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Abstract: In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibil-
ity between the different machines used. We tested the compatibility of five different scanners (2 General
Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans
of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and
SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1-only), we obtained volume meas-
urements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our
results suggest that pooling of multisite data adds small error for whole brain measurements, intersite
coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occi-
pital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite,
intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods
should be used because they yield more consistent volume measurements between sites than T1-only,
especially when some of the scans were obtained with different sequence parameters and pixel size from
those of the other sites. Our study shows that highest compatibility among scanners would be obtained
using equipments of the same manufacturer and also image acquisition parameters as similar as possible.
After validation, data from a specific ROI or scanner showing values markedly different from the other
sites might be excluded from the analysis. Hum Brain Mapp 30:355–368, 2009. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

The study of structural changes associated with psychi-
atric and neurological disorders often requires measure-
ments to be made repeatedly over long periods of time,
frequently on large samples of individuals [Evans, 2002].
Low prevalence of some diseases sometimes makes it
impossible to collect appropriate sample sizes from a sin-
gle institution, leading to an increasing need to use MRI
data from multiple sites to achieve larger sample sizes.
Nowadays, longitudinal studies are particularly prone to
the problem of combining data from different scanners
because of the frequent updates in medical equipment.
While this frequent renewal favors the use of newer explo-
ration techniques in research, it makes it very likely that
scanner facilities will not be the same at baseline and at
follow-up. Consequently, there is increasing interest in the
assessment of the reproducibility and compatibility be-
tween MRI machines.
The bias introduced by combining data obtained at dif-

ferent clinical sites and thus under different technical con-
ditions is largely unknown. Some of the possible sources
of error involved in the analysis of multisite data are dif-
ferent acquisition parameters, uneven technical capabilities
of MRI systems from different manufacturers, and the
intersite differences among segmentation protocols for the
quantitative analysis of images [Tofts, 1998].
Few studies have investigated the repeatability of multi-

center analysis. One way of circumventing discordance in
the measurements obtained at different sites is the optimi-
zation and calibration of the quantitative analysis to
increase the congruence of the data obtained from each
site. The rationale for such a calibration process is to
explore combinations of parameters that yield the maxi-
mum correspondence in the segmentation and quantifica-
tion of image data [Schnack et al., 2004; van Haren et al.,
2003]. However, the search for congruent multicenter
measurements may produce the unwanted effect of
spreading inaccurate measurements obtained from the ref-
erence scanner [Tofts, 1998]. Thus, multisite calibration
involves a trade-off between intersite reproducibility and
accuracy (closeness to the truth, lack of systematic error).
Despite the potential gain in compatibility among scan-
ners, a suboptimal result of the segmentation process for
one site might increase the overall error of volume quanti-
fication.
When choosing the most suitable method for tissue seg-

mentation, it is of great interest to assess the compatibility
of the data in a multisite setting. A recent study [Styner
et al., 2002] explored intersite and intrasite variability to
test whether manual or automatic segmentation methods
were more repeatable. The study recommended the use of
multimodal data for tissue segmentation and automated
rather than manual methods, concluding that the variabili-
ty of tissue volumes was always larger between sites than
within sites [Styner et al., 2002]. The material used in Sty-
ner’s study consisted of MRI acquisitions from a single

subject, repeated on one scanner to estimate intrasite vari-
ability, and also in four other centers to evaluate intersite
variation. However, using a single subject may lead to
underestimation of intersite differences because of the
enormous variability of the human brain, i.e., we may
overlook the effect of overall brain size or shape differen-
ces, and maybe constrain segmentation algorithms to pro-
vide an optimal result for a particular brain [Tofts, 1998].
An estimation of the intersite variability of volumetric

measurements is warranted in multicenter studies, and
should be made not only for total brain volumes but also
for the ROI measurements of gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF) used in morpho-
metric research. On the other hand, multicenter studies do
not necessarily have to follow a previously accepted scan-
ning protocol, and it is possible that the decision to com-
bine data is made after the data has been collected. Thus,
a study of multicenter variability including sites with the
same or different manufacturers, and running the same or
different acquisition parameters will provide valuable in-
formation about the sources and magnitude of error of
pooling data from various sites.
Our goal was to estimate the differences between volu-

metric MRI measurements obtained from different scan-
ners and to evaluate the effect of pooling data in a joint
multicenter analysis. Estimation of overall variability
across sites was made using data from five subjects
scanned at five different sites. To be representative of a
typical clinical study of brain volumetry, regional data
were obtained for the main brain lobes and tissue types.
This paper is motivated by the possibility of undertaking a
multicenter project incorporating some of the institutions
that participated in this study.

SUBJECTS AND METHODS

Design

The study is based on data from five volunteers scanned
once at five different scanners. The whole data set was col-
lected within one-year and the average time between scans
per subject was 1.5 months. Five different scanning facili-
ties were included in the study, two Siemens Symphony,
two General Electric Signa, and a Philips ACS Gyroscan
(Table I). Data were collected from each site and processed
at one site. A geometric phantom was also scanned to dis-
card potential geometric distortions. The study was
approved by the Ethics Committee of the coordinating
institution.

