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Abstract: Functional magnetic resonance imaging (fMRI) suffers from many problems that make signal
estimation difficult. These include variation in the hemodynamic response across voxels and low sig-
nal-to-noise ratio (SNR). We evaluate several analysis techniques that address these problems for
event-related fMRI. (1) Many fMRI analyses assume a canonical hemodynamic response function, but
this assumption may lead to inaccurate data models. By adopting the finite impulse response model,
we show that voxel-specific hemodynamic response functions can be estimated directly from the data.
(2) There is a large amount of low-frequency noise fluctuation (LFF) in blood oxygenation level de-
pendent (BOLD) time-series data. To compensate for this problem, we use polynomials as regressors
for LFF. We show that this technique substantially improves SNR and is more accurate than high-pass
filtering of the data. (3) Model overfitting is a problem for the finite impulse response model because
of the low SNR of the BOLD response. To reduce overfitting, we estimate a hemodynamic response
timecourse for each voxel and incorporate the constraint of time-event separability, the constraint that
hemodynamic responses across event types are identical up to a scale factor. We show that this tech-
nique substantially improves the accuracy of hemodynamic response estimates and can be computed
efficiently. For the analysis techniques we present, we evaluate improvement in modeling accuracy via
10-fold cross-validation. Hum Brain Mapp 29:142-156, 2008.  ©2007 Wiley-Liss, Inc.
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INTRODUCTION

Event-related functional magnetic resonance imaging
(fMRI) experimental designs offer several important
advantages over block designs: more efficient estimates of
the timing and shape of the hemodynamic response
(HDR), increased flexibility in experimental design and
analysis, and reduction of anticipation and adaptation
effects [Josephs and Henson, 1999; Zarahn et al., 1997a].
However, event-related fMRI has reduced statistical power
for detecting signal activations [Liu, 2004]. In addition,
event-related fMRI increases the complexity of the data
and the assumptions underlying the data analysis (e.g.
temporal linearity of the BOLD response). It is therefore
critical to maximize precision and accuracy in the analysis
of event-related fMRI data.

In this study we address three problems in the analysis
of event-related fMRI data. Many of the specific techniques
we present have been published previously. The goal of
the present study is to evaluate rigorously and systemati-
cally the value of these techniques, applied in concert, on
empirical data. We emphasize cross-validation predictive
performance as an objective metric for quantifying model
accuracy. (This is in contrast to such metrics as reproduci-
bility and statistical significance, which are important but
not directly related to model accuracy.) We also emphasize
single voxel modeling, which is likely to become increas-
ingly important as the spatial resolution and signal-to-
noise ratio (SNR) of fMRI improve.

One problem in event-related fMRI analysis is variation
in the HDR across voxels [Aguirre et al., 1998; Hand-
werker et al., 2004; Miezin et al., 2000; Neumann et al.,
2003; Saad et al., 2001]. Although the assumption of a ca-
nonical HDR function (HRF) is common in fMRI analyses,
this assumption may lead to incorrect data inferences
[Burock and Dale, 2000, Handwerker et al., 2004]. We
avoid the assumption of an a priori HRF by adopting the
framework of the finite impulse response (FIR) model
[Dale, 1999]. Under the FIR model, a HDR is estimated for
each voxel to each event type, and there is no constraint
on the shape of the responses.

A second problem is the large amount of low-frequency
noise fluctuation (LFF) in blood oxygenation level depend-
ent (BOLD) time-series data [Aguirre et al., 1997; Purdon
and Weisskoff, 1998; Zarahn et al., 1997b]. LFF has been
attributed to scanner and physiological noise [Smith et al.,
1999; Zarahn et al., 1997b]. We compensate for LFF by
using polynomials [Liu et al., 2001] as regressors for the
baseline signal level, i.e. the signal level associated with
the absence of the stimulus. We show that this technique
improves the SNR and is more accurate than high-pass
filtering of the time-series data. Moreover, we show that
polynomials can produce more accurate results than Fou-
rier basis functions.

A third problem is model overfitting. Overfitting tends
to occur when a model has a large number of parameters
relative to the amount of available data. To reduce overfit-

ting by the FIR model, we incorporate the constraint of
time-event separability. This is the constraint that HDR esti-
mates across event types are identical up to a scale factor,
and is reasonable for many experimental paradigms. In a
related study, Hinrichs et al. [2000] confirmed increased
estimation efficiency under the time-event separable
model. We extend their results by demonstrating a simple,
fast method for fitting the time-event separable model and
by confirming improved cross-validation predictive per-
formance.

We evaluate the proposed analysis techniques on empir-
ical data. These data were obtained from occipital cortex
during brief presentations of a checkerboard pattern at
different locations in the visual field. Data from this
experiment are especially useful for methodological devel-
opment, because the stimulus is tightly controlled, the
SNR is robust, and the data are richly structured. In addi-
tion, the sheer number of activated voxels makes it easy to
discern population effects. To maximize precision, we ana-
lyze the data at the single voxel level, with no spatial
smoothing or spatial averaging. We also summarize results
from data involving other stimulus designs.

MATERIALS AND METHODS
Stimulus

The stimulus design was similar to that of a previous
study from our laboratory [Hansen et al., 2004]. The stimu-
lus consisted of a 7.5-Hz contrast-reversing checkerboard
pattern presented within 12 wedges of 30° polar angle
width (Fig. 1). The pattern had a radial spatial frequency

trial (4 s)

trial (4 5)
time

4

trial (4 s)
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L]
Figure 1.
Schematic of visual stimulus. The stimulus consisted of a 7.5-Hz
contrast-reversing checkerboard pattern presented within 12
wedges in the visual field. A cyclically shifted binary m-sequence
controlled the presentation timing for each wedge. Each trial
lasted 4 s, and there were 255 consecutive trials. For data analy-
sis we define 12 event types, one event type per wedge.
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of 12 cycles per revolution and was scaled with eccentric-
ity. At any given time, the pattern was presented within
each wedge at 0% (OFF) or 99% (ON) Michelson contrast.
The presentation timing was controlled by an m-sequence
of level 2, order 8, and length 2° — 1 = 255. The m-
sequence was cyclically shifted by 21 elements to produce
the ON-OFF pattern for each wedge. The bin duration of
the m-sequence was 4 s, and the total stimulus duration
was 255 trials x 4 s = 17 min. For each wedge, there was
a total of 128 ON states and 127 OFF states. The minimum,
maximum, and mean stimulus onset asynchrony for a
given wedge was 4 s, 32 s, and 8 s, respectively.

