¢ Human Brain Mapping 29:1442-1449 (2008) ¢

Validation of a Fully Automated Hippocampal
Segmentation Method on Patients With Dementia
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Abstract: We describe a fully automated method for hippocampal segmentation. The method uses
SPM5 (http:/ /www fil.ion.ucl.ac.uk/spm/) software to segment the brain into grey/white matter, and
spatially normalize the images to standard space. Grey matter pixels within a predefined hippocampal
region in standard space are identified to segment the hippocampi. The method was validated on 36
subjects (9 each of Alzheimer’s disease, dementia with Lewy bodies, vascular dementia, and healthy
controls). The mean absolute difference in volume compared with manual segmentation was 11% (SD
9%). Linear regression between manual and automated volume gave V(auto) = V(manual) X 0.83 +
401 ml. The method provides an acceptable automated alternative to manual segmentation which may

be of value in large studies. Hum Brain Mapp 29:1442-1449, 2008.
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INTRODUCTION

Hippocampal atrophy is common in dementia and mild
cognitive impairment [Barber et al.,, 2000; Chetelat and
Baron, 2003] and can be useful in differential diagnosis.
The gold standard for measuring hippocampal volume is
manual segmentation using a well described protocol eg
[Jack et al., 1995]. However, manual segmentation is both
tedious and time consuming (~30 min per hippocampus),
which limits its use in large scale studies or in routine clin-
ical practice. Segmentation protocols vary between centers
and between operators, making superficially simple com-
parisons between centers, such as magnitude of hippocam-
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pal volumes in controls, impossible because of methodo-
logical differences.

The hippocampus is a difficult subject for automated
segmentation because of a lack of clear boundaries apart
from the cerebrospinal fluid (CSF) interface, and variability
in its exact location and shape between individuals. This is
particularly so in elderly individuals, where atrophy due
to degenerative processes such as Alzheimer’s disease
(AD) can lead to considerable deviation in hippocampal
geometry. A number of algorithms have been described
for hippocampal segmentation, most of which are semiau-
tomated in that they need an operator to provide some
starting point, or correction during the segmentation
([Chupin et al., 2007] and references therein). Carmichael
et al. [2005] described a comparison of fully automated
segmentation procedures using image deformation to
match the subjects image to an atlas image on which the
hippocampi had been drawn.

Here, we describe a new approach in which the whole
image is segmented into grey and white matter using the
SPM5 software (http://www. filion.ucl.ac.uk/spm/). The
software also calculates a spatial transformation from
the image to a template. Automatic segmentation of the
hippocampus is then achieved by the identification of the
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grey matter pixels within a hippocampal region on the
template. In this approach, the hippocampal region on the
template is somewhat larger than the actual hippocampus,
and the spatial transformation does not need to exactly
match the subject’s hippocampus to the template one,
merely to ensure that the hippocampal grey matter is
located within the region.

We describe the validation of the technique on a group
of elderly subjects, including a substantial number with
dementia.

METHODS
Subjects

Data were taken from a previously published study of
atrophy in dementia [Barber et al., 2000], and we selected
at random 36 subjects. Diagnoses of AD, vascular demen-
tia (VaD), and dementia with Lewy bodies (DLB) were
made in accordance with National Institute of Neurologi-
cal and Communicative Disorders and Stroke — AD and
Related  Disorders  Association  (NINCDS-ADRDA)
[McKhann et al., 1984], National Institute for Neurological
Disorders and Stroke — Association Internationale pour la
Rechereche et I’Enseignement en Neurosciences (NINDS-
AIREN [Roman et al., 1993] and DLB consensus criteria
[McKeith et al., 1996], and were arrived at by consensus
between three experienced old age psychiatrists. Applying
these criteria, nine patients had DLB, nine AD, nine VaD.
There were also nine control subjects of comparable age
who had no evidence of dementia. All subjects were
assessed with a range of neuropsychological testing,
including the mini-mental state exam (MMSE) [Folstein
et al.,, 1975].