Subjects

Five healthy volunteers, two females (mean age 5 40.2
years; SD 5 5.9; range 5 31–45 years), were enrolled in
the study. All subjects were aware of the study purpose
and nature and agreed to participate by signing a written
informed consent.
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MRI Acquisition Protocol

Two MRI sequences were acquired for each subject, a
T1-weighted 3D gradient echo and a T2-weighted Turbo-
Spin Echo. All scans were obtained in axial orientation
and using the quadrate head coil. Neither parallel imag-
ing (SENSE, iPAT, ASSET) sequences nor multichannel
coils were used in any of the sites. By default, GE scan-
ners have the gradient linearity correction filter activated,
and thus, scans from GE sites were acquired with this
parameter. Full details about the acquisition parameters
for each site are provided in Table I.
Scans were not performed with identical sequence pa-

rameters at each site because of the differences between
the manufacturers and the acquisition software. Even
in the case of scanners of the same model (GE and
Siemens), the standard protocols for each radiology
department differed because of local preferences, and the
acquisition parameters were not identical. Although this
difference reduces the overall reproducibility of the
whole segmentation protocol, our interest was to take
advantage of the ongoing longitudinal studies initiated at
each site, as long as the contrast and resolution of the
images were reasonably similar. On the other hand, hav-
ing a nonunique combination of parameters allows evalu-
ation of the effect of differences in sequence parameters
on the similarity of volumetric data. Image similarity
between scanners in terms of contrast and resolution was
fairly good, as visually assessed, and in terms of con-
trast-to-noise ratio. Contrast-to-noise ratio was computed
as the difference in mean pixel intensity values between
GM and WM divided by the pooled standard deviation
of GM and WM pixels in the whole brain (Fig. 1, Table I).
Because our calculation of contrast-to-noise ratio requires
segmented images, we show two sets values, one for
multimodal, and one for T1-only data (Table II). High
values of this ratio indicate high contrast and better
image resolution in terms of gray levels.

Geometric Phantom

A simple phantom was built using a series of glass
capillaries set along the three axis (length, width, height)
and immersed in water (full details under request). T1
images of the geometric phantom were acquired at each
site with the same parameters used for the brain MRI
(Table I). Our main interest was to verify that there was
no geometrical bias between the scanners rather than
evaluating the intrinsic accuracy of the MRI systems.
Twelve linear distances along the major axes (width,
length, height) were measured on each phantom image
(ranging from 60 to 170 mm). The intersite geometric
error was measured for each of the 12 distances as the
average root mean square (RMS) error between scanners.
By obtaining intersite RMS values for each distance
(phantom dimensions), we were able to assess the
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possible existence of a directional bias because of a higher
distortion in a specific direction in space.

Segmentation and ROI Definition

MRI images were processed using locally developed
software incorporating a variety of image processing and
quantification tools [Desco et al., 2001]. The intracranial
volume (ICV) mask was obtained from the T2-weighted
image by using manually supervised region growing tools.
The resulting mask was registered to the T1-weighted
image and edited when necessary. To obtain volume mea-
surements of the main brain lobes, we used a method for
semiautomated segmentation of the brain based on the
Talairach proportional grid system [Andreasen et al., 1996;
Kates et al., 1999]. Basically, a two-step procedure was fol-
lowed [Desco et al., 2001]. First, an initial segmentation of
cerebral tissues into GM, WM, and CSF was obtained
using Statistical Parametric Mapping (SPM) routines (see
later). Second, the Talairach grid was built on the edited
brain MRI by manually selecting the position of the ante-
rior and posterior commissures (AC, PC) and a third point
in the mid-sagittal plane. The coordinates of these points

serve to calculate the transformation (rigid rotation)
required to comply with the Talairach orientation: the
plane of the AC-PC as the axial horizontal plane, and the
interhemispheric plane as the vertical axis [Talairach and
Tournoux, 1988]. Then, our application automatically finds
the outer brain limits in Talairach orientation, and 3D
grids are built for each brain. The Talairach grid obtained
in this way represents a piecewise linear transformation
and a tessellation of the brain into a 3D grid of 1,056 cells
representing homologous brain regions across subjects
[Talairach and Tournoux, 1988]. The ROI measurements
were obtained by superimposing the 3D tissue masks cor-
responding to GM, WM, and CSF onto each subject’s
Talairach reference grid, where the regions of interest were
defined as sets of Talairach grid cells [Andreasen et al.,
1996; Kates et al., 1999]. Volume for each tissue type
was measured on this MRI by summing up the data from
the Talairach grid cells associated with each ROI [Desco
et al., 2001]. The validity of the Talairach-based procedure
as an automated segmentation and quantification tool
suitable for volumetric studies has already been proven
[Andreasen et al., 1996; Kates et al., 1999] and has also
been used in other multicenter studies [Patwardhan et al.,

Figure 1.

Zoomed section of an axial view of the same subject scanned at

five different centers, to illustrate qualitative differences of MRI

and of tissue segmentation. Top: Results of tissue segmentation,

using T1-only or T1 and T2 data; tissue types are color coded:

GM 5 red; WM 5 white; CSF 5 cyan. Bottom: MR scans. Scans

were all registered to the image obtained with the Philips

scanner. Note that the segmentation of WM and GM tissue

seems more accurate in multimodal segmentation because the

cortex distribution along the sulci and gyri looks more realistic,

whereas the higher volumes of CSF obtained using T1 and T2

segmentation seem to arise from an exaggeration of sulcal spaces.
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2001]. In our implementation, all manual procedures were
performed by a single operator blind to the origin of each
scan, thus avoiding any potential interrater variability.

Regions of Interest

The analysis included total volumes of GM, WM, and
CSF, as well as ROIs comprising the frontal, parietal, tem-
poral, and occipital lobes, defined using the boundaries for
the Talairach method described elsewhere [Andreasen
et al., 1996; Kates et al., 1999]. To simplify the analysis, all
the ROIs were measured bilaterally, adding right and left
values. ICV was measured by adding total GM, WM, and
CSF volumes, including the cerebellum.