The use of an m-sequence minimizes correlations
between wedges and enables efficient estimation of HDRs
[Buracas and Boynton, 2002; Liu, 2004]. m-Sequences have
been used in other fMRI studies [de Zwart et al., 2005;
Hansen et al.,, 2004; Kellman et al.,, 2003]. Code for m-
sequence generation was provided by T. Liu (http://fmri-
server.ucsd.edu/ttliu/mttfmri_toolbox.html).

The stimulus was displayed by an Epson PowerLite
7700p LCD projector (Epson America, Long Beach, CA) fit-
ted with a custom zoom lens (Buhl Optical, Rochester,
NY). The image was focused onto a semitranslucent back-
projection screen (Aeroview 100 material, Stewart
Filmscreen, Torrance, CA). The subject viewed the screen
via a first-surface mirror. The viewing distance was 38 cm,
and the stimulus subtended 20° x 20° of visual angle. An
occluding device prevented the subject from seeing the
unreflected image of the screen. During stimulus presenta-
tion, the subject performed a change detection task at a
central fixation dot (the mean interval between changes
was 2 s). An optical button response box (Current Designs,
Philadelphia, PA) recorded subject responses.

The projector operated at a resolution of 1,024 x 768 at
60 Hz. Luminance output was measured using a Minolta
LS-110 photometer (Konica Minolta Photo Imaging, Mah-
wah, NJ), and the luminance response was linearized via a
lookup table. The mean luminance of the stimulus was
~550 cd/m?. The stimulus was time-locked to the projector
refresh rate and synchronized to scanner data acquisition.
A Macintosh PowerBook G4 computer (Apple Computer,
Cupertino, CA) controlled stimulus presentation and
logged button responses, using software written in MAT-
LAB 5.2.1 (The Mathworks, Natick, MA) and Psychophy-
sics Toolbox 2.53 [Brainard, 1997; Pelli, 1997].

Data Collection

The experimental protocol was approved by the UC
Berkeley Committee for the Protection of Human Subjects.
MRI data were collected at the Brain Imaging Center at
UC Berkeley using a 4 T INOVA MR scanner (Varian, Palo
Alto, CA) with a whole-body gradient set capable of
35 mT/m with a rise time of 300 ps (Tesla Engineering,
Sussex, UK). A curvilinear quadrature transmit/receive
surface coil (Midwest RF, LLC, Hartland, WI) was posi-
tioned over the occipital pole for enhanced MR SNR. Head

motion was minimized with foam padding. Manual shim-
ming of the magnetic field was used to improve image
quality and reduce image distortion.

Coronal slices covering occipital cortex were selected: 16
slices, slice thickness 1.8 mm, slice gap 0.2 mm, field-of-
view 128 x 128 mm?, matrix size 64 x 64, and nominal re-
solution 2 x 2 x 2 mm?>. For BOLD data, a T2*-weighted,
single-shot, slice-interleaved, gradient-echo echo planar
imaging (EPI) sequence was used: TR 1 s, TE 0.028 s, flip
angle 20°. An initial dummy period was included to allow
magnetization to reach steady-state.

During stimulus presentation, the first eight trials were
repeated after the end of the 255-trial sequence. BOLD
data were collected up through the last trial, and data col-
lected during the initial 8 s x 4 s = 32 s were ignored
[Kellman et al., 2003]. This strategy avoids potential atten-
tional artifacts at the beginning and end of stimulus pre-
sentation, compensates for the delay in the HDR, and
allows complete sampling of the m-sequence.

Data Preprocessing

A nonlinear phase correction was applied to the image
data to reduce Nyquist ghosts and image distortion. Dif-
ferences in slice acquisition times were corrected via sinc
interpolation. To compensate for slow changes in head
position, SPM99 motion correction was performed with the
following modification: motion parameter estimates were
low-pass filtered at 1/20 Hz to remove high-frequency
modulations caused by signal activations [Freire and
Mangin, 2001]. No additional spatial or temporal filtering
was applied.

FIR Model

Our analysis approach is based on the FIR model for
event-related fMRI [Dale, 1999]. Our earlier reverse corre-
lation approach [Hansen et al.,, 2004] is a special case of
the FIR model, applicable when stimulus events are uncor-
related.

In the FIR model, the BOLD signal is assumed to be a
linear, time-invariant system with respect to the stimulus.
A HDR is estimated for each stimulus event type using a
set of shifted delta functions as regressors. No assumption
on the shape of HDRs is made. Additional regressors are
used to model the baseline signal level, i.e. the signal level
associated with the absence of the stimulus. The model
characterizes two types of effects in the data: stimulus
effects consist of the transient HDRs to stimulus events,
and nuisance effects consist of the persistent baseline signal
level that may vary over time.

Let e be the number of event types, I be the number of
time points in one HDR, m be the number of nuisance
terms, and t be the number of time-series data points. The
time-series data are modeled as y=Xh+Sb+n, where y is
the data (t x 1), X is the stimulus matrix (¢t x el), h is the
concatenation of the HDR associated with each event type
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Figure 2.

Schematic of data models. (A) Stimulus matrix X (FIR model).
The matrix dimensions are 1,020 time points x 252 parameters.
The matrix is the concatenation of the stimulus convolution ma-
trix for each of the |2 event types. The stimulus convolution
matrix for a given event type consists of shifted versions of a bi-
nary sequence, where ones indicate event occurrences. There
are 21| shifts, one shift for each time point in the HDR estimate.
The inset (upper-left) depicts an enlarged view of the parameters
for the first two event types. (B) Nuisance matrix S (polynomial
version). The matrix dimensions are 1,020 time points x 5
parameters. The matrix consists of Legendre polynomials of

(el x 1), S is the nuisance matrix (f x m), b is a set of nui-
sance parameters (m x 1), and n is a noise term (f x 1).
The stimulus matrix is the concatenation of the stimulus
convolution matrix for each event type. The stimulus con-
volution matrix for a given event type consists of shifted
versions of a binary sequence, where ones indicate event
occurrences (Fig. 2). Stimulus effects are given by Xh, and
nuisance effects are given by Sb.

For our data, there are a total of 1,020 time-series data
points (t = 1,020). We define 12 event types, one event type
per wedge (e = 12). We treat the ON state (99% contrast) of
a wedge at the beginning of a trial as an event occurrence.
We estimate a HDR of duration 20 s for each event type
(I = 21). The baseline signal level is the signal level associated
with viewing the fixation dot against the gray background.

Modeling LFF

We evaluate several versions of the FIR model. These
versions differ in how they compensate for LFF.

