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Abstract: A common problem in brain imaging is how to most appropriately coregister anatomical and
functional data sets into a common space. For surface-based recordings such as the event related opti-
cal signal (EROS), near-infrared spectroscopy (NIRS), event-related potentials (ERPs), and magnetoen-
cephalography (MEG), alignment is typically done using either (1) a landmark-based method involving
placement of surface markers that can be detected in both modalities; or (2) surface-fitting alignment
that samples many points on the surface of the head in the functional space and aligns those points to
the surface of the anatomical image. Here we compare these two approaches and advocate a combina-
tion of the two in order to optimize coregistration of EROS and NIRS data with structural magnetic
resonance images (sMRI). Digitized 3D sensor locations obtained with a Polhemus1 digitizer can be
effectively coregistered with sMRI using fiducial alignment as an initial guess followed by a Mar-
quardt–Levenberg least-squares rigid-body transform (df 5 6) to match the surfaces. Additional scaling
parameters (df 5 3) and point-by-point surface constraints can also be employed to further improve fit-
ting. These alignment procedures place the lower-bound residual error at 1.3 6 0.1 mm (l 6 s) and the
upper-bound target registration error at 4.4 6 0.6 mm (l 6 s). The dependence of such errors on scalp
segmentation, number of registration points, and initial guess is also investigated. By optimizing align-
ment techniques, anatomical localization of surface recordings can be improved in individual subjects.
Hum Brain Mapp 29:1288–1301, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Accurate anatomical localization of functional brain data
is dependent upon the ability to precisely align, or coregis-

ter, these data with their corresponding anatomical infor-
mation. In studies where data are combined across sub-
jects, accurate coregistration of each subject’s data can lead
to significant improvement in the resolution of activated
regions in the combined data sets. The importance of such
procedures has led to a wealth of multimodal registration
techniques and strategies [Audette et al., 2000; Crum et al.,
2004; Hawkes, 1998; Maintz and Viergever, 1998; West
et al., 1999].
For techniques utilizing scalp-placed recording sensors,

such as the event-related optical signal [EROS; Gratton
et al., 1995], the event-related brain potential (ERP), trans-
cranial magnetic stimulation (TMS), and magnetoencepha-
lography (MEG), coregistration is complicated by two fac-
tors: (1) the two data sets, functional and anatomical (typi-
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cally structural magnetic resonance imaging, MRI, or com-
puterized tomography, CT), are acquired at different times
in different modalities; and (2) information available for
alignment becomes restricted to the surface of the scalp.
Coregistration efforts have therefore focused on two
approaches: (1) location and identification of anatomical
landmarks; and (2) algorithms attempting to minimize the
distances between surfaces.
A common method to coregister data sets is to deter-

mine a set of anatomical landmarks, or fiducial points,
which can be identified in the two modalities. These points
can theoretically be any three or more non-colinear points
but should ideally number several and encompass the data
region. Such parameters are vital because errors of fiducial
registration are known to increase with distance from the
centroid of the fiducials and roughly follow N21/2 depend-
ence, with N representing the number of fiducial markers
[Fitzpatrick et al., 1998; Hill et al., 1994; Maurer et al.,
1997]. By historical convention and for reliability, the cuta-
neous fiducial points typically used are the two preauricu-
lar points and the nasion [originally used as references
markers in the 10-20 system of EEG/ERP electrode place-
ment; Jasper, 1958]. These locations continue to be used
ubiquitously for EEG/ERP purposes and, more recently,
have also been used as reference positions for coregistra-
tion of anatomical data sets with MEG [Williamson and
Kaufman, 1989; Williamson et al., 1991] and TMS [Herwig
et al., 2003]. Although these three fiducial points are most
common, bite-bars and other arrangements have also been
used [Adjamian et al., 2004; Singh et al., 1997]. More accu-
rate invasive transcutaneous markers are available for pre-
operative clinical procedures and can provide submillime-
ter precision in some cases [Maurer et al., 1996, 1997,
1998]. Here we limit our investigation to the former nonin-
vasive procedures.
Once located, the fiducial points are digitized in the ref-

erence frame of the functional data. Digitization can be
accomplished with electromagnetic systems such as the
Polhemus Fastrak1 used here, but other devices using me-
chanical (MicroscribeTM: http://www.microscribe-digitisers.
co.uk/) or optical (3D-PHD: http://brl.psy.univie.ac.at/
research/phd/index.htm) technologies are available. Fidu-
cial locations are also identified prior to an anatomical
scan, and a marker visible in the imaging modality is
placed at the fiducial locations. These markers are subse-
quently identified in the MRI image and their coordinates
transcribed manually. Finally, fiducial alignment of the
two images is performed. Most commonly this is done via
an explicit least-squares minimization algorithm [Arun
et al., 1987]. After alignment, fiducial, errors serve as an in-
dicator of the accuracy, and their variance serves as a mea-
sure of precision.
Fiducial methods have several advantages compared to

feature-based registration but also suffer from major draw-
backs. For instance, an advantage of fiducial procedures is
that they require negligible computation time for align-
ment; yet they require moderate time to precisely identify

and accurately place markers over the fiducial points.
Additional time is also needed to locate marker coordi-
nates on the anatomical image. Fiducial alignments can be
relatively accurate, provided that the anatomical locations
can be identified reliably and with precision. However, cu-
taneous markers may appear shifted in the MR image due
to magnetic susceptibility changes when going from air to
skin/markers and, in addition, chemical frequency shifts
can displace fatty markers by 1–3 mm for common MR
field strengths of 1.5–3.0 T. The MR environment, with
participants lying supine, wearing headphones, and using
goggles and other devices, can also cause the markers to
be mechanically displaced. Lastly, fiducial points are
limited to points that can be repeatedly and accurately
located, making the use of a large number of markers
intractable. As a consequence, in practice, fiducials num-
ber few and are located in the front of the head, biasing
accuracy to frontal lobes at the expense of occipital
regions.
Surface techniques offer an alternative to fiducial based