Tissue Segmentation

Segmentation of cerebral tissues was obtained by means
of an automated method included in the SPM program
[Ashburner and Friston, 1997, 2000]. The method performs
a cluster analysis on the likelihood of each MRI voxel
being one of four tissue types—GM, WM, CSF, and ‘‘other
tissues"—using a modified mixture model and a priori in-
formation. This a priori information is provided as ana-
tomical templates that represent an ‘‘average’’ brain and
offer information on the spatial distribution of the different
brain tissues. Two different tissue segmentation proce-
dures were tested, with the aim of obtaining maximum
compatibility among scanners: single-modality (T1) and
multimodal (T1 and T2) segmentation. For multimodal
segmentation, T2 images were coregistered and resliced to

the T1 images. This registration was made by using mu-
tual information methods [Collignon et al., 1995] and tri-
linear interpolation, which are available in our software
tool for medical image processing [Desco et al., 2001].
The SPM algorithm for tissue segmentation includes a

method to eliminate the effect of radiofrequency field inho-
mogeneities [Ashburner and Friston, 2000]. This method
for bias field inhomogeneity correction has proven to be
very robust [Gispert et al., 2004b] and it was used in both
protocols single-modality (T1) and multimodal (T1 and
T2). Volume masks resulting from tissue segmentation
were combined with the skull-stripped ICV masks ob-
tained using the T2 scan and later registered to the T1
image. Finally, the ICV masks containing the three tissue
maps were checked for inconsistencies and manually cor-
rected whenever necessary (i.e., isolated pixels classified as
GM but located off from the sulcal CSF were excluded
from the intracranial mask) by an experienced radiologist
blind to the origin of each scan.

Measurement of Intersite Variability

We used the coefficient of variation (CV) as a measure-
ment of intersite repeatability of ROI volumes [Styner
et al., 2002] under the assumption that, for each subject,
low CV between scanners would imply high similarity of
volume measurements obtained at each scanner. Thus,
average of the five CV from each subject would serve as
an indicator of overall dispersion and similarity in volume
measurements between scanners. The CV is computed by

TABLE II. Volume data (Mean, SD) for contrast-to-noise ratios (CNR), intracranial volume (ICV),

and whole brain GM, WM, and CSF measured at each site for the sample of five subjects and using two

tissue segmentation methods (see Methods)

GE_1 GE_2 PHILIPS SIEMENS_1 SIEMENS_2
Intersite

CV
% Diff

max–min
Effect size
max–min ICCMean SD Mean SD Mean SD Mean SD Mean SD

ICV (cc) 1,422 113 1,448 118 1,443 97.7 1,469 90.6 1,479 102 1.9 3.9 0.3 (0.2)a 0.991
T1 and T2 Segm.
CNRi 2.01 0.09 1.91 0.08 1.80 0.08 1.66 0.07 0.68 0.09
GM (cc) 719.2 80.4 728.5 63.7 727.5 56.7 737.4 46.3 762.4 70.6 3.0 5.8 0.4 (0.1) 0.979
WM (cc) 413.0 36.7 413.9 48.5 434.6 41.0 453.5 52.8 425.8 35.1 4.7 9.3 0.7 (0.1) 0.980
CSF (cc) 290.1 24.6 305.8 41.8 281.6 20.7 278.1 20.5 291.3 23.0 5.6 9.5 0.7 (0.4) 0.900
GM (%) 50.5 2.2 50.3 1.8 50.4 1.0 50.2 0.6 51.5 1.5 1.8 2.6 1.0 (0.1) 0.899
WM (%) 29.1 1.9 28.5 1.6 30.1 1.1 30.8 1.8 28.8 0.6 4.6 7.8 1.2 (0.3) 0.777
CSF (%) 20.5 1.8 21.2 2.6 19.6 1.7 19.0 2.1 19.8 2.1 5.2 10.9 0.8 (0.3) 0.956

T1 Segm.
CNRi 2.17 0.12 2.08 0.08 2.03 0.04 2.04 0.09 1.08 0.16
GM (cc) 784.9 79.5 807.4 67.4 777.7 64.0 779.5 59.0 747.3 55.2 3.3 7.7 0.8 (0.3) 0.984
WM (cc) 400.0 36.7 399.5 44.0 431.0 41.1 439.1 53.4 481.8 50.2 8.2 18.7 1.5 (0.1) 0.981
CSF (cc) 233.6 16.6 240.3 29.8 232.4 24.1 250.0 22.9 250.3 23.1 6.4 7.4 0.6 (0.3) 0.836
GM (%) 55.3 1.7 55.8 1.1 54.3 1.1 52.9 1.0 50.5 0.7 4.1 10.0 5.1 (0.3) 0.821
WM (%) 28.2 1.7 27.6 1.2 29.5 1.1 30.0 1.8 32.5 1.6 7.2 16.3 3.1 (0.4) 0.803
CSF (%) 16.5 1.4 16.6 2.0 16.2 2.1 17.1 2.5 17.0 1.9 5.2 5.4 0.3 (0.1) 0.940

Intersite CV: average of within subject coefficients of variation between scanners: % Diff max–min: percentage difference between maxi-
mum and minimum values among scanners; Effect size max–min: Cohen’s effect size coefficient measuring the magnitude of the differ-
ences between the maximum and minimum values among scanners; ICC: intraclass correlation coefficient.
a Values in parentheses are Cohen’s effect size coefficient of the differences between GE_1 and GE_2 only.
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dividing the standard deviation by the mean, which, in
our case, required the estimation of the pooled standard
deviation and the grand mean of the five subjects meas-
ured in the five scanners. This was done by calculating the
average intrasubject variance for the five subjects (between
scanners) and dividing the square root of this by the over-
all grand mean volume of the five subjects in all scanners.
The average within-subject variance for our five subjects in
the five scanners equals the mean square of the residual
term in a one-way ANOVA, using the scanner as the main
factor [Bland and Altman, 1996].