In the simple version of the FIR model, LFF is ignored
and nuisance matrix S consists of only a constant term.

degrees 0 through 4. The inset (upper-left) depicts the polyno-
mials in a line format. (C) Convolution of stimulus matrix X,
and time kernel k (time-event separable model). The matrix
dimensions are 1,020 time points x |2 parameters. Stimulus ma-
trix Xz (1,020 x 12) consists of one parameter for each of the
12 event types. The parameter for a given event type is a binary
sequence, where ones indicate event occurrences. Time kernel
k (21 x 1) is a voxel-specific response timecourse estimated
from the data. The inset (upper-left) depicts an enlarged view of
the parameters for the first two event types. The inset (left)
depicts the time kernel in a line format.

This constant term characterizes the baseline signal level
as a DC offset in the time-series data. HDR estimates
obtained under this version of the FIR model will be poor
if the magnitude of LFF is large. This is because LFF adds
noise to the time-series data.

One strategy for compensating for LFF is to include in
nuisance matrix S regressors that model the timecourse of
LFF. This strategy enables the modeled baseline signal
level to vary over time. Fourier basis functions are com-
monly used as regressors; in this case, the nuisance matrix
consists of a constant term and a set of sine and cosine
functions. A different choice of regressors is a set of poly-
nomials of increasing degree (Fig. 2). We use Legendre
polynomials [Liu et al., 2001] which are pairwise orthogo-
nal. Equivalent model fits can be obtained with other sets
of polynomials (e.g., 1, t, *, etc.) that span the same sub-
space as Legendre polynomials.

Another strategy for compensating for LFF is to detrend
the time-series data as a preprocessing step [Kruggel et al.,
1999; Marchini and Ripley, 2000; Skudlarski et al., 1999;
Tanabe et al., 2002]. We use a high-pass filtering technique:
we first remove a linear trend to avoid wrap-around
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effects and then high-pass filter the data. On the filtered
data, we fit the simple version of the FIR model in which
nuisance matrix S consists of a constant term.

Time-Event Separable Model

The FIR model uses a large number of parameters to
characterize stimulus effects. In our case, there are (¢ = 12) x
(I = 21) = 252 parameters in stimulus matrix X and only
1,020 data points. Given the limited amount of data avail-
able in a typical fMRI experiment, the FIR model risks
overfitting the data.

To reduce the number of model parameters, we incorpo-
rate the constraint of time-event separability. This is the
condition that HDR estimates across event types are iden-
tical up to a scale factor. (More loosely, time-event separa-
bility is the condition that the shape of the HDR is the
same for any event type.) Under the time-event separable
model, stimulus effects are characterized by a single
response timecourse—the time kernel—and an amplitude
value for each event type. The HDR to an event type is the
product of the time kernel and the amplitude value associ-
ated with the event type.

The time-series data are modeled as y=(X;*k)h,+Sb+n,
where X, is the stimulus matrix (tf x e), k is the time kernel
(I x 1), » represents convolution, h, is a set of event ampli-
tudes (¢ x 1), and S, h, and n are as in the FIR model. The
stimulus matrix consists of one parameter for each event
type. The parameter for a given event type is a binary
sequence, where ones indicate event occurrences (Fig. 2).
Stimulus effects are given by (X;*k)h,, and nuisance effects
are given by Sb.

For our data, the time-event separable model uses (I =
21) + (e = 12) = 33 parameters to characterize stimulus
effects. This is much fewer than the 252 parameters used
in the FIR model.

Model Fitting

We fit the FIR mpdel by obtaining the ordinary least-

squares estimate g] = (WTW)_ley where W=[X S].

This produces ﬁ, a set of HDR estimates, and l:.o, a set of

nuisance parameter estimates.

We fit the time-event separable model using two differ-
ent methods. In the first method (SEPNL), we use an itera-
tive fitting approach [Hinrichs et al., 2000]. We estimate the
time kernel, event amplitudes, and nuisance parameters
using nonlinear least-squares optimization (MATLAB Opti-
mization Toolbox, Levenberg-Marquardt method). This
method determines all model parameters simultaneously,
minimizing the squared error between the model fit and
the data. A disadvantage of the iterative fitting method is
that it is computationally intensive—the method may be
impractical given that thousands of voxels are analyzed in
a typical fMRI experiment. Also, the fitting method may
converge to a local minimum of the error function.

In the second method for fitting the time-event separable
model (SEPSVD), we estimate the time kernel before the
other model parameters. This approach avoids iterative
computation but may not produce an optimal model fit (in
the least-squares sense). The method proceeds as follows.
We obtain HDR estimates h from the FIR model. We
reshape h into a matrix with rows corresponding to event
types and columns corresponding to time points (e x I).
We perform singular value decomposition on this matrix
to obtain the singular vector associated with the largest
singular value. This vector is the I-dimensional vector along
which variance in h is maximized; this is the time kernel esti-
mate k. (Another way to conceptualize k is as the [-dimen-
sional vector that best reconstructs h in the least-squares
sense.) Using k, we obtain the ordinary least-squares esti-

mate HSZ = (W'W) 'WTy where W = [(xz*f()s}. This

produces h,, a set of event amplitude estimates, and B, a
set of nuisance parameter estimates. Note that the time
kernel estimate is based on the FIR model fit. Thus, over-
fitting by the FIR model has some effect on the time kernel
estimate. In practice, however, the SEPSVD method per-
forms quite well (see Results).

To obtain standard errors on the parameter estimates of a
model, we use a nonparametric jackknife procedure [Efron
and Tibshirani, 1993]. We randomly divide the time-series
data points into 10 subsets and fit the model 10 times, each
time with a different subset excluded. (To exclude data
points, we delete rows of y and the corresponding rows of X,
S, and X, *k.) Standard errors are calculated from the distri-
butions of parameter estimates across the 10 model fits.

To quantify the amplitude of a HDR, we sum over a
time window corresponding to the peak of the positive
BOLD response [de Zwart et al., 2005]. (For our data, we
use the time window of 3-7 s based on inspection of HDR
estimates across voxels and event types (Fig. 3).) We
quantify the SNR of an event type as the absolute value of
the HDR amplitude divided by the standard error of the
HDR amplitude. (The standard error is calculated via a
jackknife procedure; see earlier.) We quantify the SNR of a
voxel as the maximum SNR achieved over all event types.
We calculate percent BOLD change relative to the DC pa-
rameter estimate (i.e. the parameter estimate for the con-
stant term included in the nuisance matrix).

In one instance we use an alternative SNR metric, which
we denote by SNR,;. This metric is useful for comparing
the SNR of different models. For a given voxel, we calcu-
late the maximum absolute HDR amplitude (MAX)
obtained under any of the models. We then quantify the
SNR,;; for each model as MAX divided by the median
standard error on HDR amplitudes across events. This
metric prevents variability in HDR amplitude estimates
from influencing SNR values.

Note that the SNR metrics described earlier are similar
to the conventional t-statistic. Thus, one can interpret
changes in SNR in terms of statistical significance and
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normalized BOLD signal
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time relative to event onset (s)
Figure 3.