approaches. They consist of fitting a representation of the
head surface obtained through digitized points with one
obtained from structural imaging data. This procedure
requires (1) a large array of alignment points; (2) scalp seg-
mentation of the anatomical image; and (3) a sophisticated
fitting algorithm based on the minimization of distances
between the two surfaces. Scalp segmentation routines are
available via already-existent software packages, some of
which are available free-ware (FSL, http://www.fmrib.ox.
ac.uk/fsl/; Brainstorm, http://brainsuite.usc.edu) or can
be written in house [for more opinions and alternatives see
Dogdas et al., 2005; Huppertz et al., 1998; Lammet et al.,
2001; Schwartz et al., 1996]. When applied to up-to-date
anatomical scans, these algorithms typically produce sur-
face renderings based on tens of thousands to hundreds of
thousands points, which is a sufficiently dense array to
perform alignment. Similarly, having a large number of
digitized points corresponding to the functional data set is
important. In this case, an array formed by hundreds or
thousands of points is preferable, since registration errors
decrease as the number of points increases [Kozinska
et al., 1997, 2001; Maurer et al., 1998; Schwartz et al., 1996].
The final critical feature of surface matching is a good

fitting algorithm. Appropriate algorithms are fast, accurate,
and robust. To meet these criteria, algorithms use iterative
methods that rely on minimizing the least squares distance
between closest points on the two surfaces. Explicit solu-
tions are not possible due to lack of information about cor-
responding points, and because such solutions would
involve lengthy computational times. The sophistication of
fitting algorithms for this purpose has developed consider-
ably over the recent past, beginning with implementation
of the quadratic Newton-Muller method [Daisne et al.,
2004; Levin et al., 1988; Pelizzari et al., 1989], followed by
several others [Huppertz et al., 1998; Kober et al., 1993;
Wang et al., 1994]. The Powell algorithm [Powell, 1964]
was later implemented by Schwartz et al. [1996]. More
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recently the Marquardt-Levenberg algorithm [Levenberg,
1944; Marquardt, 1963] was effectively adapted to the sur-
face registration problem of rigid bodies by Kozinska
[1998] and Kozinska et al. [1997], and has been shown to
be much faster than previous methods while retaining pre-
cision. Bulan and Ozturk [2001] further refined this proce-
dure by adopting a k-dimensional tree to replace the dis-
tance map; this freed up memory and decreased computa-
tion time while providing comparable errors. This
procedure was implemented into the Matlab1 code
Align2.0 by Ozturk (personal communication on Align2.0
and Marquardt-Levenberg least-squares fitting, 2004) and
is the code used for the work presented here.
Surface-fitting techniques have several advantages over

fiducial registration but also have their shortcomings.
Computationally, surface-fitting procedures are much
slower than fiducial procedures due to the larger number
of points, but the increased time (typically of the order of
seconds or less), is acceptable for most practical applica-
tions. In fact, the slowest computational part of the coregis-
tration procedure is the scalp segmentation algorithm
(required to identify the head surface on the anatomical
scans) which can take several minutes. Additionally, this
procedure is frequently only semiautomated, requiring
user input, which increases segmentation time. Neverthe-
less, these time demands are of minimal concern for most
purposes as they add only a few minutes per subject to the
processing of brain imaging data. Of far greater concern is
that surface-fitting algorithms may suffer from the local
minimum problem. This is a common problem in multiple
non-linear regression, whereby the algorithm can converge
on an undesirable solution associated with a ‘‘local’’ mini-
mum in the error function, significantly far from the cor-
rect solution (associated with the ‘‘global’’ minimum in the
error function). For brain imaging, this problem is particu-
larly serious, because the surface of the head is nearly
spherical/ellipsoidal in shape, allowing for a shallow and
‘‘bumpy’’ error function for particular rotations. It is im-
portant to consider that the local minimum problem is
strongly dependent on the starting point of the iterative
multiple regression procedure, which is commonly labeled
the ‘‘initial guess.’’ If the initial guess is close to the correct
solution, it is more likely that the procedure will converge
on it. If it is far away, it is likely that a local minimum in
the error function will be found instead. To create an initial
guess many surface fitting techniques frequently begin
with an automated approach by matching centroids and
moments [Goldstein, 1950; Kozinska et al., 2001; Press
et al., 1989], which is prone to large inaccuracies due to the
sphericity of the human head. Moment techniques also do
not distinguish directionality of axes, allowing for reflec-
tive solutions. That is, in cases of relatively symmetric
objects such as the human head, this may lead to the swap-
ping of the left-right dimension (and, occasionally, even of
the anterior-posterior dimension). Fiducial alignment
entirely avoids all these problems because the correspond-
ing points are known. Thus, this method is much more

likely to produce an initial alignment that is not far from
the global minimum.
It is important to note that fiducial and surface-fitting

methods are not necessarily mutually exclusive. It has
been demonstrated that using a weighted combination of
bone-implanted markers along with skin and bone surface
fitting leads to superior registration than methods relying
solely on fiducial fitting [Maurer et al., 1998]. Here we
demonstrate that using a fiducial registration as an initial
guess followed by a surface fit reduces registration errors
while providing greater reliability and confidence in the
results. Additional refinements such as scaling and scalp
forcing are also evaluated.

METHODS

This section is divided into two parts. First, we describe
the various methods that were used in the coregistration
procedure (including initial alignment, surface fitting, scal-
ing, and scalp forcing). Second, we describe methods for
evaluating the effectiveness of these fitting procedures.
Evaluation is based on an analysis of various estimates of
the coregistration error obtained at multiple stages of the
registration process. These fitting errors were measured on
six volunteers.

Coregistration Procedures

Initial guess

As mentioned earlier, this step provides an initial start-
ing point for the surface fitting procedure. A fiducial-based
initial guess is expected to greatly limit the probability of
gross inaccuracies due to local-minima or reflection prob-
lems. In the current study three fiducial points were used
for this purpose (see also Placement of Markers): the left
and right preauricular points (LPA and RPA, respectively)
and the nasion (Na). We evaluated two methods of using
the fiducial data to provide an initial guess: a moment-
matching technique (the unweighted method described by
Kozinska et al. [2001], and a least-squares fiducial ap-
proach derived by Arun [1987]).

Surface alignment and scalp segmentation

The initial guess procedures described above were eval-
uated and further used as the starting point for a rigid
body (df 5 6) surface alignment (Align2.0; Ozturk, 2004).
Surface alignment requires a description of the set of
points that compose the head surface, which can be
derived from an anatomical image (in this case a sMRI
scan), through a process of scalp segmentation.
Scalp segmentation was performed with a Matlab pro-

gram, which includes the following steps:

1. Gaussian smoothing kernel (SD 5 0.65 mm) and a 2D
median filter (3 3 3 neighborhood) are applied to the
MR image to reduce grain and artifacts.
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2. A threshold value (defined as a fraction of the largest
voxel intensity) is chosen. Left-right, anterior-poste-
rior, and superior scans are performed from the out-
side-in until the threshold is reached. The union of
the points from all scanning directions is taken to
define the scalp surface.

