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Abstract: We investigate the effect of the magnetic field generated by neural activity on the magnitude
and phase of the MRI signal in terms of a phenomenological parameter with the dimensions of length;
it involves the product of the strength and duration of these currents. We obtain an analytic approxi-
mation to the MRI signal when the neuromagnetically induced phase is small inside the MRI voxel.
The phase shift is the average of the MRI phase over the voxel, and therefore first order in that phase;
and the reduction in the signal magnitude is one half the square of the standard deviation of the MRI
phase, which is second order. The analytic approximation is compared with numerical simulations. For
weak currents the agreement is excellent, and the magnitude change is generally much smaller than
the phase shift. Using MEG data as a weak constraint on the current strength we find that for a net
dipole moment of 10 nAm, a typical value for an evoked response, the reduction in the magnitude of
the MRI signal is two parts in 105, and the maximum value of the overall phase shift is � 4 � 10�3,
obtained when the MRI voxel is displaced 2/3 the size of the neuronal activity. We also show signal
changes over a large range of values of the net dipole moment. We compare these results with others
in the literature. Our model overestimates the effect on the MRI signal. Hum Brain Mapp 30:1–12,
2009. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Currents flowing in neurons produce local magnetic
fields that alter the precession frequency of protons in the
neighborhood. On one side of a dendritic compartment
containing current the neuromagnetic field will add to the
strength of the external applied field, and on the other
side it will subtract from that strength. The transverse
components of the magnetic moments of protons on the
two sides will, therefore, get out of phase, i.e., they will

point in slightly different directions. Since the net trans-
verse magnetic moment l1 inside an MRI voxel involves
the volume integral of the transverse magnetization, neu-
ronal activity is expected to modify both the magnitude
and phase of l1, and consequently that of the MRI signal.
It would be very exciting if it were possible to actually

detect the neuronal magnetic field directly using MRI,

because that would provide reliable position information

based on the electrical activity of neural populations

instead of secondary metabolic or hemodynamic effects

exploited by conventional fMRI techniques. Because MRI

provides a 3D tomographic measure, the ill-posed inverse

problems associated with surface based physiological tech-

niques such as electro- and magnetoencephalography

(EEG and MEG) would no longer be a factor.
In principle, MRI-based techniques might probe the dy-

namics of neural function directly, and emerging techniques
for fast MRI based on detector arrays underscore this possi-
bility [Lin et al., 2006; Pruessmann et al., 1999; Sodickson
and Manning, 1997]. Alternatively, reliable location informa-
tion from neural current MRI might be coupled with accu-
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rate timing information obtained from EEG or MEG [Dale
et al., 2000; George et al., 2001; George et al., 1995] to tran-
scend the limitations of each technique in isolation.
Experimental investigations of the possibility of direct

detection of neural currents by phase mapping techniques
have been reported [Bodurka et al., 1999; Bodurka and
Bandettini, 2002]. Kamei et al. [1999] claimed the first
human detection of magnitude changes due to neuronal
activity, but reproducibility of these results remains to be
demonstrated. Xiong et al. [2003] also claimed the detec-
tion of magnitude changes due to dephasing produced by
neural currents has been achieved. A later study, however,
says that the sensitivity of MRI to detect evoked responses
is well below that of BOLD-based functional MRI [Chu
et al., 2004]. Bandettini et al. [2005] has presented a thor-
ough examination of this question and the relevant experi-
ments. Probably the most compelling evidence to date
comes from a snail ganglia study [Park et al., 2006], and a
study using rat-brain cultures [Petridou et al., 2006].
The size of the putative effect depends on the strength

of the currents flowing in the dendrites and also on the
geometric arrangement of the currents as well as their rela-
tion to the location of the MRI voxel. Although dendrites
look like long thin cylinders, for a first attempt at obtain-
ing an analytic approximation and also for our numerical
simulations we shall use a simpler mathematical model
and approximate these cylindrical currents as spheres with
the same radius, r0, and the same total moment; we call
these ‘‘spherical dipoles’’. It can be shown that this approx-
imation overestimates the size of the effect on the MRI sig-
nal; it will also be shown below that it greatly overesti-
mates the importance of diffusion.
If the current density is uniform on the inside of a

spherical dipole there is a simple analytic formula for the
magnetic field, which increases in magnitude linearly from
zero at the center of the sphere to a maximum value on
the surface [see The Neuromagnetic Field]. Far from con-
ductivity barriers the magnetic field outside of a spherical
dipole falls off as 1/r2, and consequently so does the addi-
tional phase acquired by the magnetic moments. But the
phase is a dimensionless quantity, hence a parameter, L,
having the dimensions of length naturally arises, which
sets the scale of the 1/r2 falloff.

THEORY

Basic Equations

We write the magnetic field at any position in the brain as
the sum of the external field, B0ẑ, and B0, the field due to
electric current flowing in neurons, and assume B0 is much
smaller than B0. Neglecting relaxation the Bloch-Torrey
equation [Torrey, 1956] determines the evolution of the
magnetization,

@M

@t
¼ gM 3 BþDr2M: ð1Þ

We shall neglect the diffusion term initially and later
estimate its effect. Without that term M precesses about
the direction of the total field B with angular frequency
gjM̂ 3 Bj.
Calling M0 the magnetization due to just the external

field, and assuming that initially it is in the x 2 y plane, it
evolves according to

M0þðtÞ ¼ M0xðtÞ þ iM0yðtÞ ¼ M0þðt ¼ 0Þexpð�igB0tÞ: ð2Þ

With B0 << B0 a component of B0 in the z direction will
modify the precession frequency to first order, whereas a
component transverse to z will have only a second order
effect; it also tilts the plane of the precession slightly. [The
situation could be very different in low field MRI [McDer-
mott et al., 2004; Matlachov et al., 2004; Matlachov et al.,
2007] if the strength of the neuromagnetic field near a den-
drite is more nearly comparable with that of the measuring
field.] Neglecting a transverse component of B0, the evolu-
tion of M+ is given by

