer, 1999, Calhoun et al., 2001, Kiviniemi
et al., 2003; McKeown et al., 1998]. It has been successfully
applied for separating statistically independent blood oxy-
gen level dependent (BOLD) components associated with
both task-related and spontaneous resting state activity
within neuronal networks [Beckmann et al., 2005; Bell and
Sejnowski, 1995; Greicius et al., 2004; Kiviniemi et al.,
2000; McKeown et al., 1998; Van de Ven et al., 2004]. An
essential advantage of ICA over hypothesis-driven techni-
ques is that the former allows for differentiating relevant
functional brain signals from various sources of noise
without a priori knowledge on the signal origin [Biswal
and Ulmer,, 1999; Calhoun et al., 2003; Hyvärinen et al.,
2001; McKeown et al., 1998, 2003]. And at present it is an
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open question on how many of the ongoing functions
simultaneously occurring in the brain (in rest or task state)
can be detected with BOLD technique.

Based on statistical features of the data such as the pro-
file of joint density distributions, ICA separates compo-
nents from BOLD data into a number of spatially or
temporally independent components (ICs) [Biswal and
Ulmer, 1999; Calhoun et al., 2001; McKeown et al., 1998].
Non-Gaussianity of joint density distributions are maxi-
mized with a projection pursuit methodology [Hyvärinen
and Oja, 2000]. ICA algorithms begin the projection pur-
suit with a guess and produce components in a random
order. The number of calculated ICA components, that is,
model order, can be freely selected from 1 to n � 1, where
n is the number of imaged brain volumes (spatial ICA), or
number of voxels in the volume of interest (temporal
ICA).

Investigators have raised a question regarding what the
right amount of calculated ICA components are. Studies
focused on both resting state and activation suggested that
functionally connected regions would be split into separate
components when the data dimensionality is overesti-
mated [Moritz et al., 2005; Van de Ven et al., 2004]. On the
other hand, when too few components are calculated, ICA
was said to mix various components [Bartels and Zeki,
2005; Esposito et al., 2003; McKeown et al., 1998; Van de
Ven et al., 2004]. An excessive reduction of the dimension-
ality may be particularly problematic for analysis of rest-
ing state fluctuations, since some of the sources of interest
may have a weak signal compared to noise. Our group
has recently shown that a 42 signal sources can be robustly
depicted from the brain using high model order group
probabilistic independent component analysis (PICA)
[Kiviniemi et al., 2009].

Recently, two groups have estimated an appropriate
number of ICA components for fMRI data. Ma et al. [2007]
investigated the influence of the number of ICs on the abil-
ity of spatial ICA to capture resting state functional con-
nectivity, showing that results of ICA could be affected by
the number of ICs if this number is too small. However,
only volume of functional sources detected within a range
of 2–30 ICA components was evaluated. Li et al. [2007]
proposed a subsampling scheme to obtain a set of inde-
pendent and identically distributed data samples from the
dependent data samples using the information-theoretic
criteria for order selection. The method was applied on the
simulated data and data from a visuomotor task showing
that when ICA is performed at overestimated orders, the
stability of the IC estimates decreases and the estimation
of task-related brain activations show degradation.

The aim of this study was to investigate the role of
model order on group PICA of resting state data. In this
study we investigate the effect of increasing dimensional-
ity on spatial features, repeatability, and emergence of
resting state signal sources. It was hypothesized that the
above characteristics of ICA components are significantly
affected by model order increase. Visual signal sources

(VSS), default mode network (DMN), primary somatosen-
sory (S1), secondary somatosensory (S2), primary motor
cortex (M1), striatum, and precuneus (preC) components
were chosen as components of interest to be evaluated
from resting state data.

MATERIALS AND METHODS

Subjects

The ethical committee of Oulu University Hospital has
approved the studies for which the subjects have been
recruited, and informed consent has been obtained from
each subject individually according to the Helsinki decla-
ration. Fifty-five control subjects were chosen (age 24.96 �
5.25 years, 32 $, 23 #) from three resting state studies: an
At Risk Mental Stage 1986 birth cohort study of ADHD
and schizophrenia; a 1966 birth cohort study of schizo-
phrenia; brain tumor resting state study, total n ¼ 200.