MRI

All scans were performed on a 1.0T Siemens Magnetom
Impact Expert MRI Scanner (Erlangen, Germany). A T1
weighted 3D magnetization prepared rapid acquisition
gradient-echo, turbo flash sagittal sequence was used to
acquire whole brain images (repetition time 11.4 ms, echo
time 4.4 ms, inversion time 400 ms, delay time, 50 ms, ma-
trix 256 X 256, field of view 256 X 256 mm?, slice thick-
ness 1 mm).

Manual Hippocampal Segmentation

Standard anatomic boundaries were used to define the
hippocampus [Duvernoy, 1998; Jack et al., 1997]. The mea-
surement included the hippocampus proper, dentate
gyrus, subicular complex, alveus, and fimbria. The hippo-
campus was measured from the first slice identifying the
head to the slice showing the longest length of fornix. All
segmentations were performed by the same operator (RB).
Intra rater reliability was assessed by measuring seven

Figure 1.
The hippocampal regions overlaid onto the MNI 152 average
brain.

subjects on three occasions. The mean coefficient of varia-
tion for hippocampal volume was 3%.

Automated Hippocampal Segmentation

These were undertaken blind to the results of the man-
ual segmentation and by a different operator (MJF). First,
we drew a region of interest on both the left and right hip-
pocampus on the MNI (Montréal Neurological Institute)
152 average brain T1 weighted image. Regions were drawn
so as to encompass all of the grey matter, and extended
coronally from the first slice on which the hippocampus
was visible to the crossing of the fornix. Figure 1 shows
the hippocampal regions overlaid on the MNI template.
This generated hippocampal regions of interest in standard
space which were used for all further steps of the segmen-
tation, and are referred to as template hippocampal
regions.

The subject’s images were segmented into grey and
white matter and spatially normalized to MNI space using
SPMS5. This was performed using the default settings and
the standard MNI template in SPM.

Using the spatial normalization transformation calcu-
lated for each subject, the left and right template hippo-
campal regions were transformed into the subject’s native
space image. Regions of hippocampal grey matter were
identified by masking the grey matter segmentation with
the transformed template hippocampal regions using the
imcalc tool in SPM.
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We compared two equations for this purpose

(template ROI > 0.5) X (greymatter > 0.5) (1)

(template ROI > 0.5) X (template ROI + greymatter > 1.3).
(2)

The first is a straightforward identification of all pixels
within the likely ROI which are likely to be grey matter. Vis-
ual inspection of the images showed that SPM correctly
identifies with high probability the grey matter within the
hippocampus. However, the SPM segmentation tends to
incorrectly classify some pixels on WM/CSF boundary as
GM, and the hippocampus contains some small regions
which SPM correctly identifies as white matter. The second
equation was an attempt to exclude the former and include
the latter — the threshold for including voxels was set so that
on the edge on the template (where templateROI was less
than 1), a greater probablity of being grey matter was
required, whereas within the template, a less strict criteria
applies. This might have the effect of including some CSF,
though the SPM segmentation seemed quite good at identi-
fying with high probability the CSF.

After this step, there remained by visual inspection on a
subsample of images, isolated pixels not attached to the hip-
pocampus. To remove these, and to fill in small gaps in the
region, the region was smoothed with a 1.5 voxel Gaussian
kernel, then thresholded at 50%. Figure 2 shows the steps in
the automated segmentation. The template hippocampal
regions are available from the author’s website: (http://
www staff.ncl.ac.uk/m.j.firbank/segmentation.html).

Custom SPM a Priori Probabilities for
Segmentation/Spatial Normalization

The templates and prior probability grey/white matter
distributions provided with SPM are averages of the brains
of healthy young adults. Older adults tend to have larger
ventricles, and more atrophy, and experience with previ-
ous versions of SPM has found that creating a specific tem-
plate can improve the segmentation and spatial normaliza-
tion [Burton et al., 2002; Good et al., 2001]. We investigated
the use of custom templates on the hippocampal segmen-
tation. To do this, we took MRI scans [1.5T scanner with a
3D gradient echo Tl-weighted sequence: repetition time
10 ms, echo time 4.6 ms, flip angle 20°, 1 mm cubic voxels]
from 60 older individuals (different to the ones used for
the hippocampus segmentation). Subject characteristics are
described elsewhere [Firbank et al., 2003] but briefly, the
subjects were community dwelling, nondemented and the
average age was 73 years (SD 5, range 64-84 years). The
MRI scans were segmented using the standard SPM5 pa-
rameters, and grey, white matter and CSF saved in sub-
ject’s native space. The segmentations were visually
inspected, and with the exception of two subjects who had
excessive motion, and were removed, the segmentations
were all acceptable. An affine spatial registration was used