Inspection of HDR estimates across voxels and event types.
Using the POLY model (FIR model combined with polynomials),
we obtained for each voxel an estimate of the HDR to each of
the 12 event types. The figure depicts positive HDR estimates
with a SNR of at least 30 (n = 216 from 212 unique voxels).
The x-axis indicates time relative to event onset; the y-axis indi-
cates the BOLD signal. For display purposes, each HDR estimate
is normalized by dividing by its maximum value. The inset indi-
cates the median standard error for the depicted data points.
The robustness of the shapes of the timecourses indicates the
high SNR in the data, despite the small voxel size (2 mm) and
the moderate amount of data (17 min).

effect size. For example, suppose we wish to detect a sig-
nal change whose magnitude is four times the magnitude
of the noise, given a fixed amount of data. At an a value
of 0.001 and 9 degrees of freedom (10 jackknifes were
taken), the power to detect such a change is 0.23. With a
50% increase in SNR, the power to detect such a change
increases to 0.87.

To quantify the magnitude of LFF, we calculate the me-
dian absolute deviation (relative to the mean) of the time
points of the estimated nuisance effects. We convert the
raw BOLD units to standard deviation units, where one
standard deviation unit equals the standard deviation of
the time-series data with the nuisance effects subtracted.
We define the resulting quantity as the LFF magnitude
index. Intuitively, this index quantifies the typical deviation
of the baseline signal level over the course of the time-
series. For example, a value of 0.4 indicates that, on aver-
age, the baseline signal level is 0.4 standard deviation units
away from the mean baseline signal level.

Model Evaluation

We quantify the fit accuracy of a model as the coefficient
of multiple determination (R?) between the data and the
model fit to the data. This value is the amount of variance
in the data explained by the model fit.

When comparing models, an improvement in fit accu-
racy could reflect improvement in model accuracy, but
could also reflect model overfitting. To measure the accu-

racy of a model while controlling for overfitting, we use a
nonparametric n-fold cross-validation procedure where
n = 10. We randomly divide the time-series data points
into 10 subsets. We exclude one subset and fit the model
on the remaining data points. (To exclude data points, we
delete rows of y and the corresponding rows of X, S, and
X, * k.) We use the obtained model parameter estimates to
predict the data in the excluded subset. The process is
repeated 10 times, such that each subset is excluded once.
We thereby obtain a prediction for each data point. We
quantify the prediction accuracy of a model as the coefficient
of multiple determination (R?) between the data and the
model prediction of the data. This value is the amount of
variance in the data explained by the model prediction.
The prediction accuracy of a model is how well the model
generalizes to new data, i.e. data not used in the fitting of
the model.

LFF often dominate the variance in the time-series data.
In these cases, the coefficient of multiple determination is
artificially high (e.g., > 0.9) and reflects primarily how
well LFF is modeled. To obtain a prediction accuracy metric
that reflects strictly how well stimulus effects are modeled,
we perform the following procedure. We subtract the pre-
dicted nuisance effects from both the original data and the
model prediction. We then calculate the coefficient of mul-
tiple determination between the adjusted data and
adjusted prediction. We define the resulting value as the
LFF-adjusted prediction accuracy. (Because the predicted
nuisance effects are only estimates and not the true nui-
sance effects, the metric is potentially biased. However, we
observe the same trends in model performance with either
prediction accuracy metric.)

In the present context, the coefficient of multiple deter-
mination (R?) directly quantifies how well a given model
explains the observed data. Reporting R> values is not
common in the literature [one exception is Razavi et al.,
2003]. When comparing models with respect to R* values,
a difference of 1-2% can be considered a small effect, a
difference of 5% can be considered a moderate effect, and
a difference of 10% can be considered a large effect.

Additional Data Sets

We also collected data sets using different subjects,
imaging parameters, and stimulus designs. From the per-
spective of the present study, there is no specific motiva-
tion for the particular characteristics of these other data
sets. The purpose of these additional data sets is to show
that results are not specific to a particular experiment.

Data set 1 is the primary data set described earlier, and
involved subject KH (an author). Data set 2 involved sub-
ject KK (an author), a volume coil, a two-shot EPI
sequence (TR 1 s per shot), and a 3 x 3 x 3 mm? voxel
size. The stimulus was the same as in data set 1.

Data set 3 involved subject TN and a 2 x 2 x 2.5 mm’
voxel size. The stimulus consisted of achromatic sinusoidal
gratings of eight different orientations. One trial consisted
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TABLE I. Summary of data models

Model Stimulus effects Nuisance effects
DC Finite impulse response Constant term
FOURIER Finite impulse response Constant term, sine and
cosine functions with 1, 2, and 3 cycles
POLY Finite impulse response Polynomials of degrees 0 through 4
FILTER Finite impulse response Constant term, after removing a linear
trend and high-pass filtering at 1/60 Hz
SEPNL Time-event separable, Polynomials of degrees 0 through 4
iterative fitting method
SEPSVD Time-event separable, Polynomials of degrees 0 through 4

singular value decomposition
fitting method

This table lists how each model characterizes stimulus effects (i.e. hemodynamic responses to stim-
ulus events) and how each model compensates for nuisance effects (i.e. the baseline signal level).

of the presentation of a grating for 1 s followed by 3 s of a
gray background. The eight orientations were repeated 15
times each, and the presentation order was randomly cho-
sen. The stimulus alternated between 16-s periods during
which a gray background was presented and 80 s periods
during which trials were presented. The stimulus duration
was 9.9 min. For data analysis we used eight event types,
one event type for each grating orientation.

Data set 4 involved subject TN and a 2 x 2 x 2.5 mm’
voxel size. The stimulus consisted of 12 grayscale natural
photos. One trial consisted of the presentation of a photo
for 1 s followed by 3 s of a gray background. Each photo
was repeated 13 times; the presentation order was con-
trolled by an m-sequence of level 13, order 2, and length
13> — 1 = 168. The stimulus duration was 11.2 min. For
data analysis we used 12 event types, one event type for
each distinct photo.

RESULTS

We collected data using multiple subjects, imaging pa-
rameters, and stimulus designs. Our analysis results were
largely consistent across data sets. In this section we pres-
ent in-depth results for a single data set (Figs. 1-8), indi-
cate which results were variable in other data sets, and
summarize results for all data sets (Fig. 9).

Basic Data Inspection

We conducted an event-related fMRI experiment involv-
ing brief (4 s) presentations of a checkerboard pattern
within 12 wedges in the visual field (Fig. 1). Our analysis
approach is based on the FIR model for event-related fMRI
[Dale, 1999]. We define 12 event types, one event type per
wedge. For each voxel, a HDR to each of the 12 event
types is estimated using a set of shifted delta functions.
No assumption on the shape of HDRs is made. Additional
regressors are used to model the time-varying baseline sig-
nal level (Fig. 2).