3. A rendered scalp image is displayed and the user is
allowed to adjust the threshold, in order to control
the segmentation process. If needed, steps (2) and (3)
are repeated until a satisfactory scalp image is
obtained (i.e., the surface is smooth and deep struc-
tures are not visible). Examples of rendered scalp
images are presented in Figure 1. This method takes
roughly 1 min and was chosen over available region-
growing algorithms because such algorithms extract a
scalp-rendition with a thickness of several mm, which
can lead to a shallow error function and hence longer
alignment times and local minima concerns. Con-
versely, our in-house algorithm provides a thinner (1
mm) scalp-rendition, thus circumventing these prob-
lems. Segmentation done in this fashion produced
65,000–95,000 scalp points.

The MR-derived scalp points are registered to the digi-
tized points recorded in the functional coordinate space
using the method described by Kozinska et al. [1997]1. The
fitting algorithm uses a Marquardt–Levenberg optimiza-
tion routine [Levenberg, 1944; Marquardt, 1963] applied to
the case of a 3D rigid body. In brief, the algorithm mini-
mizes the sum of squares of the distances between the two
data sets. It is important to note that the distance mini-
mized is from the data set to be transformed (i.e., the digi-
tized points) to the closest point in the reference data set
(i.e., the MR-derived scalp surface). This may not be the

actual corresponding point. Nevertheless, the algorithm
offers roughly second-order convergence by using a Taylor
expansion and an iterative approach, with a varying
weighted combination of an exact gradient for the first
order term and an approximation to the Jacobian matrix of
the partial derivatives, called the Hessian matrix, serving
as the second order term. This adaptive method can help
minimize the local minima problem and allows for rapid
convergence, as the descent trajectory on the error function
becomes less gradient-like and more Newton–Raphson-like
near the minimum. The algorithm iterates until preset con-
ditions are obtained (such as a predetermined number of
iterations or an acceptance criterion for mean distance
error) or once distance errors fail to decrease by a prespe-
cified amount.
All data presented here used the following parameters:

a 0.01-radian angular threshold, a 0.1-mm translational
threshold, 50 maximum iterations, a weighting parameter
of 2, a weighting parameter divisor of 2, and 20 maximum
loop searches before the step is adjusted and a new search
is started. Parameters in this range have been shown to
produce good and rapid convergence for this application
[Kozinska et al., 2001].

Scaling

Although the 6-parameter rigid-body fit reduced the
bulk of the registration error, it is known that MRI gradi-
ent inhomogeneities, even in the most carefully monitored
environments, can produce scaled gradient inaccuracies in
the range of 1–2% (�1–2 mm error on the scalp) in both
the left-right and anterior-posterior dimensions [Bednarz
et al., 1999; Maurer et al., 1996]. Similarly, the Polhemus1

digitizer’s estimates can deviate from the true value in
a fashion that is in part dependent on the distance from
the transmitter and in part on the presence of local mag-
netic field gradients (http://www.polhemus.com). Conse-
quently, we evaluated the use of independent linear scal-
ing factors for each of the 3 spatial dimensions (df 5 3) to

Figure 1.

Effects of using different thresholds on surface scalp rendering obtained from MR images for one

subject. (a) threshold 5 0.10, TRE 5 8.4 mm; (b) threshold 5 0.05, TRE 5 4.8 mm; (c) thresh-

old 5 0.01, TRE 5 7.1 mm. Segmentation (b) shows a more appropriate surface rendition than

the other two.

1In our implementation we used a k-dimensional tree using a
modified approximate-nearest-neighbor library rather than a dis-
tance map, because this method has been shown to provide
improved accuracy with faster convergence [Bulan and Ozturk,
2001].
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reduce registration errors. We applied the scaling factor af-
ter the rigid body registration, as this procedure was pre-
viously shown to results in a decrease in registration error
ranging between 0.5 and 2.0 mm [Maurer et al., 1996;
Schwartz et al., 1996]. Specifically, we adopted a serial
approach, in which the scaling factors were estimated by
performing three separate linear regressions (one for each
spatial dimension) between the positions of digitized
points and their closest anatomical point. This method,
being based on a least-square technique, is insensitive to
the problem of local minima. In all cases the scaling factor
ranged between 0.97 and 1.03.
Scaling parameters could also be estimated simultane-

ously with the 6-parameters rigid body surface fitting
[Koikkalainen and Lotjonen, 2004]. However, this could
lead to an increase in the number of local minima (associ-
ated with the increase in the number of free parameters to
be estimated) and reduce the probability that the fitting
algorithm will converge on the true solution [Maurer et al.,
1996; Schwartz et al., 1996]. A further consideration is that
previous studies support the idea that a serial approach,
while yielding overall comparable fit to the original data
as the simultaneous approach, provides more robust
results when tested using cross-validation methods
[Maurer et al., 1996; Schwartz et al., 1996].

Scalp forcing

The scalp locations were digitized using a Polhemus1

digitizer stylus. However, the stylus depression on the
skin of the scalp may vary from 1 to 3 mm [Schwartz
et al., 1996]. In an attempt to account for the radial digiti-
zation error thus generated, we constrained the digitized
points to lie on the surface of the scalp. This ‘‘scalp forc-
ing’’ was accomplished by replacing the digitized coordi-
nates of each point (obtained after fiducial alignment, sur-
face fitting, and scaling) with those of the closest seg-
mented MR scalp point.