Imaging Methods

Subjects were imaged on a GE 1.5T HDX scanner
equipped with an 8-channel head coil using parallel imag-
ing with an acceleration factor 2. The scanning was done
during January 2007 to May 2008. All subjects received
identical instructions: to simply rest and focus on a cross
on an fMRI dedicated screen that they saw through the
mirror system of the head coil. Hearing was protected
using ear plugs, and motion was minimized using soft
pads fitted over the ears.

The functional scanning was performed using an EPI
GRE sequence. The TR used was 1,800 ms and the TE was
40 ms. The whole brain was covered, using 28 oblique
axial slices 4-mm thick with a 0.4-mm space between the
slices. FOV was 25.6 cm � 25.6 cm with a 64 � 64 matrix,
and a flip angle of 90�. The resting state scan consisted of
253 functional volumes. The first three images were
excluded due to T1 equilibrium effects. In all three studies,
the resting state scanning started the protocols, and lasted
7 min and 36 s. In addition to resting-state fMRI, T1-
weighted scans were taken with 3D FSPGR BRAVO
sequence (FOV 24.0 cm, matrix 256 � 256, slice thickness
1.0 mm, TR 12.1 ms, TE 5.2 ms, and flip angle 20�) in
order to obtain anatomical images for coregistration of the
fMRI data to standard space coordinates.

Data Preprocessing

Head motion in the fMRI data was corrected using mul-
tiresolution rigid body coregistration of volumes, as imple-
mented in FSL 3.3 MCFLIRT software [Jenkinson et al.,
2002]. The default settings used were: middle volume as
reference, a three-stage search (8 mm rough þ 4 mm, ini-
tialized with 8 mm results þ 4 mm fine grain, initialized
with the previous 4 mm step results) with final tri-linear
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interpolation of voxel values, and normalized spatial correla-
tion as the optimization cost function. Brain extraction was
carried out for motion-corrected BOLD volumes with optimi-
zation of the deforming smooth surface model, as imple-
mented in FSL 3.3 BET software [Smith, 2002] using threshold
parameters f ¼ 0.5 and g ¼ 0; and for 3D FSPGR volumes,
using parameters f ¼ 0.25 and g ¼ 0. After brain extraction,
the BOLD volumes were spatially smoothed; 7 mm FWHM
Gaussian kernel and voxel time series were detrended using
a Gaussian linear high-pass filter with a 125-s cutoff. The FSL
4.0 fslmaths tool was used for these steps.

Multiresolution affine coregistration as implemented in
the FSL 4.0 FLIRT software [Jenkinson et al., 2002] was used
to coregister mean nonsmoothed fMRI volumes to 3D
FSPGR volumes of corresponding subjects, and 3D FSPGR
volumes to the Montreal Neurological Institute (MNI)
standard structural space template (MNI152_T1_2mm_-
brain template included in FSL). Tri-linear interpolation
was used, a correlation ratio was used as the optimization
cost function, and regarding the rotation parameters a
search was done in the full [-p p] range. The resulting trans-
formations and the tri-linear interpolation were used to spa-
tially standardize smoothed and filtered BOLD volumes to
the 2-mm MNI standard space. Because an sICA was run
later on fMRI data concatenated from the 55 subjects, in
practice the spatial resolution of spatially standardized
BOLD volumes had to be lowered to 4 mm.

ICA Analysis

ICA analysis was carried out using FSL 4.0 MELODIC
software implementing PICA [Beckmann and Smith, 2004]
framework and ICASSO [Himberg et al., 2004] in MAT-
LAB (The Math Work, Natick, MA). Temporal concatena-
tion option in MELODIC was used to perform PICA-
related preprocessing and data conditioning in group anal-
ysis setting. PCA-reduced datasets from MELODIC were
produced for model orders of 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 125, 150, and 200. These data were analyzed using
ICASSO repeating FastICA [Hyvärinen, 1999] 100 times
with strict convergence threshold (1 � 10�7) using skew-
ness as the contrast function.

The mixing matrix containing cluster centrotype-based
estimates from ICASSO was used to produce final IC
maps. These maps were converted to z-score maps by
dividing intensity values by voxelwise estimates of noise
standard deviation provided by original MELODIC output
files. All z-score maps were thresholded using mixture
modeling (P ¼ 0.5) in MELODIC.

VSS, DMN, S1, S2, M1, striatum, and preC were chosen
as components of interest to be evaluated from resting
state data. ICA characteristics including volume, mean z-
score, and its standard deviation were calculated using
fslstats tool included with FSL4. Statistical analyses of
components’ volume and mean z-score as a linear function
of ICA model order were performed using Origin software

(OriginPro 8 SR0, V8.0725 ‘‘B725’’) and statistical parame-
ters of significance were set at a level (P < 0.05).