Mþðr; tÞ ¼ M0þðtÞexp½�iUðr; tÞ�; ð3Þ

where the additional phase due to neuronal activity is
given by

Uðr; tÞ ¼ g

Z t

0

B0
zðr; t0Þdt0: ð4Þ

g, the gyromagnetic moment of a proton, has the value
2.67 3 108/Ts. Hence a magnetic field of strength 10 nT
acting for 100 ms would produce a phase shift of only 0.2
radians.
The experimental MRI signal is proportional to the net

transverse magnetic moment in the volume V of a voxel,

lþðtÞ ¼
Z
V

d3rMþðr; tÞ; ð5Þ

and making use of Eq. (3), the ratio of this moment to its
value in the absence of the neuromagnetic field becomes

lþðtÞ=l0þðtÞ ¼ ZðtÞ ð6Þ

where

ZðtÞ � 1

V

Z
V

d3r exp½�iUðr; tÞ�: ð7Þ

ZðtÞ represents the modification of the MRI signal due to
neuronal activity. Since F occurs in the exponent, Z
depends nonlinearly on the strength of the neuronal mag-
netic field. If either B0 or the unperturbed magnetization
M0+ varies in strength over the size of the MRI voxel then
in place of the simple average of exp½�iU� shown in Eq. (7)
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ZðtÞ becomes the weighted average, weighted by the mag-
netization M0þðr; tÞ. In particular, B0 may contain a spatial
gradient, G � r.
In principle, both the magnitude and phase of Z can be

measured. The change in the phase of the MRI signal due
to neuronal activity is given by

vðtÞ ¼ arg½ZðtÞ� ð8Þ

and the fractional change in the magnitude of the signal is

dðtÞ ¼ jZðtÞj � 1 ¼ 1

V

Z
V

d3r exp½�iUðr; tÞ�
����

����� 1: ð9Þ

Note that a phase having little spatial variation would
produce a net phase shift, v, that might be detected with
phase imaging techniques [Bodurka et al., 1999; Bodurka
and Bandettini, 2002], but contributes little to d. The large
spatial variation close to dendritic currents can make a
larger contribution.
These remarks can be verified explicitly in the important

case that F, the neuromagnetically induced phase, is small
over the volume of the MRI voxel. Using the small angle
approximation for exp½�iU� gives

vðtÞ ¼ arctan½=ðZÞ=<ðZÞ� ¼ � RV d3rUðr; tÞR
V d3r

þOðU3Þ

¼ �hUðtÞi þOðU3Þ ð10Þ

where hUðtÞi is the average of Uðr; tÞ over the voxel.
To find the approximate expression for dðtÞ start with

jZj2 obtained from Eq. (7) as

jZðtÞj2 ¼ 1

V2

Z
V

d3rd3r0exp½�iðUðr; tÞ � Uðr0; tÞÞ�

¼ 1

V2

Z
V

d3rd3r0cosðUðr; tÞ � Uðr0; tÞÞ: ð11Þ

Now expand the cosine and keep terms up to second
order in F. This leads to

jZðtÞj2 ¼ 1� r2ðtÞ þOðU4Þ ð12Þ

where r2 is the square of the standard deviation of Uðr; tÞ
over the voxel. Taking the square root of this equation
finally yields

dðtÞ ¼ jZðtÞj � 1 ¼ � 1

2
r2ðtÞ þOðU4Þ: ð13Þ

Eq. (13) for d, the fractional reduction in the magnitude
of the MRI signal, confirms the expectation above that it is
a measure of the variation in the phase over the voxel.
This fact seems to have been recognized, but the quantita-
tive result in Eq. (13) appears to be new.

Note that v, the change in phase of the MRI signal, is
linear in the strength of the neuronal currents; d, on the
other hand, is quadratic in the current strength. This com-
plicates the interpretation of MRI data. Observation of a
phase shift accompanied by little or no magnitude change
does not necessarily mean that the phase F had little spa-
tial variation; it could have resulted from the currents
being too weak to affect the magnitude.

The Neuromagnetic Field

Now comes the critical task of estimating the magnetic
field created by neuronal activity as a function of posi-
tion and time. Although a cylindrical approximation to
dendritic currents is probably more realistic, two geo-
metric parameters would be needed: the length and ra-
dius of the cylinder. For the purpose of the present first
look at the problem we shall approximate these currents
by assuming that they are distributed with uniform den-
sity throughout a spherical volume, and call them
‘‘spherical dipoles’’ needing just one geometric parame-
ter, the radius r0; just as with point dipoles they are
described by a net dipole moment pi located at position
ri, the center of the sphere. The greater variation of the
phase F near a spherical dipole than near a cylindrical
dipole with the same total moment means that our
approximation overestimates the size of d, the change in
magnitude of the MRI signal.
To show this quantitatively we have compared the mag-

nitude of d from a single cylindrical dipole with that of a
spherical dipole, having the same radius of 1 lm and the
same dipole moment, and acting for the same duration.
For a cylinder of length 10 lm d is �2/3 as large as for a
sphere; and for a cylinder of length 100 lm d is �1/8 as
large as for a sphere.
Comparing single dipoles is not the whole story, of

course. Placement of cylinders in an MRI voxel is re-
stricted by the length of the cylinder. But for dendrites of
length 100 microns in a voxel of dimensions 2 mm or
more the geometric constraint would appear to be minor.
Furthermore, with the number of dipoles and the voxel
size used in the present article the cylinders would occupy
only 5% of the voxel volume.
To see if there is more interference between the contri-

butions of different dipoles to d with cylinders rather
than spheres would require a full-scale calculation with
many cylinders, which is beyond the scope of the pres-
ent article. Since the interference between different
spherical sources is not very great we conjecture that the
final result for the signal magnitude would be approxi-
mately as described above for single dipoles: with cylin-
drical dipoles of length 100 lm we would expect d to be
significantly smaller than its value with spherical
dipoles, only on the order of 10% of the latter. For the
rest of this article we will approximate the dendritic cur-
rents by spherical dipoles.
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If the current density is uniform inside the sphere the
exact solution for the neuromagnetic field due to the pri-
mary current is