Figure 2.
Steps in the automated segmentation. Clockwise from top left
(a) image (b) region transformed from MNI space (c) after mul-
tiplying by grey matter segmentation (d) final result after
smoothing with Gaussian.

to match each subject’s grey matter segmentation to the
mean grey apriori SPM map. The grey matter affine regis-
trations were then applied to each subject’s grey, white
matter and CSF maps, and after affine transformation to
MNI space, the maps were averaged to create custom
grey, white matter and CSF apriori maps, which were then
used in the segmentation and normalization of the hippo-
campal subjects in the same manner as described earlier.

AIR (Automated Image Registration)
Template Matching

To provide a further comparison, we used the auto-
mated image registration (AIR) package [Woods et al,
1998] to perform nonlinear warping of the scans to match
an individual template. The individual template was of a
70-year-old healthy male who was scanned five times on
the same day. The five scans were aligned together and
averaged to create a high SNR image (see Fig. 3). On the
template were drawn left and right hippocampi regions.

For each subject, the brain was automatically extracted using
the BET tool [Smith, 2002], and then we used AIR v 525
(http:/ /bishopw .loni.ucla.edu/AIR5/) with a 6th order polyno-
mial to match the template and subject image. The resulting
‘warp files” were applied to the template hippocampal ROIs to
transform them to the individual subjects.

We also performed an additional step similar to above
to identify the grey matter (from SPM segmentation)
within the ROL
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Figure 3.
Individual template used for AIR warp. Left hippocampus ROI
overlaid.

Hippocampal Similarity Measures

We used the following quantitative measures to deter-
mine how well the automated segmentation performed.

a. relative error (RE)

[V — Vi
E=2— =
R Vi + Va
where V,,, is the manually determined volume, and V,
the automated volume.
b. Overlap ratio (OR)

OR — V(imnNa) _ Vma
V(m U a) Vi +Va— Vma

where V,,, is the volume of overlap ie the volume of
those pixels in both V,, and V,

c. Similarity index (SI)

Vma

Sl=—"——
(Vi + Va)/2

ma

d. Precision =
Va

e. Recall = h

a
We also calculated the linear regression between the two

volumes.

Reproducibility

Since this is a fully automatic segmentation method,
repeating the analysis on the same scan produces exactly
the same results. To determine the variability due to
rescanning, one control subject was scanned five
times on the same day (being repositioned in the scanner
each time). The separate scans were segmented auto-
matically using the SPM standard segmentation method,
along with Eq. (2) above to identify grey matter followed
by the smoothing step. The brains were then spatially
registered together and the spatial registration parame-
ters applied to the hippocampal segmentations, which
were compared by determining the segmented pixel
overlap.

RESULTS

Subject characteristics are shown in Table 1. The hippo-
campal similarity values for the different segmentation
methods are shown in Table II. As the relatively high
recall figures show, the transformation of a ROI from atlas
to subject either with SPM or AIR resulted in the inclusion
of a reasonable proportion of the manually segmented hip-
pocampus, but also much extraneous matter as shown by
the relatively low Precision. As the regression figures
show, this resulted in a poor relationship between the
automated and manual hippocampal volume measure-
ment. Inclusion of the grey matter segmentation greatly
improved both the AIR and the SPM hippocampal seg-
mentations in terms of the volume regression. We used
two different equations to mask the hippocampal tissue
(Egs. (1) and (2) above). There was little difference
between these two for most of the validation measures,
though the regression was better for the 2nd equation. Fur-
ther smoothing and thresholding the segmentation slightly
improved the results.