Error Estimation

In order to evaluate the various alignment methods, a
measure of registration error must be used. Note that the
coregistration procedure involves optimizing the fit be-
tween different data sets. As for many other optimization
procedures, we need to distinguish between two ways of
evaluating the goodness of the fit: (a) internal tests (in
which the parameter used to estimate the error is the same
used to optimize the procedure), and (b) cross-validation
tests (in which independent estimates of the error are
obtained). The error estimate obtained using cross-valida-
tion is typically considered a better estimate of the ‘‘true’’
error than that obtained using internal tests.
In our case, the ‘‘true’’ error is the map error—the error

between corresponding points observed in the two modal-
ities. However, this procedure is practically unfeasible,

because it requires knowledge of which MR point corre-
sponds to each digitized point. Of course, if this informa-
tion were readily available, the coregistration procedure
would consist of a simple and explicit easily-determinable
solution. Therefore, given the practical constraints outlined
above, the map error is typically reserved for theoretical
calculations and simulations [Fitzpatrick et al., 1998; Koik-
kalainen and Lotjonen, 2004; Kozinska et al., 2001; Maurer
et al., 1998; Singh et al., 1997]. However, an approximate
estimate of the map error can be obtained using a cross-
validation approach. In the current case, this means com-
puting the distance between estimates of the locations of
corresponding points on the surface of the head obtained
with digitization and MR data (after coregistration)—when
these points are not used to derive the coregistration pa-
rameters. This implies using markers to make the points
visible on the MR scans. We will here label this error
assessment the target registration error (TRE). The TRE
includes not only the map error but also other forms of
error such as marker shifts between digitization and MR
scanning. Therefore the TRE may be considered an upper
limit for the map error.
In addition to the TRE, we will also discuss two other

types of error estimates that can be (and commonly are)
used to evaluate coregistration methods. The first is the
fiducial registration error (FRE), defined as the distance
between corresponding locations for each fiducial marker
obtained after coregistration. This estimate, however, may
be biased and under-represent the map error, because
fiducial information is explicitly used for coregistration.
Further, it suffers from the problem of being based on a
very small number of points, and therefore being poten-
tially unstable.
The second type of error is the residual error (RE), that

is, the distance between the digitized points and the clos-
est surface points derived from the anatomical image. As
minimization of this parameter is the purpose of the sur-
face-fitting procedure, the RE can also be biased. In fact, it
is typically smaller than the map error, which may lead to
overestimation of the accuracy of the coregistration proce-
dure. A small RE does not necessarily imply a small map
error. An extreme example of this occurs when the surfa-
ces defined by the digitization and structural imaging
methods are both spheres. In this case, any rotation of one
of the spheres with respect to the other will produce a re-
sidual error of zero (if scaling is allowed), whereas the
‘‘truer’’ assessment of error, the map error, could be as
large as the diameter of the sphere. However, since the RE
represents the best possible fit between the two surfaces, it
does represent a lower-bound estimate of the map error,
provided that the scalp data set is accurate, complete, and
continuous.
It is therefore essential, if we wish to have a complete

representation of the error, that we not only estimate the
RE and the FRE, but also the more meaningful TRE. Hav-
ing information from all three types of errors also affords
the ability to compare them and form an understanding of
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the reliability and limitations of each—an important area
for which little information is currently available.

Experimental estimation of the error

To determine registration errors and hence the efficacy
of various registration strategies, 32 (16 in one case) IZI1

markers were placed on the scalps of six male participants
whose heads were either completely bald or shaved.
Although much work on the efficacy of coregistration has
been done via simulations, we consider the use of human
subjects as essential to reproduce actual experimental (or
clinical) conditions. Each participant provided written
informed consent and the procedures used in the study
were approved by the Institutional Review Board of the
University of Illinois. The markers were readily visible and
could be accurately located in both spaces (anatomical and
functional) and served as corresponding points from
which to assess the TRE and FRE. Three of the markers
were on the fiducial points and were used for coregistra-
tion, whereas the remainder served solely to assess the
TRE. The use of bald participants allowed for markers to
be affixed directly to the scalp, thereby reducing displace-
ment errors that were evident in preliminary work in
which the markers were affixed to swim caps.

Placement of markers

Fiducial markers were placed on each participant’s LPA,
RPA, and nasion. The nasion was located through visual
and manual inspection. The LPA and RPA were marked
by means of a ‘‘T-board’’ device created in our lab (see
Fig. 2). This device is essentially a stencil fitted on the ear
and aligned with the outer canthus of the eye. Once the
device is placed, the LPA and RPA are marked in the
notch of the T-section of the board (as illustrated in Fig. 2)
and are placed very near the preauricular points com-
monly used for EEGs/ERPs [Jasper, 1958]. The use of the
T-board has proved to be more effective than visual/tactile
localization of the preauricular points, which can be sub-
ject to intra- and inter-experimenter error. To show the

effectiveness of the T-board, we compared the accuracy of
fiducial estimations obtained on 81 subjects for whom the
T-board was used for identifying the fiducial locations
with that of 147 subjects for whom the T-board was not
used. For each of these subjects we measured the FRE
(fiducial registration error, see above) as a combined mea-
sure of accuracy and reliability of fiducial identification.
As a reminder, this measure is based on fitting the location
of the fiducial as determined using the Polhemus1 digit-
izer to those obtained from MR recordings. In the case of
these 228 subjects, these measurements were obtained in
separate sessions, and therefore involved separate localiza-
tions of fiducials on the head. The FRE was, on average,
0.6 mm smaller (t(226) 5 2.06, P < 0.05 one-tailed) for the
subjects for whom the T-board was used, thus showing a
significant advantage in reliability/accuracy. In addition,
the use of the T-board requires less training and less time
(�2–5 min faster per subject). Again, the emphasis on a
proper choice of fiducials is not limited to the specific loca-
tions described here, but, more importantly, on the choice
of points that can be repeatedly and reliably located.
The scalp markers were arranged in five symmetrically

placed swaths of 4–7 markers running anterior to posterior
(see torus-shaped markers in Fig. 3). The markers therefore
spanned most of the head and the TREs reported here rep-
resent the average over all marker locations. Markers were
however omitted from the far posterior regions to ensure
participant’s comfort and eliminate posterior marker dis-
placement while lying supine in the scanner.

Digitization

After markers were affixed, participants were digitized
with a Polhemus FastTrak1 3D digitizer (Colchester, VT;
accuracy 5 0.8 mm) using a recording stylus and three
head-mounted receivers (which automatically account for
small movements of the head without producing position
errors). The three fiducial points were digitized, followed
by the scalp markers (the center of the hole in the torus
markers was chosen). An additional 600 points were digi-
tized: 400 quasi-uniformly distributed across the head and
200 points from the face. Face points are considered
extremely important for expedient and accurate surface
registration. In fact, the added contour of the face
improves the fitting routine because it is here that the
head departs most clearly from sphericity, and therefore
allows the fitting algorithm to quickly converge on unique
and appropriate solutions. These points were used both
for surface registration and for computation of the residual
error. Examples of the digitized points from one subject,
overplotted over the corresponding surface structural
image, are presented in Figure 3.