We obtained strong BOLD activations in occipital cortex.
Figure 3 depicts positive HDR estimates obtained under
the POLY model (Table I) with a SNR of at least 30. (This
strict criterion selects only those estimates that are nearly
noise-free.) The robustness of the shapes of the time-
courses confirms the high SNR in the data, despite the
small voxel size (2 mm) and the moderate amount of data
(17 min). The high SNR is due to the high magnetic field
(4 T), the use of a surface coil, the use of an experienced
fMRI subject, the m-sequence experimental design, and the
high-contrast visual stimulus.

Compensation for LFF

We evaluated several strategies for compensating for
LFF in the time-series data. (1) The DC model ignores LFF
and uses only a constant term to model DC offset. (2) The
FOURIER model uses a constant term and Fourier basis
functions with 1, 2, and 3 cycles to model LFF. (3) The
POLY model uses Legendre polynomials of degrees 0
through 4 to model LFF. (The spectral content of these
polynomials approximately match those of the Fourier
basis functions.) (4) The FILTER model removes a linear
trend and high-pass filters the time-series data at 1/60 Hz
as a preprocessing step.

Panel A of Figure 4 shows that the POLY model greatly
increased prediction accuracy compared to the DC model
(median increase 14.8%; P < 0.001). This indicates ignoring
LFF resulted in model fits with poor generalizability. This
also indicates that a substantial amount of LFF exists in
the time-series data.

Panel B of Figure 4 shows that the POLY model some-
what increased prediction accuracy compared to the
FOURIER model (median increase 2.3%; P < 0.001). This
indicates that polynomials more accurately characterized
LFF compared to Fourier basis functions. However, in
other data sets, the POLY and FOURIER models had com-
parable performance (Fig. 9).

Panel C of Figure 4 shows the POLY model substantially
increased LFF-adjusted prediction accuracy compared to
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Figure 4.

Modeling LFF with polynomials maximizes prediction accuracy. In
these graphs we compare different strategies for LFF compensa-
tion (Table 1). For each graph, we selected voxels with a mini-
mum SNR of 10 under either of the models being compared.
Each point in a graph represents prediction accuracy for a single
voxel. (A) DC vs. POLY. The x- and y-axes indicate prediction
accuracy under the DC and POLY models, respectively. There
was a large increase in accuracy under the POLY model com-
pared to the DC model (n = 1904; median increase 14.8%; P <
0.001). This indicates that ignoring LFF resulted in model fits
with poor generalizability, and that a substantial amount of LFF
exists in the time-series data. Some voxels exhibited very large
increases in prediction accuracy; in these cases, the contribution
of LFF to variance in the time-series data is much larger than

the FILTER model (median increase 6.5%; P < 0.001). The
use of the LFF-adjusted prediction accuracy metric (see
Methods) ensures that increased accuracy under the POLY
model is not simply due to the modeling of LFF. The
result indicates that stimulus effects were better character-
ized when polynomials were used to model LFF compared
to when the time-series data were high-pass filtered to
remove LFF. (We also evaluated the FILTER model using
a frequency cutoff of 1/500 Hz; compared to this model,
the POLY model still provided a median increase of 2.8%
LFF-adjusted prediction accuracy.)

Characteristics of LFF

We investigated in more detail the timecourses of LFF.
Panel A of Figure 5 illustrates the effect of manipulating
the maximum degree of the polynomials included in the
POLY model. Dramatic increases in LFF-adjusted predic-
tion accuracy were obtained by increasing the maximum
degree from 0 (median accuracy 5.8%) to 4 (median accu-
racy 10.8%). Polynomials with degree greater than 4 only
marginally increased accuracy; moreover, these increases
were inconsistent across voxels (data not shown). Panel A
also illustrates the effect of maximum polynomial degree
on the SNR. Substantial increases in SNR were obtained
by increasing the maximum degree from 0 (median SNR

the contribution of stimulus effects. (B) FOURIER vs. POLY. The
x- and y-axes indicate the prediction accuracy under the FOU-
RIER and POLY models, respectively. There was a small increase
in accuracy under the POLY model compared to the FOURIER
model (n = 1,971; median increase 2.3%; P < 0.001). This indi-
cates polynomials more accurately characterized LFF compared
to Fourier basis functions in this data set. (C) FILTER vs. POLY.
The x- and y-axes indicate the LFF-adjusted prediction accuracy
under the FILTER and POLY models, respectively. There was a
large increase in accuracy under the POLY model compared to
the FILTER model (n = 1,880; median increase 6.5%; P < 0.001).
This indicates that stimulus effects were better characterized
when polynomials were used to model LFF compared to when
the time-series data were high-pass filtered to remove LFF.

9.4) to 3 (median SNR 11.6), beyond which SNR did not
increase appreciably.

Panel B of Figure 5 depicts the spectral content of
Legendre polynomials of degrees 0 through 4. These poly-
nomials consist predominantly of very low frequencies (0-
0.004 Hz). With each additional polynomial degree, higher
frequencies in the time-series data can be modeled. Panel
C of Figure 5 illustrates several example LFF timecourses.
Note that the shape and magnitude of LFF vary across
voxels.

We quantified the magnitude of LFF with the LFF mag-
nitude index. The index quantifies the typical deviation of
the baseline signal level over the time-series data, and is in
standard deviation units (see Methods). The 25th and 75th
percentiles of the index are 0.18 and 0.57, respectively.
(These percentiles were calculated for voxels with a mini-
mum SNR of 10 under the POLY model.) This indicates
that noise due to LFF accounts for a substantial fraction of
the variation in the time-series data.

Overfitting by the FIR Model

Overfitting tends to occur when a model has a large
number of parameters relative to the amount of available
data. Two lines of evidence show that the FIR model suf-
fers from overfitting.
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Characteristics of LFF (A) The effect of the maximum polynomial
degree on model performance. VWe manipulated the maximum degree
of the polynomials included in the POLY model (x-axis) and evaluated
the effect on LFF-adjusted prediction accuracy (y-axis; red line) and
SNR (y-axis; green line). For this graph we selected voxels with a
minimum SNR of 10 under any of the model variants (n = 2,890). Dots
indicate the median across voxels, and error bars indicate * | SE (boot-
strap procedure). With increasing polynomial degree, both LFF-
adjusted prediction accuracy and SNR dramatically increased. (B) Spec-
tral content of Legendre polynomials of degrees O through 4. The
polynomials extend over the course of the time-series data (17 min).