We observed detection points and branching points for
each of the signal source of interest. Detection point refers
to the lowest model order in which the signal source was
initially detected and branching point means the model
order where a selected signal source splits into two com-
ponents. Cluster quality index (Iq) of the selected compo-
nents from ICASSO-runs [Himberg et al., 2004] were used
to assess the repeatability of ICA components of interest
and mean of all Iq was used to measure the overall stabil-
ity of the whole ICA decomposition. Mean Iq threshold
(Repeatability threshold) was chosen to be �0.8.

The Juelich histological atlas [Eickhoff et al., 2007], and
the Harvard-Oxford cortical and subcortical atlases (Har-
vard Center for Morphometric Analysis) that are provided
with the FSL4 software were used to quantify anatomical
characteristics of thresholded z-score maps. Identification
and detection of ICA components was accomplished by
visual selection using fslview software. An FSL4 fslstats
tool was used to calculate the number of nonzero voxels
in selected thresholded components (DMNA, DMNP, VSSL,
VSSM, VSS1, VSS2, VSS3, preC, and M1), which was di-
vided by the number of nonzero voxels of the anatomical
templates included in the used anatomical atlases, to pro-
vide a percentage of coverage of different anatomical areas
by each IC.

RESULTS

Spatial Stability

Components of interest such as, DMN, VSS, and preC
were represented in ICA components throughout all calcu-
lated model orders. However, at the lowest estimated
model order (model order 10) only one representative
DMN, VSS, and preC component could be identified. At
higher model orders, both DMN and VSS components
branched into multiple components without being affected
by un-related voxel clusters, essentially covering the initial
low model order component completely. On the other
hand, preC did not show any branching after it was first
detected. At model order 20, DMN branched mainly into
anterior (DMNA) and posterior (DMNP) sources, while
VSS component branched into medial (VSSM) and lateral
(VSSL). VSS further branched into subcomponents (VSS1,
VSS2, and VSS3) at model orders 30, 50 and 70, respec-
tively (see Fig. 1).

M1 emerged at model order 20, showing no clear split-
ting at higher model orders. At model order 30, two com-
ponents of interest (S1, S2) emerged and neither of them
branched at higher model orders (see Fig. 2). In addition
to that, two other components were detected (see Fig. 1).
First component is overlapping with DMN parietal
regions. This DMN-related component branched at higher
model orders into two separate components focused on
middle temporal gyrus, angular gyrus, and inferior frontal
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gyrus in either left or right dominantly. The second is a
transitional component (involving bilateral occipital corti-
ces, lingual gyrus, and lower part of precuneus), which
represents overlapping between various signal sources.
The transition among these sources is most visible at 30–
40 model orders. At model order 40, striatum and M2

components emerged and later branched into right and
left dominant subcomponents at model orders 100 and 60,
respectively (see Fig. 2).

Anatomical coverage results of the ICs concerning the
brain regions defined in anatomical atlases were per-
formed on selected model orders (20, 30, 70, and 200).
Results showed that the coverage of different anatomical
structures by selected ICs was decreasing as a function of

model order and also the number of atlas templates cov-
ered by an IC was decreasing as a function of model order
(Results are not shown).

We have identified low spatial frequency components in
the white matter characterized by a presence of rounded
patches with a high z-score center and a low z-score pe-
riphery. These white matter components emerged at
model order 40 and increased in number as a function of
model order.

Volume and z-Score

Both volume and mean z-score showed significant
changes as a result of increasing the ICA model

Figure 1.

Example images showing the effect of increasing model order on

resting state DMN, DMN-related and VSS components. At

model order 10, components such as DMN and VSS were

detected then at model order 20 both DMN and VSS branched

into [DMNA and DMNP] and VSS into [VSSL and VSSM]. Then at

model order 30, VSS1, DMN-related and the transitional compo-

nent emerged. At model order 50, VSS2 component emerged,

DMN-related branched into two subcomponents. A transitional

zone where a spatial overlapping and transition of activated

brain regions took place (model orders 30–40). At model order

70, VSS3 component emerged.
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order. Volume of all components of interest except
DMNP (P ¼ 0.06) decreased significantly (P < 0.05)
as a function of model order. Almost all components
of interest showed a significant linear decrease (P <
0.05) in volume reaching model orders 70–80 (see Fig.
3). On the other hand, all components of interests

showed a general trend of increase as a function of
model order, but only half of them showed a signifi-
cant increase in mean z-score up to model orders 70–
80. Neither volume nor mean z-score showed any
improvement in significance at model orders higher
than 80.