Measurement of Intrasite Variability

Unfortunately, it was not possible to obtain repeated
scans within sites. To partially overcome this limitation,
we used data from another investigation on the impact of
various sources of error on volumetric measurements,
which included a larger (n 5 12) sample of images [Gis-
pert, 2003; Gispert et al., 2004a, 2005]. The data were
obtained from subjects other than those used for the multi-
center study, but the scanner was the same Philips Gyro-
scan ACS and the ROI and tissue segmentation and quan-
tification procedures were the same as for the multicenter
study. Two intrasite sources of error were measured in
this set of 12 images (four subjects): image data acquisition
(subject positioning in the scanner), and manual interven-
tion during the segmentation method [Gispert, 2003; Gis-
pert et al., 2004a, 2005]. Image data acquisition error (sub-
ject positioning in the scanner) was estimated by obtaining
three repeated scans of four subjects in the scanner. To
assess manual intervention error, five scans within the
sample of 12 images were selected and the whole segmen-
tation procedure was repeated by the same radiologist.
Manual procedures included the selection of the anterior
and posterior commissures, and the supervision of auto-
mated algorithms (tissue segmentation) and processing
tools (ICV mask from the T2-weighted image using region
growing tools). This manipulation was performed by a sin-
gle radiologist blind to the origin of the images. In both
intrasite sources of error, volume data were obtained for
each set of images and overall CV for each ROI was calcu-
lated using the same procedure as for the intersite data
(see earlier). Concerning the SPM tissue segmentation algo-
rithm, repeatability values in terms of variability due to
repeats relative to variability among scans (ICC) ranged
from 95 to 99% for total volumes of GM and WM, and
from 89 to 99% in CSF [Agartz et al., 2001; Chard et al.,
2002; Gispert et al., 2004a, 2005].

Statistical Analysis

The analysis of differences between sites for each vol-
ume variable was made by a one-way ANOVA model
using site as the between-group factor. A repeated meas-
ures ANOVA model might also have been appropriate,
considering scanner as the repeated-measures factor. How-

ever, in our study, a simple ANOVA yields the same
results as the repeated model because of the lack of covari-
ance structure (no expected pattern of correlations among
repeated measures) in our repeated factor (scanner) [Littell
et al., 1998]. Whenever the ANOVA indicated that signifi-
cant differences were present, a post-hoc test (Sidak) was
performed, to identify the two extreme pair of sites show-
ing significant differences. To assess the magnitude of the
differences between maximum and minimum values, we
calculated the effect-size using Cohen’s D coefficient (dif-
ference between maximum and minimum values divided
by the pooled standard deviation), adjusted for sample
size (Hedge’s g). Calculation of effect size for volumetric
measurements provided a benchmark for intersite differen-
ces that could be compared with patient–control differen-
ces reported in the literature. Repeatability between scan-
ners was also estimated by the intraclass correlation coeffi-
cient (ICC) using the Shrout and Fleiss formulae [Shrout,
1998] and considering our five scanners as the whole pop-
ulation of machines. This statistic has been used in other
multicenter studies, and in our case provides a ratio of
between scanner variation relative to within scanner (sub-
jects).
Because our study focused on assessing interscanner

variability, it was important to have the least possible
intersubject variation (within scanner). To minimize this
variation due to differences in brain size (up to 8.2% in
GE_2, Table II), we adjusted volume measurements in
such a way that ROI data were expressed as ratios to total
ROI volume (GM 1 WM 1 CSF in each lobe), whereas
whole brain GM, WM, and CSF measures were divided by
ICV. To have a better appraisal of the changes in absolute
volumes in cc, the results for global GM, WM and CSF
measures are given both in absolute volumes and as ratios
(Table II). In neurodegenerative processes, normalization
of data as a percentage of the corresponding total ROI vol-
ume, instead of whole brain (ICV), is expected to be more
informative about localized volumetric changes than abso-
lute data [Cannon et al., 1998]. Statistics were performed
using SAS 9.1 (SAS Institute, Durham, NC).

RESULTS

Geometric Distortion

Linear measurements obtained from the five phantom
images showed high similarity between scanners, suggest-
ing that intersite bias due to geometric distortions was
unnoticeable. Mean RMS difference between distances
measured in phantom images from the five scanners was
0.64 mm, i.e., below the spatial resolution of the brain
images acquired (voxel size of �1 3 1 3 1 mm3, Table I).
Of the distances measured in the phantom, the maximum
RMS among scanners was 1.3 mm, which represents 1.6%
of the mean distance measured (80.2 mm). No particular
distribution of intersite differences among the distances
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was observed, thus ruling out any directionality in the
geometric distortion.

Differences Between T1-Only and T1 and T2

Tissue Segmentation

Volume data obtained using multimodal (T1 and T2) tis-
sue segmentation were more consistent across sites than
those obtained using single-modality (T1) MRI data. Val-
ues of intersite CV, percentage difference, and effect size
between maximum and minimum values were higher for
T1-only segmentation than for T1 and T2 (Table II). Using
T1-only data, the two Siemens scanners showed a charac-
teristic bias overestimating WM and underestimating GM,
relative to the other scanners (Table II, Figs. 1 and 2).
However, this bias was unnoticeable when using multimo-
dal data. The main differentiation between the results
obtained with each segmentation method was a reduction
in GM and an increase in CSF in the multimodal data
(Table II, Figs. 1 and 2).
Effect sizes measured between maximum and minimum

volumes of the five scanners also suggested higher com-

patibility between sites (lower effect size) when using T1
and T2 data (Table II). For whole brain GM (%), effect size
was as much as five times higher using T1-only (Table II).
However, the values of effect size obtained from both seg-
mentations are very similar when comparing data from
the two GE sites, which used similar acquisition parame-
ters; the range obtained being 0.1 to 0.4, instead of 0.3 to
5.1 for all five machines (Table II). Thus, results of the
multimodal imaging may be equal to the T1-only when
the same scanner brand and nearly identical parameters
are used. If we measure repeatability in terms of ICC, both
single and multimodal segmentations show similar values,
thus indicating overall good agreement between sites
(Table II).
Contrast-to-noise ratios were similar among subjects and

for most scanners except for the SIEMENS_2, which
showed a 50% lower value than in the other sites (Table II).
To asses the effect of contrast-to-noise ratios on the tissue
segmentation results, values were plotted against GM/
WM ratio, which is a structural parameter that remains
fairly constant across subjects. This graph shows that using
T1 and T2 data, contrast-to-noise has no effect on the

Figure 2.