MRI acquisition and marker identification

A structural MRI was recorded from each participant
immediately after digitization. Scans were acquired sagi-

Figure 2.

T-board stencil used to quickly and accurately locate right

(shown by white arrow) and left preauricular fiducial points.
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tally with a T1 weighted image on a Siemens 3T scanner
(TE 5 4.38 ms, TR 5 1800 ms, flip angle 5 88) with 144 sli-
ces, in-plane resolution of 1.3 mm 3 0.9 mm and out-of-
plane resolution of 1.2 mm.
The IZI1 markers were then identified in the MR images

and their coordinates transcribed manually by the first
author. To assess the reproducibility of marker identifica-
tion the procedure was repeated five times on the markers
of one participant. We then computed the standard devia-
tion of the marker position on each space coordinate (x, y,
and z). The average of these three standard deviations was
found to be 0.74 mm. Thus, marker identification contrib-
utes less than 1 mm to the overall registration error.

RESULTS

The effects of various coregistration procedures on
errors are summarized in Table I, where the means and
standard deviations of the TRE, FRE, and RE are reported
for different coregistration methods across the six subjects.
The use of all three types of error (TRE, FRE, and RE)
allows us not only to determine which registration tech-
nique is the most accurate, but also to evaluate the utility
of the three types of error assessment. We consider the
TRE as the most useful and unbiased estimate of map
error, albeit of its upper boundary. For any given registra-

tion method, RE is in general smaller than TRE: for exam-
ple, the RE of the fiducial fit was 2.8 6 0.6 mm compared
with a TRE of 8.7 6 2.7 mm (Table I). This discrepancy in
the two error measures illustrates the importance of not
relying too heavily on the RE alone. The third measure of
error, the FRE, was in between the other two at 3.8 6 1.6

TABLE I. Mean errors 6 SD for consecutive stages of

the coregistration procedures using the moment and

least-squares method for the initial guessa

Coregistration procedure

Initial fit

Moment Least-squares

Target registration error (TRE)
Initial fit 47.1 6 4.7 8.7 6 2.7
Surface 25.8 6 32.6 4.9 6 0.5
Scaling 25.1 6 32.5 4.6 6 0.4
Scalp forcing 25.0 6 32.9 4.4 6 0.6

Fiducial registration error (FRE)
Initial fit 59.8 6 10.3 3.8 6 1.6
Surface 24.4 6 28.5 6.8 6 1.9
Scaling 23.7 6 28.1 6.7 6 1.7
Scalp forcing 21.9 6 26.3 5.9 6 1.4

Residual error (RE)
Initial fit 13.2 6 1.5 2.8 6 0.6
Surface 3.9 6 3.6 1.6 6 0.1
Scaling 3.5 6 3.4 1.4 6 0.1
Scalp forcing 0.0 6 0.0 0.0 6 0.0

a Three assessments of error are reported.

Figure 3.

Example of digitized image coregistered with a corresponding

surface MR rendition. The digitized image comprised 632 points

recorded with a Polhemus1 digitizer, including three fiducials

(LPA, RPA and nasion IZI1 markers; red dots), 29 scalp markers

(torus-shaped IZI1 markers, white dots), and 600 face and scalp

points (digitized green dots).

Figure 4.

Example of misalignment associated with small RE between digi-

tized data set and MR image from one subject, when using

moments-based alignment followed by surface fitting.
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mm. The three measures of error for the explicit fiducial fit
all differed significantly from one another (F(2,10) 5 23.88,
P < 0.0005), illustrating the importance of multiple means
of error assessment.

Initial Guess

Here we evaluate what is the best procedure to produce
the initial ‘‘guess’’ to be used in the fitting procedure. Two
common methods were evaluated: least-squares fiducial
fit, and moment matching. The average TRE varied widely
between these methods, with the moment-matching
method yielding errors (47.1 6 4.7 mm) that were signifi-
cantly higher than the least-squares method (8.7 6 2.7 mm),
t(5) 5 13.46, P < 0.0005.
The lower performance of the moments method is likely

due to the difficulty of (1) digitizing points quasi-uni-
formly over the scalp such that their distribution results in
similar centroids and moments compared with the MRI
segmented scalp; and (2) uniquely matching ellipsoidal
heads containing two axes of similar lengths (inferior-
superior and left-right)—an effect apparent upon visualiza-
tion of rendered images, whereby occasional large rota-
tions about the anterior-posterior axis were obvious even
after surface alignment (see, for example Fig. 4). Interest-
ingly, however, the RE for the moments method was 13.2 6

1.5 mm, implying a reasonably good fit, and consistent
with previous data reported using this method [Kozinska
et al., 2001]. This suggests that the discrepancy between
the two measures was the result of the ability to rotate an
ellipsoidal head about certain axes without a dramatic
increase in residual error.

Surface Fit

Using the explicit rotation fiducial fit as a starting point
for surface fitting significantly reduced the TRE (from 8.7 6

2.7 mm to 4.9 6 0.5 mm; t(5) 5 3.75; P < 0.01 one-tailed)
compared to performing a fiducial fit alone. The RE also
decreased from 2.8 to 1.6 mm (t(5) 5 4.62, P < 0.005 one-
tailed). Despite the improved fitting of the TRE and RE,
the FRE worsened significantly from 3.8 to 6.8 mm (t(5) 5
5.34, P < 0.005 one-tailed). This further illustrates that a
high FRE does not necessarily indicate poor registration
and vice versa.
When the moments-matching technique was used as an

initial guess for the surface fitting procedure, we observed
an interesting phenomenon: four out of six participants
converged, with an error of 5.5 6 0.5 mm. However, two
out of the six did not, with a 66.9 6 22.3 mm error despite
having similar initial errors. Furthermore, the average RE
for the non-converging participants was 8.1 mm, which
could be easily misinterpreted as an acceptable fit and
thus is a prime example of the local minimum problem in-
herent to residual-error algorithms. This again indicates
that goodness of fit based solely upon RE should be inter-
preted with caution. Even when we restricted the analysis