We also investigated the use of age matched custom
templates in the SPM segmentation and normalization.
The results of this are shown in Table II. They were not
particularly different to the results using the standard SPM
templates. Table II shows that the optimum method in
terms of the validation measures was the standard SPM
segmentation with grey matter masking and smoothing
and further results presented use this method. Table III
shows the results subdivided by dementia group. A com-
parison between the groups showed the method produced
somewhat less accurate results on the AD group.

TABLE I. Subject characteristics

DLB AD VaD Controls
Age 75 (6) 75 (6) 80 (6) 75 (4)
EM 5:4 4:5 4:5 3:6
MMSE 9.8 (7.3) 14.6 (4.4) 17.9 (2.9) 27.0 (1.6)
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TABLE Il. Comparison of segmentations on the whole group

Regression versus

manual volume slope Relative error Overlap ratio  Similarity index  Precision Recall
(SE); constant (SE) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

ROI transformed from standard 0.23 (0.08); 2919 (182) 0.49 (0.26) 0.40 (0.10) 0.57 (0.10) 047 (0.13)  0.75 (0.07)
with SPM but no grey matter
masking

Transformed ROI and masked grey  0.70 (0.06); 643 (123) 0.12 (0.09) 0.50 (0.06) 0.66 (0.06) 0.66 (0.08) 0.67 (0.07)
matter with Eq. (1)

Transformed ROI and masked grey  0.78 (0.06); 572 (135) 0.12 (0.10) 0.50 (0.06) 0.67 (0.05) 0.65 (0.07)  0.69 (0.07)
matter with Eq. (2)

Smoothed ROI masked grey 0.83 (0.06); 409 (141) 0.11 (0.09) 0.54 (0.06) 0.70 (0.05) 0.69 (0.08) 0.71 (0.08)
matter Eq. (2)

AIR transformed hippocampus ROI  0.09 (0.08); 2362 (183) 0.30 (0.21) 0.38 (0.08) 0.54 (0.09) 0.50 (0.14)  0.61 (0.08)

AIR transformed ROI with masked  0.44 (0.06); 666 (124) 0.27 (0.16) 0.46 (0.06) 0.63 (0.06) 0.72 (0.10)  0.56 (0.08)

rey matter
Usgingycustom template in SPM. 0.78 (0.07); 462 (152) 0.12 (0.09) 0.54 (0.06) 0.70 (0.05) 0.70 (0.07)  0.70 (0.08)

ROI masked with grey matter
and smoothed

Figure 4 shows a comparison between manually and
automatically determined regions. Visual inspection
showed that there were two main sources of error — (a)
inclusion of tissue wrongly classed as grey matter, and (b)
problems due to the difficulty in determining the hippo-
campal/amygdala boundary. Figure 5 shows some exam-
ples of these. Linear regression for the right hippocampus
gave V, = Vi, X 0.81 + 406, for the left hippocampus, V,
= Vim X 0.84 + 417, and for average L + R volume: V, =
Vi X 0.83 + 401 ml.

Figure 6 shows a plot of manual versus automated vol-
ume for the left hippocampus.

On the subject who was scanned five times, the mean
volumes were: Left 3110 (SD 56) mm® and Right 2805 (SD
36) mm®>. This gives a mean coefficient of variance (CoV)
of 1.5% which compares favorably with the manual CoV
of 3% on seven different subjects. Comparing the auto-
mated segmentations, 67% of pixels were identified as hip-
pocampus on all five scans; 77% on 4 out of 5; 84% on 3
scans, and 91% on 2 out of 5 scans. Considering all possi-
ble pairs of scans, the mean overlap ratio was 0.83 (SD
0.012) and similarity index 0.91 (SD 0.007).