Plots showing the volumetric measure-

ments obtained at each site using T1 and

T2 (light, dashed line) and T1-only

(black, solid line) tissue segmentation

(see Methods for details). Bars represent

1 SD around the mean. Lines join within

site mean values. Left column: Whole-

brain volumes (data expressed as a per-

centage of intracranial volume). Right

column: Tissue volumes of the occipital

lobe (data expressed as a percentage of

the total volume for the occipital lobe).

[Color figure can be viewed in the

online issue, which is available at

www.interscience.wiley.com.]
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segmentation, and the GM/WM ratio ranged from 1.5 to
1.9 across all subjects, regardless of their site of origin or
contrast-to-noise value (Fig. 3). However, using the T1-
only data, low values of contrast-to-noise produce a bias
on the segmentation; scans from the SIEMENS_2 show both
the lowest GM/WM and contrast-to-noise ratios (Fig. 3).
The accuracy and quality of tissue segmentation results

was assessed by examination of the tissue masks fused on
top of T1 images, which revealed that the segmentation of
WM and GM tissue seems more accurate in multimodal
segmentation because the cortex distribution along with
the sulci and gyri looks more realistic. This was observed
in both the left and right hemispheres, suggesting that the
bias field correction of the tissue segmentation method
was successful (Fig. 1). On the other hand, the higher vol-
umes of CSF obtained using T1 and T2 segmentation seem
to arise from an exaggeration of sulcal spaces (Fig. 1).

In view of these results, it was reasonable to accept that
multimodal segmentation is the most robust and suitable
strategy for our multicenter data. Thus, to simplify the
results for ROI measurements, intersite differences are
only reported for T1 and T2 segmentation.

Intersite Differences

The ICV variability of our sample was rather high, with
values ranging from 1,269.2 to 1,634.7 cc (overall grand
mean 5 1,451.0; SD 5 97.7; n 5 25). This variability
reflects the mixture of gender and age within the sample
of volunteers, and falling within the range observed in
other samples of healthy individuals of similar age and
gender composition [Molina et al., 2002, 2003]. For ICV,
there was a maximum of 3.9% difference between scan-
ners, whereas intersite CV was 1.9, lower than intrasite CV
among subjects (range, 6.2–8.2%). Concerning tissue types,
intersite CV of whole brain data was lowest in GM (1.8%)
and highest in CSF volume (5.2%) (Table II).
Differences between scanners were higher for the re-

gional tissue volumes of the four lobes than for the whole
brain (Table III, Fig. 2). In the four ROIs examined, the
lowest differences were in GM, and the highest were in
CSF (Table III). Significant intersite differences were
observed in the WM of the parietal and occipital lobes
(ANOVA and Sidak post-hoc) (Table III); in both variables,
SIEMENS_2 shows the lowest values. Because of the high
intersubject variability, no statistical significance was
reached for mean CSF values between sites, despite the
fact that both intersite CV and percentage difference be-
tween extreme values were highest for CSF volumes
(Tables II and III).

Increase of Variability Due to Pooling Multisite

Data Relative to Intrasite Variation

For whole brain measurements, the overall pattern
observed shows that mean intersite CV was lowest for
GM, and highest for CSF data (Table II). The increase in
variability of multicenter data for whole brain data and T1
and T2 segmentation was 3% and 1.8% in GM, respec-
tively, for absolute volumes in cc or ratio volumes,
whereas in CSF it was 5.6% and 5.2%, respectively, for
absolute volumes in cc or ratios (Table II, Fig. 4). Using
T1-only segmentation, values of intersite CV were higher
than using T1 and T2 data (Table II).
The two factors of intrasite variability measured in this

study showed much lower values (higher repeatability)
than corresponding intersite values. The effect of manual
intervention involved in our segmentation procedures was
highest for CSF measurements (around 4%), whereas for
GM and WM was less than 2% in all of the ROIs studied
(Fig. 4). In all variables and tissue types, image acquisition,
measured as subject positioning in the scanner, showed
higher variability than manual intervention. Highest inter-
site CV (lowest repeatability) was observed in CSF varia-

Figure 3.

Scatter plots showing the relationship between contrast-to-noise

ratio and GM/WM ratio for each subject scanned. Top data

obtained using T1 and T2 segmentation. Bottom: Data obtained

using T1 scans only. Data points are labeled with the scanner

used. G: GE_1; g: GE_2; P: Philips; S: SIEMENS_1; s: SIEMENS_2.

To facilitate the comparison between the two segmentation

methods, the same scale was used in both plots.
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bles, where manual intervention showed the highest val-
ues, close to those obtained by image acquisition. These
values of intersite variability were roughly twice as much
as our estimations of within-site variability in GM, WM,
and CSF (Fig. 4).
Considering brain subdivisions into ROI, the frontal and

temporal lobes showed similar increase in variability
(intersite CV) than whole brain measurements (Tables II
and III), whereas in the parietal and occipital lobes, values
of intersite CV were much higher than whole brain data.
Regarding tissue types, we observed the same pattern as in
the whole brain, the lowest intersite CV was obtained in
GM tissue and the highest values in CSF (17.3 in the occi-
pital lobe) (Table III, Fig. 4). On the other hand, the high
variability obtained for CSF of the occipital lobe may partly
be artificial and should be taken with caution because it
reflects the small size of the occipital lobe itself (�130 cc)
and the amount of sulcal CSF within this region (�17 cc).
Thus, the intersite CV of 17.3% would represent only 3 cc,
which is reasonable considering the precision of the whole
procedure for volume quantification. Figure 4 suggests a
common pattern of error among brain regions, in both
inter- and intrasite values. In particular, CSF values show
highest intra- and inter-CV in the occipital lobe, and lowest
in the frontal, which may suggest that partial volume
effects play an important role in the variability observed in
this region. In the most favorable scenario, if the intersite
data are obtained by pooling scans from only two scanners
of the same manufacturer and running the same acquisi-
tion parameters (i.e. the two GE scanners), the intersite CV
is reduced considerably, specially in ROIs showing high
intersite variation like the occipital lobe (Fig. 4).