Figure 2.

Example images showing the effect of increasing model order on resting state striatum, M1, M2,

S1, S2, and preC components. S1 and S2 are shown in green and red for visual feasibility pur-

poses. At model order 10, preC emerged. M1 appeared at model order 20. Both S1 and S2
emerged at model order 30 showing no branching at higher model orders. Then at model order

40, both M2 and striatum components were detected and then later branched into right or left

dominant components at model orders 60 and 100, respectively.
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Detection and Branching Points

There was variability in both detection and branching

points among different signal sources. DMN, VSS, and

preC were detected at model order 10. M1 emerged at
model order 20 followed by S1, S2, and VSS1 at model
order 30. Both M2 and striatum components emerged at
model order 40. Then VSS2 and VSS3 were detected at

Figure 3.

On the left side, volume of all components of interest except

DMNP (P ¼ 0.06) show a significant decrease (P < 0.05) as a func-

tion of model order. All components of interest except S1 and S2
show a maximum significant decrease in volume up to model

orders 70–80. Above model order 80, no significant changes in

volume occur. On the right side, mean z-score of all components

of interest show a general trend of increase as a function of

model order. DMNP, VSSL, S2, and preC show a significant

increase in mean z-score up to model orders 70–80. Above

model order 80, no significant changes occur in mean z-score.

Figure 4.

(A) ICASSO components’ repeatability represented by mean of

cluster quality index (Iq) showing a significant decrease as a func-

tion of model order (P ¼ 2 � 10�7). (B) Iq of resting state

DMNA, DMNP, VSSM, VSSL, preC, and S2. Both DMNA and VSSL
showed low and varying repeatability at model orders below 60

then a stable high repeatability between 60 and 100 model

orders. DMNP and VSSM were relatively stable until model

order 50. Between model orders 40 and 70, preCshowed vary-

ing repeatability then a stable high repeatability reaching 150.

Both S1 and M1 showed stable high repeatability up to model

order 100 and 150, respectively, after that their repeatability

also decreased. S2 showed varying repeatability below model

order 100 followed by a gradual reduction in repeatability.
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model orders 50 and 70, respectively. Some model orders
(i.e., 20 and 50) represented both detection and branching
points at the same time (c.f. Figs. 1 and 2).

Repeatability of ICA Components

Repeatability of ICA decomposition was evaluated using
the mean Iq for each model order. Mean Iq reaches its
highest value at the lowest model order and then shows a
significant decrease in repeatability as a function of model
order (P ¼ 2 � 10�7, c.f. Fig. 4A). We have also used the Iq
of each component of interests in order to evaluate
ICASSO components’ repeatability as a function of model
order. Almost all components of interest showed a
decrease in repeatability at higher model orders. DMNA,
VSSL, and striatum showed varying repeatability below
model order 60, followed by relative stable repeatability
up to model order 100. DMNP and VSSM showed high sta-
ble repeatability below model order 50, and then their
repeatability decreased gradually as a function of model
order. preC showed varying repeatability between 40 and
70, then high stable repeatability between 80 and 150. Both
S1 and M1 showed high stable repeatability, followed by a
decrease in repeatability above model orders 100 and 150,
respectively. S2 showed a varying repeatability up to
model order 100, after that its repeatability decreased
gradually (Fig. 4B).

DISCUSSION

In this study, we explored how ICA model order affects
characteristics of the detected resting state networks
(RSNs). Results show that model order has a significant
effect on the characteristics of ICs. Spatial features, vol-
ume, mean z-score, and repeatability of ICA decomposi-
tion all change significantly as a function of model order.
Increasing model order increased the functional neuroana-
tomical precision, but reduced the repeatability of the ICA
decomposition.