to the participants who showed convergence with the
moments technique, the error after moment and surface
fitting was still significantly higher (0.5 mm; t(3) 5 3.53, P
< 0.05 one-tailed) than that for the same participants after
fiducial method and surface fitting. This implies both that
within certain boundaries the surface algorithm is able to
converge near the appropriate global minimum and that
an advantage is still gained by an appropriate choice of
initial fit.
To determine the optimal rigid-body transform for the

marker points, we applied the explicit least-squares fit
[Arun et al., 1987] to align digitized marker points to their
corresponding MR marker coordinates. The FRE based
upon all torus-shaped markers being used as fiducials was
3.7 6 0.3 mm, thus demonstrating that the fiducial fit fol-
lowed by the surface registration technique converges
within 1.2 mm of the rigid body limit (range 5 4.9–3.7
mm). Although significant (t(5) 5 5.21, P < 0.005 one-
tailed), this small error (which is on the order of marker
identification precision, MRI resolution, and digitization
precision) indicates the appropriateness of the Marquardt–
Levenberg-based algorithm to converge to the global mini-
mum, given an appropriate initial condition. In sum, pro-
viding an accurate initial starting point followed by a sur-
face fitting procedure significantly reduces registration
errors.

Scaling and Scalp Forcing

To further refine the fit, we implemented two non-rigid
procedures: scaling and scalp forcing. Although each
improved the data over the rigid fit on their own (scaling:
0.3 mm, t(5) 5 1.94, P 5 0.055 one-tailed; forcing: 0.4 mm,
t(5) 5 2.04, P < 0.05 one-tailed) the combination of the
two produced the smallest error, with a TRE of 4.4 6 0.6
mm (0.5 mm, t(5) 5 2.16, P < 0.05 one-tailed). The slight
reduction in TREs using these procedures suggests that we
are near the limits of resolution using cutaneous fiducials,
as mentioned earlier. By contrast, the REs are not as sensi-
tive to slight scalp displacements and therefore also show
improvement upon scaling but do so in a more consistent
manner (0.2 mm, t(5) 5 7.25, P < 0.001 one-tailed). The RE
of the scalp forcing is not meaningful here. In fact, by defi-
nition, the RE is zero because forcing to the closest point
makes each digitized point have the coordinates of one of
the scalp points.
Errors attainable using the aforementioned procedures

were quite small, but they were, however, significantly de-
pendent upon a number of parameters. In the next sections
we will examine some of these parameters to provide
guidelines for the coregistration method.

Scalp Threshold

As mentioned previously, the scalp threshold is a pa-
rameter set by the user during the segmentation process,
which varies over scans and participants. As the choice of
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a scalp threshold is made by the investigator, it is useful
to know how it may influence the coregistration process.
In fact, both the TRE and RE are dependent upon the
choice of scalp threshold, as shown in Figure 5.
Selection of an appropriate scalp threshold that comes

within a couple millimeters of the actual minimum can be
done with minimal training. For instance, eight individuals
were given brief (�10 min) training on threshold selection.
The mean error for optimal scalp threshold selection was
0.08 mm as measured by the difference in TRE corre-
sponding to the threshold selected as compared to the
optimal threshold.

Number of Points

The number of digitized points and the number of scalp
points used for the surface fitting procedure also have a
profound impact on errors (Fig. 6) as repeatedly demon-
strated [Kozinska et al., 1997; Maurer et al., 1998; Noir-
homme et al., 2004; Schwartz et al., 1996]. In principle, the
number of digitized head points should be as many as
possible. Increasing the number of points narrows the
upper- and lower-bound estimates (TRE and RE respec-
tively) of the error. In practice, diminishing returns exist
beyond 300 points, as the TRE function approaches an as-
ymptote at this level. It is also important to note that,
whereas the TRE decreases with the number of points (as
can be expected), RE actually increases when few points
are used. This is because when a very small number of
points are used (say, three), it will almost always be possi-
ble to fit a surface through them with little or no error, in-
dependently on whether the fit is ‘‘real’’ or artifical. Only
when the number of points is sufficiently large (more than
80 in our case), the real dependence of the fit on the num-
ber of points can be evaluated. Therefore, a small number
of registration points give a false sense of accuracy by min-
imizing the RE while, in fact, the best estimate of true map
error—the TRE—is quite large. These findings further bol-

ster the claim that RE, when used in isolation, is an unreli-
able estimate of coregistration error.

Error Function

A critical feature of the minimization algorithm is its
robustness—the range of initial mis-registrations from
which the algorithm converges to an appropriate solution.
To assess this property we used the following procedures
to generate an error function for one representative subject
(Subject 6): (1) We aligned the digitized data set to the
MRI data set via a fiducial and surface fit and recorded
TRE and RE; (2) We artificially misaligned the data set by
a known amount in one dimension of translation or rota-
tion and record TRE and RE; (3) We realigned the data set
and recorded TRE and RE; (4) We repeated these proce-
dures (steps 2–3) to systematically assess the effects over a
wide range of misalignments.
The effects of initial translation and rotation misalign-

ments on TRE and the RE both before and after realign-
ment are shown in Figure 7. This figure only includes data
from one axis of translation and one angle of rotation (the
other two are not shown but produced very similar
results). The figure indicates that the algorithm converges
to within a few millimeters of the global minimum from a
wide range of displacement values (6100 mm) and rota-
tion angles (6508). Also, the functions are very smooth,
containing only one minimum over a wide range of start-
ing values, providing greater confidence in the conver-
gence.
It is important to note that whereas such plots bolster

evidence for the smoothness and robustness of the error
function, they are not conclusive. To obtain conclusive evi-
dence, error information about the six-dimensional hyper-

Figure 5.

TRE and RE dependence on scalp threshold value, obtained after

fiducial and rigid body registration.

Figure 6.

TRE and RE dependence on number of digitized points.
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surface would have to be acquired. Higher dimensional
error surfaces may in fact be more ‘bumpy’ revealing local
troughs and may explain the local minimum entrapment
we sometimes observed with the moment-matching tech-
nique (see Fig. 4). However, such a mathematical treat-
ment of higher order space is beyond the scope of this pa-
per. Two-dimensional surfaces (not shown) were plotted
and, as in the unidimensional case, also reveal that the
error function is smooth and contains a unique minimum.