DISCUSSION

In this study, we provide a new assessment of intersite
variability by using a particular data set that encompasses
most of the possible factors of variation that can occur in a
multicenter study. The data were obtained from five sites
including three scanner manufacturers that were running
either similar or different acquisition protocols, and the
subjects scanned were five volunteers different in sex and
age. Although these factors increased the overall variabili-
ty of the volume measurements obtained, on the other
hand, they did make our data more representative of a va-
riety of multicenter neuroimaging projects. In this regard,
our study complements previous reports about the vari-
ability of multisite data [Patwardhan et al., 2001; Schnack
et al., 2004; Styner et al., 2002; van Haren et al., 2003] by
assessing the influence of acquisition factors that may not
be always fully controlled in a multicenter setup. The
method used for brain ROI segmentation and volume
quantification allowed a comprehensive regional descrip-
tion of the impact of using multicenter data in psychiatric
research.

Effect of Pooling Multicenter Data

In most of the variables measured, there was good
agreement between machines in the mean volumes ob-
tained for the five subjects, which supports the possibility
of pooling data from different scanners, although bearing
in mind that the error introduced is different depending
on the particular volumetric variables included in the
study. According to our data, the amount of variability

TABLE III. Volume data (Mean, SD) for each of the ROI measured at each site in the five subjects, and

using T1 and T2 tissue segmentation

GE_1 GE_2 PHILIPS SIEMENS_1 SIEMENS_2

Intersite CVMean SD Mean SD Mean SD Mean SD Mean SD

Frontal (cc) 308.5 24.1 311.6 25.1 301.9 21.5 322.7 25.3 326.6 22.9
GM (%) 42.0 2.1 41.5 1.9 42.5 1.8 41.5 1.0 42.9 1.7 2.2
WM (%) 32.8 1.9 32.8 2.5 33.5 2.5 35.2 2.7 32.9 2.1 5.4
CSF (%) 22.6 2.0 23.1 3.1 21.4 2.7 21.1 2.9 22.4 2.6 7.0

Temporal (cc) 236.9 21.9 241.4 23.7 240.7 20.3 240.4 15.6 239.9 21.4
GM (%) 60.8 1.7 58.7 1.5 59.8 0.8 60.3 1.0 59.8 1.5 2.0
WM (%) 24.6 0.9 25.9 1.0 26.7 1.0 25.9 1.8 26.9 2.0 4.9
CSF (%) 14.6 1.0 15.4 1.4 13.5 0.8 13.8 2.0 13.3 1.3 8.3

Parietal (cc) 271.7 20.4 274.6 21.4 271.6 13.9 280.8 17.6 287.6 20.0
GM (%) 38.5 3.9 39.0 2.3 37.7 1.3 38.5 1.5 40.3 2.1 4.3
WM (%)a 40.9 3.0 39.1 2.6 42.0 2.4 42.1 2.9 35.9 2.1 7.2
CSF (%) 19.2 3.0 20.5 3.7 18.9 2.0 18.1 2.6 22.6 2.6 10.1

Occipital (cc) 124.2 8.0 125.4 6.9 129.3 6.6 132.7 9.9 132.3 7.3
GM (%) 52.9 5.4 53.3 3.0 50.7 1.5 51.7 1.7 54.3 3.6 5.7
WM (%)a 33.5 3.9 32.2 1.5 36.9 1.6 35.6 2.0 28.6 4.4 11.7
CSF (%) 13.6 3.6 14.5 3.9 12.4 1.7 12.7 2.5 17.1 4.3 17.3

Intersite CV: average of within subject coefficients of variation between scanners (see Methods).
ROIs were measured bilaterally, adding right and left values.
a ROIs showing significant intersite differences in an ANOVA (P < 0.05). If the ANOVA was significant, the pair of extreme values
showing significant differences is boldfaced (P < 0.05; Sidak test).
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added to volumetric data due to the multicenter setup is,
on average, 4% for whole brain measurements (Intersite
CV, % of GM, WM, CSF; Table II) and 7% for our 12 ROI
variables (intersite CV; Table III), though it can reach as

much as 17.3% for a specific ROI and tissue combination
(CSF, occipital lobe; Table III). Our results suggest that,
when multimodal segmentation is used, scanner-depend-
ent error is lower and follows a pattern that enables statis-

Figure 4.

Estimation of the error in our volume measurements in whole-

brain and lobar data of GM, WM, and CSF due to different sour-

ces: intersite, intrascanner, and intrarater (see Methods for

details). Left column: All scanners; bars show average of within

subject coefficients of variation between scanners in the five

sites. GENERAL; bars show the mean coefficient of variation of

the five subjects in the GE-1 and GE-2 sites only. Right column:

Intrasite; variability due to MRI acquisition (subject positioning in

the scanner). Intraobs; variability due to manual intervention in

the ROI segmentation method (see Methods). To facilitate com-

parisons, notice that for each tissue type, the range of values in

the horizontal axis is the same for left and right columns.
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tical analysis using models that incorporate the scanner as
an additional source of variance, in the same way as head
size, age, or sex. Using multimodal segmentation, our esti-
mation of the effect size due to the multicenter factor
ranged from 0.4 to 1.2, which appears to be acceptable for
group comparison studies. For example, a review of bio-
logical effect sizes in schizophrenia shows that most volu-
metric studies report values higher than 2 [McCarley et al.,
1999; Shenton et al., 2001]. Even though our results corre-
spond to a heterogeneous mixture of subjects and scanners
running different protocols, we were able to show that in
the most favorable circumstances—similar scanner manu-
facturer and acquisition parameters—the average effect
size was 0.2, which is low when compared with values
from group comparison studies. Thus, it seems that, de-
spite the fact that using multicenter data involves an addi-
tional source of error, there is still room to detect potential
group differences, particularly if the multicenter setup
includes machines from the same manufacturer running
similar acquisition parameters.
Our estimation of intrasite variability due to the acquisi-