B0ðr; tÞ ¼ l0
4p

X
i

piðtÞ3ðr� riÞ
j r� ri j3

ðj r� ri j > r0Þ

¼ l0
4p

X
i

piðtÞ3ðr� riÞ
r30

ðj r� ri j < r0Þ ð14Þ

and the corresponding contribution to the phase F is

Uðr; tÞ ¼
X
i

L2i ðtÞ
½p̂i 3ðr� riÞ�z

j r� ri j3
ðj r� ri j > r0Þ

¼
X
i

L2i ðtÞ
½p̂i 3ðr� riÞ�z

r30
ðj r� ri j < r0Þ ð15Þ

where

L2i ðtÞ ¼ g
l0
4p

Z t

0

piðt0Þdt0: ð16Þ

From Eqs. (14) and (15) it is seen that for distances from
a dipole that are less than r0, B

0 and F increase linearly
with distance; but beyond r0 they fall off as 1/r2, and L2i
sets the scale of the falloff of the phase. The maximum
value of F occurs at the surface of the dendritic current,
where it becomes ðLi=r0Þ2. The size of this ratio is a critical
parameter. If Li << r0 the phase is small everywhere; if
Li >> r0, F remains sizeable well outside the dendritic
current.
The summation in these equations runs over all dendri-

tic currents that are active during the time of an MRI run.
(In writing Eq. (16) we have assumed the direction of each
dipole moment remains constant during the time t; if this
is not the case, for example if the moment reverses direc-
tion, then L2i is defined as the magnitude of the vector
obtained from the right hand side of Eq. (16) by replacing
piðtÞ by piðtÞ.) The return current contribution to B0 is
much smaller than the primary current contribution in the
neighborhood of the source, provided one is not near a
conductivity barrier. This is shown analytically [Heller,
2004] and numerical studies confirm this result [Konn
et al., 2003].
Using the value gl0=4p 5 26.7 m/As for a proton shows

that a dipole moment of 0.1 pAm acting for 100 ms would
make L 5 0.52 lm, which is comparable with r0. Such a
moment would result, for example, from a current of 1 nA
acting over a distance of 100 lm.

EVALUATION OF Z

It is useful to obtain an approximate analytic formula
for Z in a limiting case to serve as a check on the numeri-
cal procedures used for the simulations in The Model.

A Single Current Source

For a single spherical dipole located at the center of the
voxel the summation in Eq. (15) reduces to a single term;
and taking the origin of the coordinates to be at the posi-
tion of the dipole and the direction of the dipole moment
p̂ to be along the y axis, the phase can be written

Uðr; tÞ ¼ �L2ðtÞ x
~r3

: ð17Þ

where~r is r or r0 according as r is greater than or less than
r0. With this expression for F Eq. (7) for ZðtÞ becomes

ZðtÞ ¼ 1

V
d3r exp iL2ðtÞ x

~r3

� �
: ð18Þ

In Appendix this integral is evaluated approximately
using spherical polar coordinates centered at the dipole.
An important point is that the voxel size is on the order of
millimeters, whereas we expect L and r0 to be on the order
of microns. Consequently the phase is very small in most
of the volume, so it is convenient to subtract and add
unity to the integrand.
It is shown in Appendix that for this example of a single

current source centered in the MRI voxel, and with L and
r0 much smaller than the size of the voxel

vðtÞ ¼ argðZðtÞÞ ’ 0 ð19Þ

and

dðtÞ ¼ jZðtÞj � 1 ’ �3
VL

V
k

L

r0

� �
; ð20Þ

where VL ¼ 4pL3=3 is the volume inside a sphere of radius
L and

kðxÞ ¼ x�3f ðx2Þ þ gðxÞ: ð21Þ

The functions f and g are defined in the Appendix and refer,
respectively, to the portions of the integration in Eq. (18) for
r < r0 and r > r0. A plot of the function f ðxÞ is shown in
Figure 1; gðxÞ is shown in Figure 2, and kðxÞ in Fig-
ure 3. Examination of Figure 3 shows that d is well behaved
in the limit r0 ? 0. It turns out that the contribution to d from
the inside never exceeds 20% of that from the outside, for any
value of the ratio L/r0. Eqs. (19) and (20) for v and d do not
require the assumption that the magnitude of the phase F is
small; but if it is then it is straightforward to show that they
are consistent with Eqs. (10) and (13), respectively.

Interference

It was mentioned above that for the important case of
small phases d is quadratic in the strength of the currents.
Consequently d due to a set of sources is not simply the
sum of its values from those sources treated separately.
From Eqs. (7) and (15) it is seen that the contributions to ZðtÞ
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Figure 1.

The contribution to the magnitude of the MRI signal coming

from inside a single spherical dipole, Eq. (A6), is proportional to

the function f ððL=r0Þ2Þ, where f ðxÞ is defined in Eq. (A7).

Figure 2.

The contribution to the magnitude of the MRI signal coming

from outside a single spherical dipole, Eq. (A4), is proportional to

the function gðL=r0Þ, where gðxÞ is defined in Eq. (A5).

Figure 3.

The complete contribution to the magnitude of the MRI signal

from a single spherical dipole is proportional to the function

kðxÞ defined in Eq. (A9).

are largest at positions r that are within a distance of order
max(L,r0) from an active dendrite. One might expect, there-
fore, that for sufficiently large average separation of these
dendrites, S, when F is inserted in Eq. (7) for the change in
the MRI signal, the integral would approximately decom-
pose into a sum over disjoint regions surrounding each cur-
rent, with very little contribution coming from the portion of
the voxel volume between these regions, i.e., d �Pi di. The
shortcoming of this reasoning is due to the very slow falloff
of the magnetic field. Since UðrÞ ¼Pi UiðrÞ, from Eq. (13)
the interference term can be written as

D � d�
X
i

di

¼ � 1

2
½hU2i � hUi2Þ� �

X
i

ðhU2
i i � hUii2Þ

" # !