On a pentium pc with 2.2 GHz processor and 1 GB of
RAM, the global grey/white matter segmentation and spa-

TABLE Ill. Comparison of automated and manual segmentations using the standard SPM segmentation and
normalisation to identify grey matter voxels within the hippocampus region together with smoothing

DLB (n = 9) AD (n =9) VaD (n = 9) Controls (n = 9) Total (n = 36)
Av. manual volume (ml) 2202 (483) 1615 (546) 1838 (234) 2884 (368) 2135 (634)
Automated volume (ml) 2240 (441) 1869 (530) 1776 (409) 2769 (331) 2163 (573)
Left relative error 0.12 (0.9) 0.16 (0.11) 0.11 (0.12) 0.07 (0.05) 0.11 (0.10)
Right relative error 0.11 (0.08) 0.17 (0.11) 0.14 (0.12) 0.07 (0.06) 0.12 (0.10)
Total relative error 0.11 (0.06) 0.15 (0.12) 0.12 (0.11) 0.05 (0.05) 0.11 (0.09)
Left overlap ratio 0.53 (0.07) 0.50 (0.07) 0.54 (0.05) 0.57 (0.04) 0.53 (0.06)
Right overlap ratio 0.55 (0.10) 0.51 (0.06) 0.51 (0.07) 0.59 (0.03) 0.54 (0.08)
Total overlap ratio 0.54 (0.08) 0.50 (0.06) 0.53 (0.05) 0.58 (0.03) 0.54 (0.06)
Left similarity index 0.69 (0.06) 0.66 (0.06) 0.69 (0.04) 0.72 (0.03) 0.69 (0.05)
Right similarity index 0.71 (0.08) 0.67 (0.06) 0.67 (0.06) 0.75 (0.03) 0.70 (0.07)
Total similarity index 0.70 (0.07) 0.67 (0.05) 0.69 (0.05) 0.74 (0.03) 0.70 (0.05)
Left precision 0.67 (0.08) 0.61 (0.05) 0.71 (0.04) 0.73 (0.05) 0.68 (0.07)
Right precision 0.72 (0.08) 0.63 (0.06) 0.70 (0.05) 0.77 (0.03) 0.70 (0.08)
Total precision 0.70 (0.08) 0.62 (0.05) 0.68 (0.08) 0.75 (0.04) 0.69 (0.08)
Left recall 0.72 (0.06) 0.72 (0.10) 0.69 (0.09) 0.72 (0.04) 0.71 (0.07)
Right recall 0.70 (0.10) 0.73 (0.09) 0.65 (0.10) 0.72 (0.04) 0.70 (0.09)
Total recall 0.71 (0.08) 0.73 (0.09) 0.67 (0.09) 0.72 (0.03) 0.71 (0.08)

An ANOVA comparison between the total measures for the 4 groups gave total relative error F335 = 2.0, P = 0.14; total similarity index
F;335 = 2.97, P = 0.046 (Sheffe post hoc AD < control P 0.039); total overlap ratio F535 = 3.08, P = 0.041 (Sheffe post hoc AD < control P
0.036); total precision F535 = 6.5, P = 0.001 (Sheffe post hoc AD < control P 0.001); total recall F535 = 0.9, P = 0.46.
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Figure 4.
Comparison of manual and automated segmentation. Coronal
slices every 5 mm through a typical hippocampus. The manual
segmentation is shown as a white contour, and the automated as
a light grey (green online) contour. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.
com.]

tial normalization took ~15 min, and the further segmenta-
tion of the hippocampus an additional minute.

DISCUSSION

The method produced good segmentations of the hippo-
campus with the widely used and freely available SPM5
software. The results are comparable with those of the
fully automated segmentation of Carmichael [Carmichael
et al., 2005] who obtained a overlap ratio of 0.55 using the

MNI atlas image with fully deformable registration and
better than their results using SPM registration alone. They
do not give timings for their segmentation, however fully
deformable registration is a computer intensive procedure.
We report in Table IV some accuracy values from other
automated segmentation methods. Most of these require
some operator input to indicate the location of the hippo-
campus. Our relative error value is comparable with these
studies, though our overlap ratio is somewhat lower.
Apart from Duchesne et al. (2002) they all have a relatively
low number of subjects in the validation. A strength of our
validation is that we included a large number of subjects
picked at random from a population including mostly
individuals with dementia.