DISCUSSION

Comparison With Published Registration Errors

and Techniques

The data and techniques tested in this study deliver
errors that are comparable or smaller than other estab-
lished non-invasive techniques. Although strictly limited
to surgical patient studies, the most reliable and accurate
technique involves bone-implanted fiducial registration,
which thus provides ‘‘gold standard’’ lower-bound esti-
mates to evaluate the accuracy of surface-based coregistra-
tion methods. In fact, with implanted markers and under
the right conditions, FREs and TREs with submillimeter
precision can be achieved [Labadie et al., 2004]. It is im-

portant to note, however, that such accuracy usually in-
volves optical digitization instrumentation, head restraints,
and algorithms to precisely locate the centroids of the
markers. Further, they are based on CT scans, which do
not have the issues of magnetic susceptibility, gradient
inhomogeneities, and chemical shift that can distort the
images of fatty markers on the scalp by 1–2 mm in MR
images. When a direct comparison was made on MR
images, Ammirati et al. [2002] found only a small im-
provement in bone implanted markers as compared to
skin markers (average FREs of 2.25 and 2.76 mm were
obtained, respectively).
In the case of research in functional neuroimaging, we

are restricted to non-invasive procedures involving cutane-
ous fiducials and application of surface fitting approaches.
Surface fitting is inherently a multiple non-linear regres-
sion case, subject to the problem of local minima. This, in
our case, translates in an inappropriate fitting between the
recording locations obtained through digitization and the
corresponding scalp points (see Fig. 3 for an example). To
minimize the probability of hitting a local minimum, it is
important to generate a ‘‘good’’ initial guess. In our study
we investigated two methods for providing an initial
guess: one based on a moment-matching method and the
other based on the use of fiducials.

Figure 7.

TRE and RE error functions as a result of misalignment along one translation axis and rotation

angle, for one representative subject. The error estimates ‘‘before alignment’’ are indicated by

solid lines; those ‘‘after alignment’’ are indicated by dashed lines.
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The moment-matching method provided REs of 13.2 and
3.9 mm before and after surface alignment, respectively,
which are consistent with the 11.1–14.9 mm and 2.6–6.2 mm
ranges reported by others [Kozinska et al., 2001]. However,
these values contrast with large TRE in at least some of
the subjects: two of the six participants had an average
TRE of 66.5 mm after alignment, even though their aver-
age RE was 8.1 mm, well within the range commonly
reported for these values. From this we draw two conclu-
sions: (1) moments matching can be inaccurate and unreli-
able, especially if used in an automated fashion; and (2)
RE is not a valid measure of registration accuracy when
used in isolation.
The fiducial fit provides a better initial guess than

moment matching in terms of accuracy and reliability, and
can be performed reasonably quickly with no or minimal
discomfort for the participant. Most commonly the fiducial
fit is accomplished via skin markers or bite-bars. A direct
comparison between the two methods has been done
[Adjamian et al., 2004; Singh et al., 1997], with the bite-bar
methods consistently showing smaller spreads in map
error (FRE) upon repeated digitization and alignment.
However, such results are expected from a rigid frame
and would occur even if the bite-bar changed position
between recordings. Although Adjamian et al. [2004] have
shown that the bite-bar is displaced very little (<0.5 mm)
when reinserted, no functional improvements in dipole
confidence volumes for MEG median nerve stimulation
were found. Additionally, bite-bars can be uncomfortable
for the participant. Reducing the spread in errors is ulti-
mately important for alignment accuracy and reliability.
Instead of accomplishing this via a bite-bar, we chose to
manufacture a stencil, the T-board (Fig. 2), that can quickly
and accurately locate LPA and RPA. A comparison of indi-
viduals coregistered with the T-board and individuals cor-
egistered with the old manual tactile method revealed a
significant decrement in average FRE and in the standard
deviation of the error. This method therefore shows prom-
ise as a reliable marking technique to reduce FRE and FRE
variance while maintaining a reference frame that is
affixed to the head of the subject.
In most instances where fiducial registration is used, the

only error information available is the FRE. Overall, our
cutaneous fiducial fit shows FREs comparable to or smaller
than those reported by others [Noirhomme et al., 2004;
Sinha et al., 2006].
By using more information than just a handful of fidu-

cial markers, surface alignment can incorporate thousands
of points and improve data registration. The fiducial
method followed by a surface fit yielded significant
improvements in TRE and RE. The REs reported were
comparable to or smaller than those reported by other
researchers [Huppertz et al., 1998; Kozinska et al., 2001;
Lamm et al., 2001; Noirhomme et al., 2002, 2004; Schwartz
et al., 1996; Wang et al., 1994]. In such studies, TREs are
usually confined to simulations that do not include many
of the errors present with actual measures taken in a labo-

ratory environment. However, one comparable investiga-
tion incorporated 5–6 fiducial markers for cross-validation
with surface registration in a fashion similar to our design
[Brinkmann et al., 1998]. They reported map errors of 3.3–
6.2 mm which are consistent with our findings.
Scaling and scalp forcing were also employed. Scaling

has been shown to improve localization by 0.5–2.0 mm
[Maurer et al., 1996; Schwartz et al., 1996]. Likewise, we
observed a marginally significant improvement of 0.3 mm
with scaling. To our knowledge, the scalp forcing tech-
nique has not been used by others. Here too, we showed a
small (0.4 mm) but statistically significant improvement.
Within any registration technique, the ultimate goal is to

find the set of parameters and procedures that reduce
error. One such parameter is the number of scalp points.
Obviously more points are better, but there is a practical
tradeoff with digitization time. We find that the asymptotic
limit is approached by 200–300 points (Fig. 6). Similar sta-
bility of the error function past a couple hundred points
has also been shown by others [Bulan and Ozturk, 2001;
Kozinska et al., 1997; Maurer et al., 1998; Noirhomme
et al., 2004]. Another technique that has been suggested is
the deletion of outliers either before or during algorithm
iterations. Although some have justified its use based on
theoretical considerations alone [Kozinska et al., 2001] and
others have shown reductions in RE with simulations that
incorporate erroneous points [Schwartz et al., 1996], no
evidence on real data sets or on TRE have been shown.
When outliers were removed from our data, we found a
negligible reduction in RE of 0.03 mm, and a non-signifi-
cant increase in TRE of 0.08 mm. By definition, removing
outlier points as measured by closest-point distance to the
scalp surface must reduce the RE, as we in fact observed.
However, note that this result does not translate to a
reduction of the real mapping error (TRE). As we have al-
ready shown when discussing the effects of varying the
number of points used for fitting, RE and TRE are not nec-
essarily linked. In fact, removal of the outliers, in our case,
produced a similar effect as reducing the number of points
used for the surface fitting. This suggests that outlier re-
moval may in fact increase capitalization on chance, per-
haps because the points deemed to be ‘‘outliers’’ actually
belong to the normal error distribution, and should not be
eliminated. Further, the robustness analysis we reported
(Fig. 7) indicates that these outliers should be of a very
large magnitude to actually influence the final results in a
significant manner.
Throughout this paper, we have touted the RE as being