¼ �
X
i>j

X
j

1

V

Z
V

d3rUiðrÞUjðrÞ � 1

V2
hUiihUji

� �
ð22Þ

For two spherical sources that are not too close to a
boundary of the voxel the ratio D/d can be shown to be
O[max(L,r0)/S], which falls off only as the inverse first
power of the separation. Of course each source has several
nearest neighbors and many more next nearest neighbors,
etc., so it is difficult to make an a priori estimate of the im-
portance of interference in a problem with many sources.
In Varying the parameters the magnitude of the interference
in our model will be shown.

THE MODEL

In this section we describe a simplified geometric model
of dendritic structure that incorporates the main features of
the electrical activity, and permits a simultaneous descrip-
tion of the MEG signal and the MRI signal. The model neu-
rons each contain an apical dendrite and a set of dendrites
transverse to it. The apical dendrites, because of their geo-
metric order approximately normal to the cortical surface,
are thought to be the source of the MEG signal; and the ex-
perimental magnitude of that signal provides an estimate of
the strength of the net dipole moment of the simultaneously
active neurons, typically around 10 nAm for an evoked
response [Hämäläinen et al., 1993]. The transverse dendrites
lack geometric order and have a minimal effect on the dis-
tant MEG signal; but all the dendritic currents orthogonal
to the externally applied field contribute to the MRI signal.
We neglect the contribution of action potentials to the

MRI signal. Although the strength of each of the two
oppositely oriented dipoles composing the action potential
is about 0.1 pAm [Hämäläinen et al., 1993], which is com-
parable with the strength we assume in our model of the
dendritic currents, the time course of only about 1 ms
means that the length L from Eq. (16) will be small.

Simulations

Finding the contribution to the MRI signal from a voxel
containing N � 106 sources constitutes a daunting yet well
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posed challenge. We have developed a numerical simulation
that yields an estimate for the change in the magnitude and
phase of the signal. This simulation approximates dendritic
microscale current sources as spherical dipoles; as mentioned
above, for the same current dipole moment, a sphere pro-
duces a larger effect than a cylinder. We use a multilevel
approach which is similar to the Barnes-Hut algorithm
[Barnes and Hut, 1986]. Our simulation can accommodate
accurate neuronal geometries containing a billion sources or
more either placed randomly in the voxel or placed according
to geometry file formats such as the Southampton format
[Cannon et al., 1998; Duke-Southhampton Archive, 2005]. We
use this simulation to estimate Z for various combinations of
S and L and for realistic sizes of active cortex.
Direct computation of B0ðr; tÞ at a set of J field points rj

from this volume of cortex would result in a computational
complexity of O(NJ). Brute force numerical evaluation of the
integral in Eq. (7) would require field sampling be at least
on the order of min{L,r0}, leading to J � 1010. Therefore, find-
ing Z for an active cortical region of area 10 mm2 and thick-
ness 2 mm would require roughly 1016 computations.
Two techniques greatly reduce the computational complex-

ity required. Multilevel approximations based on a modified
Barnes-Hut treecode algorithm [Barnes and Hut, 1986] and
Monte Carlo integration [Hammersley, 1960; Press et al.,
1992]. Our multilevel algorithm divides the source filled
region into successively smaller cubical regions which are, at
each level, approximated by aggregated spherical dipole sour-
ces. Instead of each source interacting with each field point
exactly, a distance criterion is established beyond which the
Mth level’s sources are aggregated into a single source. For
spherical dipoles, this corresponds to replacing all of the sour-
ces in a given sector of the Mth level into a single dipole with
effective moment peff equal to the vector sum of the moments
of the constituent dipoles. If there is very little correlation
between the positions and dipole moments of the sources in a
given group, the fractional error due to this approximation is
cN�1

PN
i ðri � rÞ2=ðr� rÞ2, where c is a constant of order

unity. The sum runs over all the dipoles in that group, and r
is their unweighted center of mass. As expected, the farther
a given group is from r the larger it can be. The contribution
of this group to the phase at position r is obtained from the
first line of Eqs. (15) and (16) with ri replaced by r and Li
replaced by Leff , which is computed from peff .
After initial setup time, this technique reduces computa-

tion to O(J log N). For a more complete treatment of our
algorithms and error criterion, see [Barrowes et al., in
press(a)]. We find at most a 1.5 % error introduced by the
multilevel algorithm based on the simulation parameters
we have chosen.

Magnitude and Phase of the MRI Signal

Choice of parameters

To estimate the expected size of d, the fractional change
in the magnitude of the MRI signal due to neuronal activ-

ity, we use the model of apical and transverse dendrites
described above, with parameters partially constrained by
MEG data. The external magnetic field is taken to be in
the z-direction, and we assign a moment of 0.1 pAm to
each of 105 apical dipoles pointing in the y-direction,
making an effective dipole moment of 10 nAm; as men-
tioned above this is a typical value found in MEG evoked
response experiments [Hämäläinen et al, 1993]. In addi-
tion, we have chosen 30 times as many transverse dipoles
pointing in random directions in the x 2 z plane, each
with the same value of the dipole moment. [The number
30 is a crude estimate taken from pictures of some stained
neurons. It will be seen that the difference between choos-
ing 30 transverse dendrites and choosing none at all
changes our result for d by at most a factor of 2.] All
dipoles were assigned a radius r0 5 1.0 lm.
All dipoles are at randomly chosen positions in a vol-

ume of dimensions Dx ¼ Dz ¼ 101=2 mm, and Dy 5 2 mm.
This makes S, the mean spacing of the dipoles, 18.6 lm.
For the transverse dipoles only those with a dipole compo-
nent along the x-axis contribute to the z-component of the
magnetic field. When this is taken into account it effec-
tively reduces by half the number of the transverse cur-
rents.
The MRI voxel is assigned the same dimensions, and we