The specific HDR window used in the FIR model substan-
tially affected the quality of model fits. Panel A of Figure 6
shows that fit accuracy monotonically increased with
window duration. This reflects the fact that, with a longer

A

We calculated the discrete Fourier transform of each polynomial after
applying a Hanning window to avoid edge artifacts and subtracting the
mean value. The correlation (y-axis) between the time-series data and
the Fourier component at each frequency (x-axis) is plotted. For display
purposes the zero-frequency point is omitted. Note that the polyno-
mials consist predominantly of very low frequencies (0-0.004 Hz). (C)
Example timecourses of LFF. For 25 voxels we plot nuisance effects as
determined under the POLY model. These voxels were randomly
selected from voxels with a minimum SNR of 10 (n = 1,730). The x-axis
indicates time; the y-axis indicates standard deviation units (see Meth-
ods). For display purposes, the mean of each timecourse is removed.

window duration, additional model parameters are available
to fit the data. However, prediction accuracy did not monot-
onically increase, but was maximized at a duration of 9 s.
This indicates that on average, estimating HDRs beyond 9 s
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Figure 6.

Overfitting by the FIR model. We manipulated two characteristics
of the POLY model (Table I) and evaluated the effect on fit accu-
racy (gray line) and prediction accuracy (black line). For these
graphs we selected voxels with a minimum SNR of 10 under the
POLY model (n = 1,730). Dots indicate the median across voxels,
and error bars indicate *1 SE (bootstrap procedure). (A) The
effect of HDR window duration on fit accuracy and prediction ac-
curacy. The x-axis indicates the HDR window duration used in the
model; the y-axis indicates explained variance. Prediction accuracy
was maximized at a duration of 9 s. This indicates that, on average,
estimating HDRs beyond 9 s resulted in overfitting and reduced
model generalizability. (B) The effect of the number of event types

on fit accuracy and prediction accuracy. Based on SNR estimates
obtained under the POLY model, we refit the model including only
the top event types with respect to SNR. (Because different voxels
respond to different event types, the included event types varied
on a voxel-by-voxel basis.) The x-axis indicates the number of event
types; the y-axis indicates explained variance. Prediction accuracy
was maximized at three event types. This indicates that, on aver-
age, estimating more than three event types resulted in overfitting
and reduced model generalizability. This result is explained by the
fact that voxels in visual cortex are often highly selective for spatial
position, in such a way that stimuli positioned at nonpreferred loca-
tions produce no discernable activation.
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resulted in overfitting and reduced model generalizability.
This result is consistent with the observation that HDRs
have mostly died off by 9 s after event onset (see Fig. 3).

The number of event types included in the FIR model
also substantially affected the quality of model fits. We
evaluated variants of the model in which only the
top event types with respect to SNR are included. (The top
event types were determined on a voxel-by-voxel basis.)
Panel B of Figure 6 indicates that fit accuracy monotoni-
cally increased with number of event types. This reflects
the fact that, with more event types, additional model pa-
rameters are available to fit the data. However, prediction
accuracy did not monotonically increase, but was maxi-
mized at three event types. This indicates that on average
estimating more than three event types resulted in overfit-
ting and reduced model generalizability. This result is
explained by the fact that voxels in visual cortex are often
highly selective for spatial position, in such a way that
stimuli positioned at nonpreferred locations produce no
discernable activation.

Time-Event Separability

To reduce overfitting by the FIR model, we incorpo-
rated the constraint of time-event separability. Under the
time-event separable model, stimulus effects are charac-
terized by a single response timecourse—the time ker-
nel—and an amplitude value for each event type (Fig. 2).
This reduces the number of model parameters that need
to be estimated. We evaluated two methods for fitting the
time-event separable model, SEPNL and SEPSVD (see
Methods).

Panel A of Figure 7 shows that the SEPSVD model
greatly increased LFF-adjusted prediction accuracy com-
pared to the POLY model (median increase 9.9%; P <
0.001). This indicates that voxel responses were largely
time-event separable, and that time-event separability
improved the accuracy of HDR estimates. Panel B of Fig-
ure 7 shows that the SEPNL model slightly increased LFF-
adjusted prediction accuracy compared to the SEPSVD
model (median increase 0.5%; P < 0.001). This indicates
that the two fitting methods produced very similar results.
However, in one of the other data sets, the SEPNL model
performed substantially better than the SEPSVD model
(Fig. 9).

The incorporation of time-event separability also
increased the SNR. We selected voxels with a minimum
SNR of 10 under either the POLY or SEPSVD model. Of
these voxels, the median SNR,j; for the POLY model was
14.3, while the median SNR,;; for the SEPSVD model was
15.5. This increase was statistically significant (P < 0.001).

Example Voxels

We have presented population results thus far, but it is
also useful to inspect results for individual voxels. Panels
A-E of Figure 8 show model parameter estimates for a
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Figure 7.

Time-event separability reduces overfitting and increases predic-
tion accuracy. In these graphs we compare the FIR model to the
time-event separable model (Table I). Each point in a graph rep-
resents prediction accuracy for a single voxel. (A) POLY vs.
SEPSVD. The x- and y-axes indicate the LFF-adjusted prediction
accuracy under the POLY and SEPSVD models, respectively. The
graph depicts voxels with a minimum SNR of 10 under either
data model (n = 1,884). There was a large increase in accuracy
under the SEPSVD model compared to the POLY model (median
increase 9.9%; P < 0.001). This indicates that voxel responses
were largely time-event separable, and that time-event separabil-
ity improved the accuracy of HDR estimates. (B) SEPSVD vs.
SEPNL. The x- and y-axes indicate the LFF-adjusted prediction
accuracy under the SEPSVD and SEPNL models, respectively.
The graph depicts voxels with a minimum SNR of 10 under the
POLY model (n = 1,730). There was a tiny increase in accuracy
under the SEPNL model compared to the SEPSVD model
(median increase 0.5%; P < 0.001). This indicates that the singu-
lar value decomposition fitting method compared favorably
against the iterative fitting method in this data set.

typical voxel. Notice the DC model produced very noisy
HDR estimates; the FILTER model produced HDR esti-
mates considerably different from those produced by other
models; and the SEPSVD model produced the most accu-
rate HDR estimates. Panel F of Figure 8 depicts the spec-
tral content of stimulus effects for the voxel. Notice power
is distributed over a wide range of frequencies. Panel G of
Figure 8 shows model parameter estimates for another typ-
ical voxel. Again, the SEPSVD model produced the most
accurate HDR estimates.

Model Performance Summary

Figure 9 summarizes the LFF-adjusted prediction accu-
racy of the data models we evaluated, and includes results
from additional data sets. Across four data sets, the same
basic trend in accuracy was observed: the SEPNL and
SEPSVD models were the most accurate, the FOURIER
and POLY models were moderately accurate, and the DC
and FILTER models were the least accurate.