Spatial Stability

Our results show that at low model orders signal sour-
ces tend to merge into singular components, which then
split into several subcomponents at higher model orders.
These findings are consistent with previous and most
recent studies showing 10–12 RSNs detected from the
brain cortex using resting state data with ICA model order
around 20–40 [Beckmann et al., 2005; Calhoun et al., 2008;
Damoiseaux et al., 2006; De Luca et al., 2006; Smith et al.,
2009] and splitting of these RSNs into subnetworks at high
model orders [Smith et al., 2009]. Recently, we have shown
that the brain cortex can be functionally segmented into 42
resting state signal sources and increase neuroanatomical
precision in a group PICA setting [Kiviniemi et al., 2009].

Increasing the model order forces ICA to separate or
branch large networks into subnetworks. However, it is
not a general rule, since we have also detected other com-
ponents showing no branching at higher model orders
(e.g., S1 and S2). There is a lack of knowledge on neuro-
physiological basis explaining why some components tend
to branch into more fine tuned components while others
stay stable. The small-world and scale-free dynamics of
brain networks [Van den Heuvel et al., 2008] might offer
an explanation; large networks at low model orders may
be connected to each other with limited number of connec-
tions. At higher model order, ICA separates large net-
works like DMN and VSS into several subnetworks. The
stable, nonbranching components (i.e., S1 and S2) do not
share many similar spatiotemporal features with other
components and are therefore more functionally independ-
ent. In terms of network characteristics the stable compo-
nents might be less connected nodes, while branching
ones are kind of connector hubs, performing a variety of
tasks and receiving information from multiple nodes
[Achard et al., 2006; Van den Heuvel et al., 2008]. Thus it
would be interesting to investigate temporal connectivity
dynamics of these components. The differential functional-
ity of the subnetworks (e.g., DMNA and DMNP) forming
the larger networks (e.g., DMN) at lower model orders
may play a role in explaining why these components tend
to branch at higher model orders [Buckner et al., 2009;
Calhoun et al., 2008; Esposito et al., 2005, 2009; Kim et al.,
2009; Mayer et al., 2009; Uddin et al., 2009].

Seifritz et al. [2002] showed spatial ICA components of
both primary and secondary auditory cortices, where the
time courses of these spatial ICs were characterized by an
initial peak (transient component), and then a plateau (sus-
tained component). This temporal pattern suggested the
presence of two concurrent temporally independent proc-
esses. Then by temporally decomposing the signals from
the spatial ICA into temporally ICs, they were able to
identify transient and sustained components of human au-
ditory cortex.

The transitional zone is a range of model orders at
which overlapping and transition among signal sources
occurred. Results showed a transitional zone (model
orders 30–40) where inferior parts of precuneus, bilateral
occipital cortices, and lingual gyrus were involved. Over-
lapping of various signal sources and transition among
them along with model order increase does not mean that
model orders involved are factitious. Instead, it is an addi-
tive proof showing the effect of increasing model order on
ICs’ spatial characteristics.

The negative source activations (blue color in Figs. 1
and 2) are somewhat smaller in size than the positive acti-
vations (yellow-red color), which in our opinion talks
against an artificial source of anti-correlation. Mathemati-
cally FastICA requires centering of the data, which is close
to global signal regression as a preprocessing step. How-
ever, the spatial ICA approach does not involve any tempo-
ral normalization but rather it occurs in the spatial domain.
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Therefore, the detected negative correlations are not a
product of temporal signal regression. Also after ICA anal-
ysis, the data has been rotated freely in order to maximize
non-Gaussianity of the source distributions. It seems
highly unlikely that the negative z-scores in spatial IC
maps are ‘‘artificial.’’ Regarding FastICA as a spatial ICA
method (in fMRI data analysis) these deactivations have
not been studied enough to make valid claims, and for
their current interpretability, we advice caution. In this ar-
ticle, we tend to focus on positive z-score maps. Therefore,
we think that a separate study would be proper for such
methodological considerations.

Anatomical coverage results showed that both the cover-
age percentage and the total number of overlapped ana-
tomical templates by selected ICs were decreasing as a
function of model order. Components at high model
orders tend to focus on specific anatomical templates or
split into left and right dominant subnetworks. Splitting of
large networks (at higher model orders) into subnetworks
might be representing a split into subfunctions [Smith
et al., 2009].

Combining the findings above shows that low model
orders (e.g., model order �20) provide a general picture of
large scale brain networks but components such as S2,
VSS1, and VSS3 that emerged at higher model orders
might then be missed. Therefore in order not to miss such
valuable components (cortical and subcortical), higher
model orders should be used in group PICA settings.