consider two cases. In the first the voxel is centered on the
active region. For this case v, the net phase shift of the
MRI signal, should be zero because the additional mag-
netic field due to neuronal activity is symmetric around
the active region. In the second case the voxel is displaced
in the x-direction such that it contains only a fraction of
the active cortical volume.
In addition to the strength of the dipole moments, which

along with their geometry determine the strength of the
magnetic field at each position, it is necessary to assign a
duration to their activity in order to estmate the phase
UðrÞ. Considerable variation is found in the latencies and
durations of the effective dipole moments obtained from
analysis of MEG evoked response experiments, from 5 ms
in a short latency median nerve response to stimulation
[Jun et al., 2006] to a range from 10 to 100 ms in a visual
stimulus experiment [Aine et al., 2000].
At a more fundamental level the duration of postsynap-

tic potentials measured electrophysiologically typically
varies from 5–20 ms. Of course most cells can fire multiple
times in 100 ms, either as a burst elicited by a unitary
stimulus or as a cosequence of continuous stimulation. As
a practical matter the time that neuromagnetic fields can
interact with an evolving spin population is generally lim-
ited by the echo time. A 100 ms is a typical upper limit for
TE and we have chosen 100 ms for our simulations; reduc-
ing it will lead to a smaller effect on the MRI signal.
With all sources assigned a dipole moment of 0.1 pAm

and a duration of 100 ms, the common value of L from
Eq. (16) is 0.52 lm. With the dipole radius r0 5 1.0 lm the
phase F is everywhere small so we expect Eq. (10) for v,
the overall phase shift, and (13) for d should be accurate.
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As v is first order in the magnetic field produced by the
neuronal currents it receives no mean contribution from
the transverse dendrites in our model because those cur-
rents point in random directions. The magnitude change d,
on the other hand, being second order in the magnetic
field receives contributions from all the dendritic currents.
Figure 4 shows the convergence of the Monte Carlo inte-

gration of Eq. (7) for the first case (centered voxel), as fol-
lows. N 5 20,000 values of F are sampled at random
inside the voxel, and the average value of exp[2iF] is
regarded as an approximation to Z in Eq. (7); each
square represents the value of �d ¼ 1� jZj for that run.
This process is repeated 39 times and the circles represent
the cumulative average of 2d. The result of this calcula-
tion is d ¼ �ð2:0� 0:2Þ � 10�5. Equation (13) predicts
d ¼ �2:0 � 10�5, which is in excellent agreement with the
simulation. This was obtained by directly evaluating the
standard deviation of all 780,000 randomly chosen values
of F. Equation (10) predicts v 5 0.00338, which is also in
excellent agreement with the simulation (not shown), but
not statistically different from zero.
For the second case (offset voxel) Eqs. (10) and (13) are

again in excellent agreement with the simulations. As
expected d has a diminished magnitude since only a frac-
tion of the currents are inside the voxel; and v increases to
a maximum value of 4 � 10�3 when the voxel is displaced
�2/3 the size of the active region.

Varying the parameters

Although we have argued in favor of the set of parame-
ters chosen above, in Figure 5 we show d over a large
range of values of the parameter L from 0 to 2.6 lm, keep-
ing the number of active neurons in the voxel at 105. With
the same duration as above, namely 100 ms, the largest
value of the individual dipole moment would be 2.5 pAm,
and hence the net apical dipole moment would be 250
nAm. This would produce a very large MEG signal; and
from Figure 5 d would be almost 1%.
An unpublished observation has been mentioned [Hag-

berg et al., 2006] of a 400 nAm dipole moment during epi-
lectic activity. On Figure 5 it is seen that above L 5 1.5 d
behaves approximately like L to the power 3, which trans-
lates into dipole moment to the power 3/2. We expect,
therefore, d at 400 nAm to be approximately two times its
value at 250 nAm, namely 2%. Since the overall phase shift
is linear in the dipole moment over this range, we expect
it to attain a value of �98. [See Figure 6.] at the end of the
paragraph.

Figure 4.

Convergence of the Monte Carlo integration for 2d, the frac-

tional reduction in the magnitude of the MRI signal, for the case

that the MRI voxel is coincident with the neuronal activity. Each

square is obtained by averaging expð�iUÞ over 20,000 ran-
domly chosen positions as an approximation to Z in
Eq. (7), and then evaluating �d ¼ 1� jZj. This process is
repeated 39 times, and the circles represent the cumulative
average of 2d.

Figure 5.

The reduction in the magnitude of the MRI signal as a function

of the parameter L defined in Eq. (16). The solid curve with

error bars is the result of the simulation with 100,000 neurons

each having one apical dendrite and 30 transverse dendrites. The

activity is located in a volume of 20 mm3 which is coincident

with the MRI voxel. The (x) symbols represent the approxima-

tion to 2d given in Eq. (13); it is very accurate for L < 1.5 lm.

The (���) symbols are obtained from the simulation with
just apical dendrites, and the (1) symbols represent
Eq. (13) for that case. The (---) symbols represent the addition
of the simulation results for apical dendrites acting alone
with that for the transverse dendrites acting alone; the dif-
ference between (---) and the solid curve is the result of
interference. The inset shows that �d / L4 for small L.
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From the insert on Figure 5 it is seen that for small val-
ues of L, d / L4, as expected from Eq. (13). Also shown on
Figure 5 is the approximation to d given by Eq. (13); it is
very accurate for L < 1.5 lm.
The importance of interference can be seen on Figure 5

by comparing the curve with apical and transverse den-
drites active together, with the sum of the delta values
when they act separately. For our chosen value of L 5 0.52
lm interference reduces d by 14%; but for the largest L-
value shown, it is reduced by 46%.
Another illustration of the effect of interference is

obtained from the apical dendrites alone by putting half
the dipole moments in the 1y-direction and half in the
2y-direction, which might be due, for example, to excita-
tory vs. inhibitory postsynaptic potentials. This reduces d
from 1 � 10�5 to 1 � 10�6.
Figure 6 shows the variation of the overall phase shift v

as a function of the parameter L, when the active cortical
region is displaced with respect to the voxel by 2/3 the
length of the voxel, which is the approximate separation at
which v has the maximum value. Also shown on Figure 6
is the approximation to v given by Eq. (10); it is very accu-
rate over the entire range of L-values shown.