There were two interesting anomalies. First, whereas the
POLY model outperformed the FOURIER model for data
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Figure 8.

Comparison of data models for two typical voxels in occipital cortex.
Panels A—F depict one voxel, and panel G depicts a second voxel. In
panels A-E and G, the main axes show HDR estimates for the 12
event types. The x-axis indicates time relative to event onset; the y-axis
indicates percent BOLD change. A thick black horizontal line indicates
zero percent BOLD change. Error bars indicate * | SE (jackknife pro-
cedure). Indicated in parentheses is the LFF-adjusted prediction accu-
racy, which is calculated via 10-fold cross-validation. The inset axes
above the main axes depict the time-series data (red line) and nuisance
effects (green line). (A) DC model. This model ignores LFF and uses
only a constant term to characterize the baseline signal level. Under
this model, HDR estimates were very noisy and prediction accuracy
was poor. (B) FOURIER model. This model uses a constant term and
Fourier basis functions with |, 2, and 3 cycles to model LFF. Compared
to the DC model, HDR estimates were less noisy and prediction accu-
racy was better. Note that the nuisance effects poorly track the time-
series data at the beginning and end of the time-series. (C) POLY
model. This model uses polynomials of degrees 0 through 4 to model
LFF. Compared to the FOURIER model, HDR estimates were slightly
less noisy and prediction accuracy was better. Notice the nuisance

effects track the time-series data well. The LFF magnitude index is
0.87. (D) FILTER model. This model high-pass filters the time-series
data at 1/60 Hz to remove LFF as a preprocessing step. The filtered
data are shown in red in the inset (above). HDR estimates were con-
siderably different from those obtained under other data models. (E)
SEPSVD model. This model incorporates the constraint of time-event
separability and uses polynomials of degrees 0 through 4 to model LFF.
Time-event separability is the condition that HDR estimates across
event types are identical up to a scale factor. Prediction accuracy was
highest under the SEPSVD model. The LFF magnitude index is 0.86.
(F) Spectral content of stimulus effects. VWWe obtained the estimated
timecourse of stimulus effects under the SEPSVD model. We calcu-
lated the discrete Fourier transform of this timecourse after sub-
tracting the mean value. The correlation (y-axis) between the time-
series data and the Fourier component at each frequency (x-axis) is
plotted. For display purposes the zero-frequency point is omitted.
Note that the power is distributed over a wide range of frequencies.
(G) Comparison of data models for a second voxel. The format is
identical to that of panels A—E, except that the y-axis ranges from —3
to 7. Again, the SEPSVD model had the highest prediction accuracy.
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Figure 9.

Summary of data model performance. This graph summarizes
results from four data sets involving different subjects, imaging
parameters, and stimulus designs: the primary data set (illus-
trated in Figs. |-8) and three additional data sets. For each data
set, we selected voxels (n = 2,223, 699, 236, 825, respectively)
passing 2 minimum SNR threshold (= 10, 10, 7, 10, respectively)
under any of the models that do not involve iterative fitting (this
excludes the SEPNL model). (The SNR threshold is lowered for
data set 3 due to low signal in that data set.) The x-axis indicates
the data models we evaluated; and the y-axis indicates the LFF-
adjusted prediction accuracy. The height of each bar indicates
the median across voxels, and the bar shading indicates the data
set. Error bars indicate = | SE (bootstrap procedure). The same
basic trend in performance was observed across the four data
sets: the SEPNL and SEPSVD models were the most accurate,
the FOURIER and POLY models were moderately accurate, and
the DC and FILTER models were the least accurate.

set 1 (see also Fig. 4), the two models had similar perform-
ance in other data sets. The only difference between the
two models is the choice of regressors for LFF. The vari-
able results across data sets suggest that LFF characteris-
tics are dependent on the subject, imaging parameters,
and/or stimulus design.

Second, whereas in data sets 1-3, the SEPNL and
SEPSVD models had similar performance, in data set 4,
the SEPNL model substantially increased accuracy com-
pared to the SEPSVD model (median increase across vox-
els 5.4%; P < 0.001). The reason for the large but inconsis-
tent increase in accuracy under the SEPNL model is an
issue for further investigation. We speculate that the vari-
able results may be due to strong temporal nonlinearities
in data set 4.

DISCUSSION

Linearity Assumptions

The FIR and time-event separable models assume that
the BOLD response is a linear, time-invariant system with
respect to the stimulus. However, violations of time-invari-
ance have been widely documented [Boynton et al., 1996;

Buxton et al., 2004; Dale and Buckner, 1997; Friston et al.,
2000b; Glover, 1999; Huettel and McCarthy, 2001; Logothe-
tis, 2003; Miezin et al., 2000; Wager et al., 2005]. In general,
the response to an event closely preceded by another event
has a greater delay and lower amplitude than expected.
This temporal nonlinearity may be neural in origin (e.g.
adaptation) and/or related to the coupling between neural
activity and the BOLD response [Bandettini et al., 2002;
Birn et al., 2001; Boynton and Finney, 2003; Huettel et al.,
2004; Janz et al., 2001; Ogawa et al., 2000].

We dampened the impact of temporal nonlinearities in
our experimental design by the use of a 4-s bin duration.
This is because deviations from linearity are large only at
short-stimulus durations [Birn et al., 2001; Boynton et al.,
1996; Pfeuffer et al., 2003; Vazquez and Noll, 1998].
Whereas the response to a moderate-length stimulus (4 s)
well predicts the response to a longer stimulus (8 s), the
response to a short stimulus (1 s) poorly predicts the
response to a longer stimulus (2 s). It may be possible to
devise models to account for temporal nonlinearities when
they exist [Friston et al., 2000b; Wager et al., 2005].

Our experimental design involves simultaneous presen-
tation of different event types (i.e. multiple wedges in the
visual field at any given time). The primary purpose of si-
multaneous presentation is to increase the number of event
repetitions and thereby increase the SNR. Note that both
the FIR and time-event separable models assume that the
BOLD response is additive across events: that is, the
response to events presented simultaneously is equal to
the sum of the responses to the events presented in isola-
tion. The validity of this assumption depends on the ex-
perimental paradigm [Hansen et al.,, 2004]. However, the
analysis techniques we present are not specific to experi-
mental designs using simultaneous event presentation.

Low-Frequency Fluctuation

We found that using polynomials to model LFF resulted
in more accurate HDR estimates than those obtained with
other strategies. We used an event-related experimental
design, and our study complements studies that investi-
gated LFF for block designs [LaConte et al., 2003; Razavi
et al., 2003].