the lower-bound estimate of the error and the TRE as the
upper-bound. Whereas this is the case in the application
described here, there may be exceptions. For instance, in a
scenario in which MRI scalp points are decimated causing
point gaps in the surface, it is possible that the surface fit
would converge on the same minimum keeping the TRE
constant but causing an increase in RE. This is also theo-
retically possible during scalp segmentation; a scalp repre-
sentation that is too deep would cause an increase in RE,

r Whalen et al. r

r 1298 r



and yet could still converge upon the translational and
rotational minimum, causing no ill effect on the TRE. In an
extreme cause, these situations could cause the RE to
become larger than the TRE. We mention these scenarios
here so that the idiosyncrasies between the two error
measurements can be more fully appreciated and under-
stood when interpreting coregistration accuracy.
It is common practice in studies of coregistration meth-

ods to assess registration errors by either RE or FRE. It is
less common for both to be assessed together and even
rarer to include a measure of the TRE. This of course is
due to the practical difficulty of having multiple assess-
ments and of computing the TRE. However, as shown in
this study, only measures of TRE can provide a real esti-
mate of registration error, and RE in particular can be mis-
leading. Nevertheless, RE and FRE, when used in conjunc-
tion with the TRE, can give useful clues to the sources of
registration error. Utilization of fiducial markers to assess
map error has proven vital in ascertaining realistic metrics
of registration error [Adjamian et al., 2004; Bednarz et al.,
1999; Brinkmann et al., 1998; Maurer et al., 1997, 1998;
Noirhomme et al., 2004; Sinha et al., 2006] and further pro-
gress hinges upon continued appropriate cross-validation
techniques.

Limitations

Our error estimates were obtained under conditions
which may not mirror completely those commonly used in
most experimental recordings. Because it was our aim to
reduce as many sources of errors as possible, fiducial
markers were not replaced between the digitization and
MRI sessions to minimize repositioning errors. As a conse-
quence, the TREs presented here are likely slightly smaller
than those more typically obtainable in a laboratory setting
using the same procedures.
Cutaneous scalp markers placed on bald participants

were a convenient method to assess TRE at multiple scalp
locations, but such marker positions shift and warp on the
surface of the head when in the MR scanner even when,
as in our case, attempts were made to minimize such dis-
placements. This was apparent in displacement periodici-
ties in the swaths of rows and columns of markers distrib-
uted across the head. To prevent discomfort, no markers
were placed in the far posterior regions of the head. There-
fore, we have no metric of the TRE for this area. Addition-
ally, errors reported here refer to the surface of the head
and do not include possible relative changes between scalp
and intracranial location, such as those due to change in
decubitus, respiration, pulsation, and so on. It should be
noted, though, that as we get closer to the centroid of the
structure we are measuring from (in our case the head),
the effects of mis-registration should diminish, and it is
likely that the center will be coregistered with a very good
accuracy [Fitzpatrick et al., 1998].
Gradient inhomogeneity corrections have been shown to

improve anatomical localization and registration [Bednarz

et al., 1999; Jovicich et al., 2004; Maurer et al., 1996]. A 2D
correction was implemented, but no improvement was
noted. Computer algorithms for 3D correction [Jovicich
et al., 2004, 2006] were not able to be customized for our
scanner and MR image acquisition sequence. It is therefore
possible that such corrections could provide additional
reduction in errors. Another error comes from chemical
shift in the MR images, which depends in part on the type
of marker used, the strength of the magnetic field, and
various recording procedures. Optimization of these meth-
ods may lead to an improved TRE.
Lastly, different scanner strengths may alter the degree

of accuracy obtainable using these methods. Weaker field
strengths may provide a slight disadvantage at precisely
recording marker locations due to poorer spatial resolu-
tion, whereas higher field strengths may distort marker
locations via the chemical shift or the large local field inho-
mogeneity encountered near the borders of the image (i.e.,
air–scalp interface) as a result of the high field strength
and large magnetic susceptibility differences between
neighboring voxels. The use of multiple MR detectors may
actually help address both of these issues.

CONCLUSION

Optimal multimodal image registration techniques are
essential to accurately compare functional data sets and
localize brain function to anatomy. In comparing the three-
point least-squares fiducial method to moment-matching
techniques, the fiducial-based approach was more precise,
yielding TREs of 8.7 6 2.7 mm. Combining a three-point
fiducial registration method followed by a surface-match-
ing approach and subsequent scaling and scalp forcing
yielded a further reduction in TREs down to 4.4 6 0.6 mm
with REs of 1.3 6 0.1 mm (without scalp forcing). Many
parameters such as the number of digitized points, the
number of scalp points, the selection of scalp thresholds,
as well as the initial guess proved to be crucial in obtain-
ing this level of accuracy. Given appropriate choices for
the above parameters, the error functions were stable, ro-
bust, and smooth providing reliability and confidence to
the procedures.
As we have demonstrated above, using either FRE or RE

can lead to overconfidence in registration accuracy. We
demonstrate multiple instances where TREs were not
adequately approximated by the more commonly used
REs or FREs, which raises concerns regarding the use of
these error estimates in isolation. For instance, we showed
that the RE can underestimate the error by several cm’s in
some subjects, that better fits can yield larger FREs, and
that there are a number of instances in which these error
estimates dissociate from each other. Hence, our data sug-
gest that in practice RE and FRE are frequently unreliable
and potentially misleading proxies for the TRE. We there-
fore advise using multiple error measures when assessing
coregistration methods, while always including a measure
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of the TRE in order to properly assess the accuracy and
precision of any registration procedure.
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