tion and manual intervention in the brain extraction and
ROI segmentation was much lower than intersite variabili-
ty. Intrasite repeatability followed the same pattern as the
interscanner variability, the lowest CV being obtained for
GM and the highest for CSF (Fig. 4). Error due to manual
intervention was highest for CSF (4% max, Fig. 4) because
of the difficulties in supervising the segmentation of sulcal
CSF and the ICV mask. Thus, relative to intrasite repeat-
ability, overall experiment-wise error in our multicenter
study is nearly twice the intrascanner value (Fig. 4) in
most variables. Intrasite CV values reduce considerably
when pooling scans from only two scanners of the same
manufacturer and running the same acquisition parame-
ters (i.e., the two GE scanners).
Concerning how the measurement of repeatability is

made in multicenter studies, our data show that the ICC
[Patwardhan et al., 2001; Schnack et al., 2004; Styner et al.,
2002; van Haren et al., 2003] sometimes yields artificially
high values in spite of poor agreement between sites. This
bias is due to the nature of the ICC, which represents a ra-
tio of interscanner variance relative to intrascanner var-
iance (subjects), rather than providing absolute estimations
of reproducibility. For instance, ICC values obtained for
global GM and WM (%) were very similar in both segmen-
tation data sets, despite the fact that the single-modality
segmentation showed much higher values (low agreement)
in terms of effect size and percentage difference between
maximum and minimum values (Table II). Thus, we
believe that the CV used in this study provides a simple
and direct measure of variation due to the scanner factor
that can be easily compared with other data sets and vari-
ability factors (e.g., inter and intrasite).
The tissue segmentation algorithm used in our study

[Ashburner and Friston, 1997] has been proved to be
repeatable intrascanner [Agartz et al., 2001; Chard et al.,
2002; Gispert, 2003; Gispert et al., 2004a]. Our study

extends the robustness of SPM tissue segmentation to an
interscanner factor, showing repeatability values of a simi-
lar magnitude to those obtained in similar multicenter
studies [Schnack et al., 2004; Styner et al., 2002; Tofts, 1998;
van Haren et al., 2003]. Our level of repeatability was
achieved with a widely used ROI and tissue segmentation
method that is freely available for clinical research, and
without performing any precalibration process [Schnack
et al., 2004; van Haren et al., 2003]. A calibration step,
while maximizing overall repeatability, may eventually
induce inaccuracies (closeness to the ground truth) in the
volumetric measurements in the event of bias in a given
machine, as might be the case in our study.
Our data suggest that using multimodal segmentation

increases compatibility between machines of the same, or
different, manufacturer. In our study, this gain in reprodu-
cibility seems to arise by eliminating the overestimation of
WM observed in some scanners (Siemens) when using T1
segmentation only. This result complement previous
reports made with a single subject and only two scanner
manufacturers [Styner et al., 2002], now using data from a
mixed sample of five subjects, and with a wider sample of
scanners. Segmentation results using multimodal data
were also more robust and independent of differences in
contrast-to-noise ratios of scans from different sites (Fig. 3).
However, although the recommendation to use T1 and T2
data is clear, our examination of the quality of both seg-
mentations suggest that one should bear in mind that T1
and T2 segmentation may overestimate CSF volumes in
our dataset (Fig. 1). Since this bias is likely to originate
from the higher partial volume of our T2 images, increas-
ing the scan resolution to the levels of the T1 image may
help provide a more accurate CSF estimation. Not surpris-
ingly, CSF data showed the lowest repeatability, because
of the higher partial volume effect in T2 images, and also
because of the manual steps involved in producing the
ICV mask [Schnack et al., 2004; Styner et al., 2002].
Multimodal tissue segmentation is more likely to provide

more robust results than using data from T1-only. How-
ever, considering the values obtained for the two GE scan-
ners, multimodal segmentation may perform as well as
using T1-only data if the same scanner brand and nearly
identical parameters are utilized. Data from the two GE
scanners combined, using T1 and T2 or T1-only segmenta-
tion yielded similar results, as measured in terms of the
effect size (Table II). This suggests that multimodal seg-
mentation is more critical whenever the multicenter setup
includes a variety of scanners running different acquisition
parameters. We believe that this is a useful consideration
because the higher demand of resources and complexity
involved in multimodal segmentation might be prevented,
if images from the same scanner model and acquisition pa-
rameters are available. Thus, in cases of similar scanner
manufacturers and sequence parameters, the little increase
in reproducibility gained should be weighed up against the
potential loss of accuracy in the tissue segmentation (i.e.,
overestimation of CSF).
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Our results show that it is important to study multicenter
repeatability not only for whole brain data but also at the
ROI level. In addition to tissue type, repeatability depends
on the region. Intersite error (mean CV) was higher in the
parietal and occipital lobes than in the frontal and temporal
lobes (Table III, Fig. 4). In the occipital lobe, the increase in
variability in CSF is related directly to the volume of CSF
within this lobe of the brain. Because of the relatively little
CSF within this region (�17 cc), a small change in CSF pro-
duces a large percentage of change. At any rate, consider-
ing that lowest and highest intersite CV were observed
respectively in the frontal and occipital lobe, which are also
the largest and smallest ROIs, this pattern may suggest that
differences in repeatability between ROI values could be
related to the total size of the ROI. However, this rule does
not hold for the parietal lobe, showing higher intersite CV
values than the temporal lobe, despite the parietal is larger
than the temporal (Table III, Fig. 4). Another relevant find-
ing of our study, as a preliminary step to a clinical investi-
gation, was the low reproducibility obtained for the WM
and CSF volumes of the occipital lobe, suggesting that in a
multicenter setup, this data should be excluded from com-
parative studies where the expected differences between
groups are low (i.e., below 7–10%; which is the average
error of WM and CSF variables; Table III).