Effect of Diffusion

To estimate the importance of the diffusion term in
Eq. (1) we take the example of a single spherical dipole
with radius r0 and moment p pointing in the y-direction,

as in Introduction. Including a spatial gradient in the exter-
nal field, the complete z-component of the field becomes

Bz ¼ B0 þG � r� l0
4p

p
x

~r3
¼ B0 þH � r ð23Þ

where, as before, r̃ is r or r0 according as r is greater than
or less than r0, and

H ¼ G� l0
4p

p
x̂

~r3
: ð24Þ

Inside the dipole where r̃ is constant the term H � r is a
linear gradient, and for such a magnetic field there is an
analytic solution of Eq. (1) [Abragam, 1961] and somewhat
more generally [Stejskal and Tanner, 1964], which clearly
exhibits the effect of diffusion. Although this solution is
only valid inside the dipole we expect it provides a fair
approximation to the effect of diffusion. The result for the
magnetization is

Mþðr; tÞ
M0þðt ¼ 0Þ ¼ exp½�igðB0tþKðtÞ � rÞ�exp �g2D

Z t

0

K2ðtÞdt
� �

ð25Þ

with

KðtÞ ¼
Z t

0

HðtÞdt: ð26Þ

To estimate the final exponential in Eq. (25) we use the
following parameters. For the diffusion coefficient of water
we take the value D ¼ 0:676 � 10�3 mm2/s obtained in occi-
pital cortex [Darquié et al, 2001]. For a typical applied gra-
dient G we take 0.1 T/m, and for the dipole moment p
and the radius r0 the same values used above, 0.1 pAm
and 1lm. G and p are taken to be constant over the time
interval t 5 100 ms. With these parameters the gradient of
the neuronal field has the value Gn ¼ ðl0=4pÞðp=r30Þ 5 0.01
T/m, which is 10% of the applied gradient.
Two cases have to be considered depending upon

whether the gradient of the applied field G is in the x-
direction or perpendicular to it. In the latter case K2 con-
tains no interference between the applied gradient and the
neuronal gradient; and since the applied gradient contrib-
utes to the diffusion effect both with and without neuronal
current, its effect cancels out in the ratio of the magnetiza-
tion with neuronal current to that without. With the
parameters above the effect of diffusion associated speci-
fically with the neuronal current is to reduce the magni-
tude of the magnetization by the factor exp½�g2DG2

nt
3=3� 5

0.20.
As mentioned at the beginning of the article the approxi-

mation using spherical dipoles rather than cylindrical
dipoles overestimates the magnitude of the neuronal mag-
netic field and its gradient. Indeed, a cylindrical dipole of
length 100 lm having the same moment and radius would

Figure 6.

The overall phase shift v as a function of L when the activity is

displaced 2/3 the length of the MRI voxel. The solid curve with

very small error bars is the result of the simulation with all den-

drites active, and the (x) symbols represent the approximation

given in Eq. (10). The inset shows that v / L2 for small L.
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produce a gradient of only 2:0 � 10�4 T/m, a factor of
50 less than Gn above. In the absence of interference with
the applied gradient this would make the diffusion effect
negligible; but interference with an applied gradient of
0.1 T/m would reduce the magnitude of the signal by a
factor of 2.

DISCUSSION

We have employed a very simple model of neuronal
currents and the magnetic fields they produce to estimate
the size of the modification of the MRI signal due to
dephasing of the proton magnetic moments. This informa-
tion is contained in the quantity ZðtÞ defined in Eq. (7).
Although we have assumed the strength of the measure-
ment field B0 is large compared to that of the neuromag-
netic field, Z does not have any explicit dependence on B0.
Our analysis has focused on the overall size of the

expected effects, but it is also useful to consider the geo-
metric distribution of the response. In phase mapping the
signals will vary approximately linearly across the active
region, with peaks of opposite polarity flanking the region.
Magnitude changes due to dephasing would be relatively
constant across the region. Phase mapping would be
expected to produce a rather distinctive signature of neu-
ral currents, while dephasing techniques would give rise
to spatial distributions similar to those associated with the
positive or negative BOLD signals.
The main approximation we have made is to take an

estimate of the current dipole moment of a dendrite, cur-
rent times length, and assign that same moment to a
sphere of the same radius. The magnetic field near a point
(or sphere) varies more rapidly than that near a line (or
cylinder) of the same moment; Eq. (13) shows, therefore,
that this approximation overestimates the size of d, the
change in the magnitude of the MRI signal. Similarly, we
expect it to overestimate the size of v, the overall phase
shift. We have also shown that it considerably overesti-
mates the importance of diffusion, which probably has
only a small effect.
In Eq. (16) we have defined an important length parame-

ter, L, which sets the scale of the falloff of the phase of the
transverse magnetization with distance from the current
source; L2 is proportional to the time integral of the dipole
moment of the source. A moment of 0.1 pAm acting for
100 ms makes L 5 0.52 lm. Such a moment would
arise, for example, from a current of 1 nA over a distance
of 100 lm.
In the physically important case that the neuromagneti-

cally induced phase UðrÞ of the transverse magnetization
is small the overall phase shift v of the MRI signal is just
the average of F over the voxel; and d is (minus) 1/2 the
square of the standard deviation of F. This shows that for
small values of the phase d is second order in the product
of the current strength and its duration, and hence fourth
order in L. Experimental observation of a phase shift in