ICA Algorithm Repeatability

ICASSO mean Iq of each calculated model order signifi-
cantly decreased as a function of model order. But with
the mean Iq not falling below 0.8 at model orders <100, it
suggests a relatively good repeatability below model
order100 (Fig. 4A). In addition, the Iq for each component
of interest showed a general tendency of decrease at
model orders >100 even with the most spatially stable
components such as S1 (Fig. 4B). These findings are con-
sistent with both mean z-score and volume results show-
ing no improvement in significance at model orders higher
than 80.

Model Order

Importantly, we would like to note that the very low
model orders in ICA of fMRI data produce a more of a
general functional unit mapping technique. The detected
large components at model orders 10–20 represent a guide
in the detection of large functional network clusters, which
share some common feature that makes them independent
in a macroscopic scale. Low model order components
showing large networks are more repeatable based on the
Iq values when compared to higher model orders. Investi-
gation of their activity has so far produced several impor-

tant findings and they lead the way into understanding
how the global functionality is orchestrated in the brain.

Zhao et al. [2004] reported that ICA has some character-
istics to which attention must be given. The model order
used for ICA analysis is crucial for the reliability of the
ICA method. If too few components are calculated, a weak
functional signal source might be missed, while calcula-
tions with too many components can result in overfitting,
which leads to components consisting of just a single spike
at different locations [Hyvärinen, 1999; Zhao et al., 2004].
Särelä and Vigário, addressing the overlearning problem
described two types of overlearning, the first kind results
in the generation of spike-like signals if there are not
enough samples in the data or there is a considerable
amount of noise present. The second is characterized by
low frequency bumps if the data also has power spectrum
characterized by a 1/f curve [Särelä and Vigario, 2003].

Volume, mean z-score, and ICA components’ repeatabil-
ity were all significantly affected by model order selection.
In general, low model orders showed the highest volume
and Iq values. Increasing model order resulted in a signifi-
cant changes in both volume and mean z-score reaching
its peak around 70–80 model order. Further increase of
model order showed a significant decrease in Iq values,
but added no significance in either volume or mean z-
score values.

Based on our findings calculation of 70 � 10 model
orders: (i) sufficiently separates signal sources, (ii) is
repeatable enough (Iq > 0.8), (iii) does not over-fit the
data, and (iv) showed significant changes in both volume
and mean z-score curves for the evaluation of RSN compo-
nents in group PICA setting. This is consistent with the
basic rule [Särelä and Vigario, 2003] concerning upper
limit of model order that for robust estimation of N pa-
rameters (ICs) one needs T ¼ 5 � N2 samples: regarding
our data we have samples from 27,539 voxels that corre-
sponds to 74 ICs according to this basic rule.

In the light of these findings we could interpret our
results as follows: At model orders below 20, individual
signal sources tend to aggregate into singular components
involving various neuroanatomically and functionally sep-
arate units that become later detectable as separate compo-
nents at higher model orders. This deduction is supported
by the fact that new subcomponents kept emerging at
higher model orders. The use of higher model order forces
the ICA to search the data for more local non-Gaussianity
maxima and therefore succeeds in separating the data into
more functionally meaningful components. However as
these local maxima may be subtle, repeated measures such
as ICASSO offer a possibility for the depiction of these
sources.

We emphasize that the 70 � 10 component range
applies to our 1.5 Tesla group PICA setting with the pres-
ent imaging parameters and data preprocessings. Different
model orders may be found more optimal when higher
field strengths and higher resolutions are used. In addi-
tion, we have found it very fruitful to use model orders
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above branching points of the networks especially in the
case of comparing controls to cases in certain diseases.

CONCLUSION

Increasing group PICA model order has shown a signifi-
cant effect on characteristics of ICs. Spatial features, vol-
ume, mean z-score, and ICA repeatability all change
significantly as a function of model order. Both volume
and mean z-score changed significantly along with model
order increase up to 70–80 model order. Increasing model
order resulted in a significant reduction in ICA repeatabil-
ity. Model orders �20 provide a general picture of large
scale brain networks. However, detection of some compo-
nents (i.e., S2 and striatum) required higher model orders
estimation. Model orders around 30–40 showed spatial
overlapping of some IC sources. Model orders 70 � 10
offer a more detailed and yet reliable evaluation of RSN in
a group PICA setting. Model orders >100 showed a
decrease in ICA repeatability, but added no significance in
either volume or mean z-score values.
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