Role of Acquisition Parameters and

Scanner Manufacturer

Although we did not intend to measure or compare the
accuracy of the machines studied, there were some signs
of manufacturer-dependent bias in the estimation of tissue
volumes, particularly when using single-modality tissue
segmentation. According to our data, Siemens equipment,
when compared with GE or Philips, tended to show higher
values of WM (Table II). Overestimation of WM in Sie-
mens scanners has also been reported in other studies
[Schnack et al., 2004; van Haren et al., 2003]. However, this
bias disappeared with multimodal segmentation (Table II).
A distinguishable intensity inhomogeneity was observed
in the images obtained at the two Siemens sites. This ac-
quisition artifact, together with the differences in acquisi-
tion parameters in the two Siemens sites, might be one of
the reasons for the bias observed in WM volumes,
although all scans were equally corrected for bias field het-
erogeneity by the SPM tissue segmentation algorithm,
which includes a robust correction method [Gispert et al.,
2004b]. Bias field correction has been mentioned as one of
the confounding factors for tissue segmentation methods;
indeed, our data show that it has special relevance for
multicenter studies [Evans, 2002; Tofts, 1998].
When planning a multicenter study, the question arises

as to whether higher compatibility between sites would be
obtained by emphasizing similarity of scanners or of ac-
quisition parameters. In our study, volume measurements
were more similar between the two GE sites (similar
sequence parameters and pixel size) than between the two

Siemens sites (different sequence parameters and pixel
size). Our results indicate that volume measurements
obtained with either one of the two SIEMENS are as close
to the other SIEMENS than to any of the other scanner
manufacturers. However, because sequence acquisition
and the scanner factors are confounded in our data set, we
cannot conclude that data similarity between SIEMENS
scanners ‘‘per se’’ is necessarily poor. On the other hand,
considering the higher similarity in the volumes obtained
for the two GE scanners in which acquisition parameters
were very close, we expect that using similar acquisition
parameters should likewise improve the similarity between
the two SIEMENS, though we cannot verify that, nor pre-
dict how significant that increase would be. Our study
provides evidence that highest compatibility among scan-
ners would be achieved by using equipments of the same
manufacturer and image acquisition parameters as similar
as possible, in particular when the same scanner is used.
Thus, the same emphasis on running the scans with the
same parameters should be made at all sites, whether they
are using the same scanner manufacturer or not.
This was one of the limitations for our intersite compari-

son. Sequence parameters and pixel resolution were not
the same in every site, thus the site factor was confounded
with the sequence parameters. This circumstance limited
somewhat the conclusions of the study and increased the
overall variability of the sample, although it provided val-
uable data to estimate the impact of acquisition parame-
ters. On the other hand, other multicenter studies have
shown that images obtained not only from different scan-
ner manufacturers, but also using different magnetic fields
and orientation (axial, coronal, sagittal) can be somehow
combined in a multicenter setup [Patwardhan et al., 2001;
Schnack et al., 2004].
The small sample of subjects scanned is one of the main

limitations of our study, although the total number of
images was acceptable (n 5 25). This difficulty is common
in most of the multicenter studies performed. Some studies
have been carried out with similar samples as in our study
[Schnack et al., 2004], or with a similar sample size, but
different subjects for each site [Patwardhan et al., 2001], or
even including only a single subject scanned at the differ-
ent sites [Styner et al., 2002]. Despite these differences in
the subjects scanned, the results obtained in all of those
studies, including ours, are reasonably concordant.
Another limitation of our study was the lack of repeated

scans at each site to allow the assessment of intrasite vari-
ability with the same subjects used for intersite variability.
We estimated the intrasite variability using data from
another study on repeatability made with a larger sample
of scans, the same protocol for ROI segmentation and vol-
umetric quantification, and performed at one of the five
sites (Philips site). Results obtained were of the same mag-
nitude to those reported in other intrasite studies [Agartz
et al., 2001]. Being aware that the values reported should
be treated with caution, we believe that the overall results
obtained with these data represent a reasonably appropri-
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ate and unbiased approximation to our intrasite variability,
at least for the purpose of setting a reference of experi-
ment-wise error benchmark for comparison with intersite
variation. Thus, our main conclusion that intrasite varia-
tion is always much lower than intersite seems fully rea-
sonable and confirms previous findings [Schnack et al.,
2004; Styner et al., 2002].
In the near future, we will probably be seeing clinical tri-

als (e.g., neuroprotective drugs) in which regional brain
volumes are the ancillary supportive variable. For these
studies, MRI from different research sites will have to be
pooled to obtain the required statistical power. In these sce-
narios, finding the most robust compromise between pool-
ing data (increasing sample size) and minimizing the artifi-
cial variation added to the data could only be made after
evaluating the compatibility among machines and taking
into account the variables measured. On the other hand,
we believe that the scanner effect should also be given care-
ful consideration in a meta-analysis of volumetric data, and
in this respect our study may help in the estimation of the
scanner effect when pooling results made at different sites.
In summary, bearing in mind the limitations of the

study, our paper was intended to illustrate the effects and
potential uses of combining data from different sites in a
particular set up, rather than providing a model to follow
in multicenter studies. Our results suggest that pooling
our intersite data for whole brain measurements of GM,
WM, and CSF adds only a reasonably small amount of
variation (error) ranging from 1.8 to 5.2%, respectively.
However, considering ROI variables like CSF volume of
the occipital lobe, this error can reach 17.3%. Whenever
possible, T1 and T2 tissue segmentation methods should
be used because they yield more consistent volume meas-
urements between sites than T1-only segmentation, espe-
cially when scans are obtained with different sequence pa-
rameters and pixel sizes from those used at the other sites.
Thus, in multicenter studies, tissue and ROI segmentation
protocols should be validated to assess their intersite
reproducibility. After this validation, we may choose to
exclude data from a specific ROI (i.e., occipital lobe), or
from scanners using acquisition parameters markedly dif-
ferent from those of other sites.
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