The grey/white matter segmentation and spatial normal-
ization in our method are likely to be useful steps in any
further analysis, e.g. voxel based morphology [Good et al.,
2002] and the additional processing to obtain hippocampal
volumes from the normalized segmented images is very
short (1 min).

We demonstrated that identifying grey matter within a
hippocampal ROI improves the accuracy of the hippo-

Figure 5.
Some examples of misclassified tissue. On the left, sagittal views
showing amygdala pixels included in the hippocampus region. On
the right, coronal views showing non grey matter tissue included
in the hippocampus region. The region of misclassified tissue is
shown with an arrow.
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Figure 6.
Plot of manual versus automated left hippocampus volume. The
diagonal solid line is the identity line, and the dashed line the
regression V, = V., X 0.84 + 417.

campal segmentation, particularly in terms of the accu-
racy of the volume measurement. The hippocampus does
of course contain a small proportion of white matter, and
our method may remove some of this from the hippo-
campal ROIL. However, the improvement to the hippo-
campal segmentation from removing nonhippocampal
white matter outweighs this small loss.

As would be expected, the segmentation was better in
the control group, since controls have less atrophy. The
MNI 152 average brain was generated from scans of young
individuals who have little atrophy, and given this, the
method works remarkably well in this population includ-
ing mostly patients with degenerative dementias. An
advantage of the MNI template is that the results are
repeatable across different cohorts or centres. We investi-
gated the use of a custom template from an age matched
cohort, and did not find improvement. This may be

because although the hippocampus is atrophied in demen-
tia, its location within the brain and hence relative to the
MNI template is not changed. Also the atrophy process
results in an increase of CSF, which is relatively easy to
identify on T1 weighted scans.

The success of the method depends upon the global
grey/white matter segmentation. Our data were collected
at 1.0 Tesla. It is likely that the improved contrast to noise
on more modern MRI scanners will lead to improved seg-
mentation. In principle, this method could be used for the
determination of any grey matter regional volume (e.g., ba-
sal ganglia) by having a suitable ROI in MNI space. Other
approaches to segmentation, e.g., utilizing multiple image
sequences or segmentation techniques which do not rely
on prior probabilities, and hence are more generalizable to
individuals with abnormal brains may bring about
improvement in the method.

The Recall was 0.75 for the hippocampal ROI before
masking with the grey matter segmentation, indicating
that 75% of the manually drawn hippocampus ROI was
within the ROI in MNI space. After extracting the grey
matter from the ROI, the recall only decreased to 0.70 sug-
gesting that not much of the true hippocampus was
removed by the grey matter segmentation step. The preci-
sion for the Alzheimer’s group was significantly lower
than the controls, indicating that in that group a greater
proportion of extra-hippocampal matter was falsely put
into the ROL This is not surprising given the tissue dam-
age to the medial temporal region in AD. The lower Preci-
sion in the AD group is consistent with the regression
slope implying that the automated segmentation overesti-
mates volume for small hippocampi. This is likely to
reduce somewhat the difference between groups in mea-
sured hippocampal volume and may decrease the statisti-
cal significance of studies comparing hippocampi with the
method.

In summary, we have described and validated a fully
automated and quick method using freely available soft-
ware for determining hippocampal volume in a group of
people with dementia. The method may be of utility in
large scale studies of hippocampal atrophy in dementia
as it provides a rapid technique with acceptable
accuracy.

TABLE IV. Similarity index and relative error of manual and automated methods of hippocampus segmentation
from different methods

Similarity Relative
Reference Examined group Operator interaction index error
[Hogan et al., 2000] 5 young adults with 20 landmarks manually placed 75 10
temporal sclerosis
[Shen et al., 2002] 10 subjects aged 55-85 50 landmarks manually placed 88 6
[Fischl et al., 2002] 7 young adults None mentioned 80 10
[Duchesne et al., 2002] 70 normal subjects None 68 —
[Chupin et al., 2007] 8 Alzheimer’s disease Box around structure 84 9

and 2 seeds
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