The poor performance of high-pass filtering is explained
by the fact that stimulus effects in our data exist at low
frequencies. High-pass filtering removes LFF but also
removes a portion of the stimulus effects [Kruggel et al.,
1999; Ollinger et al.,, 2001; Skudlarski et al., 1999; Smith
et al.,, 1999]. Moreover, the removal of stimulus effects
induces bias in HDR estimates (Fig. 8). Detrending techni-
ques (of which high-pass filtering is one instance) are
appropriate only when stimulus effects can be assumed to
be absent at low frequencies (e.g. a periodic ON-OFF
block experimental design).

Using regressors to model LFF is not equivalent to
removing these regressors from the time-series data before
fitting the data model [Liu et al., 2001]. The latter is effec-
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tively a detrending technique. As such, it neglects potential
correlation between stimulus effects and the regressors
that are removed. Detrending may also increase autocorre-
lation in the noise component of the time-series data, and
thereby decrease the validity of a model that assumes
uncorrelated noise [Razavi et al., 2003]. It is necessary to
fit both stimulus effects and nuisance effects simultane-
ously in order to estimate the individual contributions of
these two effects at low frequencies.

We found that a set of polynomials of degrees 0 through
4 modeled LFF well. Most of the spectral power in these
polynomials is between 0 and 0.004 Hz (for a 17-min data
set). Because the 1-Hz data sampling rate is sufficient for
characterizing the respiratory cycle (~0.25 Hz), it is
unlikely that LFF reflects respiration-related noise. How-
ever, the 1-Hz data sampling rate is insufficient for charac-
terizing the cardiac cycle (~1 Hz), and so aliasing of car-
diac-related signals could be contributing to LFF. Measure-
ment of the cardiac cycle during data acquisition could
perhaps be used to improve modeling of the time-series
data. However, there is some evidence that LFF is domi-
nated by nonphysiological factors such as scanner instabil-
ity [Smith et al., 1999].

Including polynomials of higher degree increased pre-
diction accuracy, but only marginally and inconsistently.
This indicates that the magnitude of LFF at higher fre-
quencies was relatively small, and that including addi-
tional polynomials risked overfitting. Tailoring the number
of polynomials on a voxel-by-voxel basis is a possible
strategy.

In our data, the baseline signal level is generally not the
same at the beginning and at the end of the time-series
data. This is one reason that Fourier basis functions, which
are periodic, did not model LFF as well as polynomials in
data set 1. However, the characteristics of LFF may be spe-
cific to the experimental setup [Aguirre et al., 1997; Purdon
and Weisskoff, 1998; Zarahn et al., 1997b]. It is therefore
necessary to evaluate different models for LFF on a case-
by-case basis (Fig. 9).

A different way to approach the problem of LFF is to
focus on the autocorrelation in the noise in BOLD time-se-
ries data [for reviews, see Bullmore et al., 2001; Friston
et al., 2000a]. Prewhitening strategies have been proposed
for obtaining estimates under the general linear model that
have less variance than ordinary least-squares estimates
[Bullmore et al., 1996; Burock and Dale, 2000; Friman
et al., 2004; Locascio et al., 1997; Marchini and Ripley,
2000; Purdon and Weisskoff, 1998; Woolrich et al., 2001;
Worsley et al., 2002]. The addition of prewhitening to the
use of regressors for LFF may result in further improve-
ments in SNR and prediction accuracy.

Time Kernel Estimation

The time kernel for a voxel can be viewed as a voxel-
specific HRF. The technique of time kernel estimation
occupies a middle ground between assuming a canonical

HRF and making no assumption about the shape of HDRs
(FIR model). In the first case, the shape of the HDR is
assumed to be known, and the only free model parameters
are the amplitude for each event type. Overfitting is
unlikely because there are few model parameters, but
model accuracy is suboptimal because of variation in HDR
shape across voxels. In the second case, a separate HDR is
estimated for each event type, resulting in many free
model parameters. Variation in HDR shape can be
accounted for, but model accuracy is suboptimal because
of overfitting. By estimating a time kernel, we greatly
reduce the number of free model parameters, but still
make no assumption about the shape of the HDR across
voxels.

Increased prediction accuracy under the time-event sep-
arable model is contingent on the degree to which voxel
responses are in fact time-event separable. The large
increase in prediction accuracy in our data indicates that
voxel responses were largely time-event separable, but
does not necessarily imply complete separability. Time-
event separability likely holds in many experimental para-
digms. Because the BOLD response temporally blurs
underlying neural activity, we expect time-event separabil-
ity to hold whenever the timescale of neural activity is
roughly the same across event types.

In some experimental paradigms, we may expect aspects
of the HDR timecourse (e.g. onset, width) to vary across
event types. For example, we might expect the delay of the
neural activity in a voxel to be dependent on the level of
difficulty of a cognitive task. In such a case, we would
expect the onset of the HDR timecourse to vary across
easy and hard instances of the task. The assumption of
time-event separability would be inappropriate for such
experimental paradigms.

Overfitting and Regularization

The FIR model substantially overfitted our data, produc-
ing HDR estimates that had suboptimal prediction accu-
racy. Overfitting is a substantial problem for event-related
fMRI because of the low SNR of the BOLD response and
the large number of parameters necessary to accommodate
variations in the shape of the HDR.

Overfitting by the FIR model can be reduced by tailoring
the HDR window or by modeling only a subset of the
event types. However, the optimal HDR window and sub-
set of event types for a given voxel may not generalize to
other voxels. Searching for the optimal parameters on a
voxel-by-voxel basis is computationally impractical.

A practical solution to overfitting by the FIR model is to
incorporate the constraint of time-event separability. This
constraint greatly reduces the number of model parame-
ters—in our case, the number of model parameters is
reduced from 252 to 33. Note that the time-event separable
model does not have any additional descriptive power
compared to the FIR model: any set of HDRs that can be
characterized by the time-event separable model can also
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be characterized by the FIR model. Thus, we can view
time-event separability as a means of regularizing the FIR
model. (Regularization refers to techniques that attempt to
improve prediction accuracy by introducing a specific bias
to model parameter estimates.)

Other regularization techniques are possible and are not
mutually exclusive to time-event separability. They include
fitting a parametric function, such as a vy function, to HDR
estimates [Boynton et al., 1996; Cohen, 1997; Glover, 1999];
incorporating temporal basis set restrictions or other priors
into the FIR model [Burock and Dale, 2000; Dale, 1999;
Goutte et al., 2000]; and incorporating constraints on the
spatial pattern of signal activations [Katanoda et al., 2002;
Kiebel et al., 2000; Kruggel et al., 1999; Purdon et al,
2001]. If these techniques are used, it is important to verify
that they improve prediction accuracy.
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