the absence of a significant magnitude change does not,
therefore, guarantee that F has little spatial variation; it
could just be that the currents are too weak to affect d.
We performed simulations involving 105 active neurons

in a voxel volume of 20 mm3, and considered three sepa-
rate cases: 1 apical dendrite per neuron; 30 dendrites per
neuron transverse to the apical direction; and apical and
transverse dendrites simultaneously active. All dipoles
were assigned a radius of 1.0 lm, and the same value of L.
Graphs of the signal magnitude change d and the overall
phase shift v are presented over a wide range of values
of L.
The dominant uncertainty in this model is the product

of the estimated current dipole strength in individual den-
drites and the duration of the activity, as summarized in
the parameter L. Agreement with MEG measurements is a
necessary requirement, but is not a sufficient one because
MEG measurements at a distance primarily reflect the net
dipole moment from neuronal currents. While this may be
all that is needed for phase mapping techniques, phase
dispersion or signal magnitude depends critically on the
local fine structure of the neural magnetic field, which is
not directly measured by any existing technique.
Choosing the individual dipole moments to be 0.1 pAm

makes the net dipole moment of the 105 apical dendrites
equal to 10 nAm, which is a typical value in MEG evoked
response experiments. For the duration of the dipole
moments we have chosen 100 ms, which is at the upper
end of the range seen in MEG evoked response experi-
ments, and is also a typical upper limit for echo time. This
combination makes L 5 0.52lm. For the case that the MRI
voxel is coincident with the cortical activity v is expected
to be zero by symmetry, and the simulation does indeed
produce an extremely small overall phase shift. For that
same case with the currents active in a volume of 20 mm3,
the simulation gives a value d ¼ �ð2:0� 0:2Þ � 10�5. (See
Fig. 5) The analytic approximation given in Eq. (13) is rele-
vant here and gives d ¼ �2:0 � 10�5, in excellent agreement
with the simulation. With the voxel partially displaced
from the cortical activity d diminishes further and v
approaches a maximum value of 4 � 10�3.

Other Models and Estimates

A magnetic field of 100 fT at a distance of 2–4 cm out-
side the head, which is a typical value in an evoked
response experiment, was scaled by the inverse square of
the distance to a position within 1–2 mm of the effective
dipole moment to obtain an estimate for the magnetic field
of � 0.1 nT [Bodurka and Bandettini, 2002]. In an experi-
ment with a wire carrying current in a water filled con-
tainer they were able to detect 40 ms duration current
induced field changes as small as 0.2 nT. This represents a
phase change of � 2 � 10�3, but does not shed any light on
the expected size of the magnitude change.
In other modeling work [Konn et al., 2003] a set of point

dipoles was uniformly placed on a three-dimensional lat-
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tice of spacing 0.1 mm, with each carrying an equal frac-
tion of the net dipole moment; these play a similar role to
the apical dendrites of the present paper. From their ex-
perimental work using an extended dipole in a phantom
[Konn et al., 2003] they say that a magnetic field change of
� 0.1 nT could be detected, and this leads to a similar esti-
mate for a detectable phase change [Bodurka and Bandet-
tini, 2002]. They also say that the expected value of the
magnitude change is very small.
Another modeling article [Xue et al., 2006] reports a

value for the modification of the MRI signal that is about
three orders of magnitude larger than our result. Here we
summarize the different assumptions made in that article.
Their currents [Xue et al., 2006] are taken to be parallel cyl-
inders of radius 0.25 lm and length 1 mm uniformly dis-
tributed on a two-dimensional grid inside a region of
dimensions 3 3 3 3 3 mm3 [We have argued that for the
same dipole moment spherical sources produce a larger
effect on the MRI signal than cylindrical sources.] For the
results cited in the Tables [Xue et al., 2006] the current was
taken to be 5 nA, making the dipole moment of each
source 5 pAm. This is 50 times larger than the value
assumed in the present article and as mentioned above
would, if all other features were the same (they are not),
lead to an increase in d by a factor 502. This could account
for the three orders of magnitude difference in our results:
they find [Xue et al., 2006] a 2% reduction in the magni-
tude of the MRI signal whereas we obtain 2 � 10�5. They
also find phase changes as large as 108.
With 100,000 simultaneously active parallel currents, as

assumed for the values in their Tables [Xue et al., 2006;
Xiong, 2006, private communication] the net dipole
moment, which is seen at a distance by MEG, is 500 nAm.
This is also 50 times larger than the value in the present
article, and would produce a very strong magnetic field at
a distance of 2–4 cm.
Working in a very low measuring magnetic field

strength of a few microtesla the Los Alamos group
[Volegov, 2006, private communication] says that in a
tightly controlled environment a change in the magnitude
of the MRI signal of 2 � 10�3 could be detected. This is two
orders of magnitude larger than the estimate of the
expected value in the present article. However, planned
enhancement of the pulsed field strength employed for
spin polarization would improve the signal-to-noise ratio
achieved in the measurements, and could provide at least
one order of magnitude improvement.
Improved estimates of the effect described in this article

could be made using a more realistic model of dendritic
currents, including their magnitude and geometric
arrangement, and possibly including action potentials.
Elsewhere we describe computational tools to facilitate
such advances [Barrowes et al, in press (b)]. The study of
the neuronal modification of the signal as measured in
microtesla fields would also be very interesting, especially
including the actual time dependence of the current [Kraus
et al., 2007a; in press (b)]. Ultra low field MRI measure-

ments would greatly reduce the effects of magnetic suscep-
tibility due, for example, to circulation, respiration and the
BOLD effect, thus reducing major sources of physiological
noise. Ultra low field MRI also facilitates direct (instead of
heterodyned) detection of the NMR signal, which could
allow more sensitive and stable measurements of phase
and phase dispersion.

CONCLUSION

Using a very simple model of dendritic geometry we
have explored the dependence of the phase shift and mag-
nitude of the MRI signal on a length parameter L whose
square is proportional to the product of dipole moment
and duration, over a large range of values. For values of L
up to � 1.5 lm, d / L4; and for 1.5 lm < L < 2.6 lm the
power is closer to 3. The phase shift is proportional to the
second power of L.
In our numerical simulations we approximate the den-

dritic currents as spheres, rather than more realistic cylin-
ders. We discuss the advantages of this procedure, and
offer our conjecture that for cylinders of length 100 lm or
less the geometric restriction on placement of the cylinders
in the MRI voxel is not a serious issue. The significant dif-
ference is that for the same dipole moment and duration
spherical dipoles overestimate the size of the modification
of the MRI signal as compared with cylindrical dipoles.
For a net dipole moment of 10 nAm, which is a typical

value in evoked response experiments, requiring agree-
ment with MEG data in a very simple manner picks out
an approximate value of L 5 0.52 lm. This is obtained, for
example, from 100,000 apical dendrites with individual
dipole moments of 0.1 pAm acting for 100 ms, and leads
to an expected reduction in d, the magnitude of the MRI
signal, of 2 � 10�5; it also produces a maximum phase shift
of 4 � 10�3, obtained when the MRI voxel is partially dis-
placed with respect to the neuronal activity. These numeri-
cal results are in excellent agreement with an analytic
approximation, and with our expectation that d is gener-
ally much smaller than the phase shift.
On Figures 5 and 6 we show results for signal magni-

tude and phase shift change up to L 5 2.6 lm; in the
model described above this would correspond to a very
large net dipole moment of 250 nAm. We also extrapolate
even further to 400 nAm, where the reduction in d is �2%.
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APPENDIX: A SINGLE DIPOLE

In this Appendix we work out the steps leading from
Eq. (18)–(20) for a single dipole located at the center of the
voxel. To evaluate ZðtÞ in Eq. (18) we introduce spherical
polar coordinates (r, y, /) with the origin at the dipole and
the polar axis along the x direction, hence x 5 rl with
l � cos u. Note that there is a largest sphere centered at
the origin that is contained entirely inside the voxel, of
dimension D. For all r < D the angular integrations in Eq.
(18) are complete, leading to

ZðtÞ ¼ 1

V

Z K

0

drr2
Z 1

�1

dl
Z 2p

0

d/ exp iL2ðtÞ rl
~r3

� �� �
þ eðKÞ:

ðA1Þ

As explained in the text, for r < r0, the radius of the
dendrite, r̃ 5 r0; and for r > r0, r̃ 5 r. We also leave the
upper limit of integration, L, arbitrary and will examine
how Z depends on it; the only requirement on L is that it
be less than D. The remainder, e, results from the portion
of the voxel volume, V0, that is outside the sphere of ra-
dius L.
Since L and r0 are of order microns and the voxel

dimensions are millimeters, the phase is small over most
of the volume, so it is convenient to add and subtract
unity from the integrand. Furthermore, the imaginary part
of the integral is an odd function of l and hence vanishes.
This leads to

ZðtÞ ¼ 1� 4p
V

Z K

0

drr2
Z 1

�1

dl sin2 L2ðtÞ lr

2~r3

� �
þ eðKÞ: ðA2Þ

From Eq. (A1) the imaginary part of e can be bounded
by jImðeÞj < ðL2=K2ÞðV0=VÞ << 1, which means that
vðtÞ ¼ argðZðtÞÞ, which is the net phase shift, is negligible
for the case being considered here. The real part of e is
O½ðL=KÞ4�, and, as shown below, represents a fractional
error of O(L/D) compared to the integral term in Eq. (A2).
We verify below that the integral term itself is small com-
pared to unity, hence

dðtÞ ¼ jZðtÞj � 1 ’ � 4p
V

Z K

0

drr2
Z 1

�1

dl sin2 L2ðtÞ lr

2~r3

� �
þ eðKÞ

ðA3Þ

After carrying out the integration over l, the portion of
the integration for r > r0, called dout, can be obtained by a
change of variable to w ¼ L=r, and leads to

doutðtÞ ’ �4p
L3ðtÞ
V

g
LðtÞ
r0

� �
� g

LðtÞ
K

� �� �
ðA4Þ

where

gðxÞ �
Z x

0

dw
1

w4
� 1

w6
sin w2

� �
¼ x

3!
�Oðx5Þ: ðA5Þ

Note that approximate convergence is achieved if the
second term in the brackets in Eq. (A4) is negligible com-
pared to the first. Since L may not exceed D, a dimension
of the voxel, examination of Figure 2 for gðxÞ shows that
the fractional error resulting from the neglect of that term
is O½maxðL; r0Þ=D�.
The portion of the integration for r < r0, called din, can

similarly be evaluated and leads to

dinðtÞ ¼ �4p
L3ðtÞ
V

r0
L

� �3
f

LðtÞ
r0

� �2
" #

ðA6Þ

where

f ðxÞ ¼ 1

3
� 1

x
j1ðxÞ

� �
¼ x2

30
�Oðx4Þ ðA7Þ

and j1 is the spherical Bessel function.
Summing Eqs. (A4) and (A6) leads to

dðtÞ ¼ dinðtÞ þ doutðtÞ ’ �3
VL

V
k

L

r0

� �
ðA8Þ

where VL ¼ 4pL3=3 is the volume inside a sphere of radius
L and

kðxÞ � x�3f ðx2Þ þ gðxÞ ¼ x

5
�Oðx5Þ: ðA9Þ

The functions f,g, and k are plotted in Figures 1, 2, and
3. In writing Eq. (A9) we have made use of the assumption
K >> maxðL; r0Þ so that the second term in the brackets in
Eq. (A4) can be neglected. The ratio of the two terms in
Eq. (A9) represents the relative contributions to dðtÞ com-
ing from inside and outside the dipole. Comparison of
Eqs. (A4) and (A6) shows that the contribution to dðtÞ
from inside the dipole never exceeds 20% of that from out-
side, the maximum being achieved for small L=r0.

r Heller et al. r
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