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3INRIA, IRISA Visages team, Campus de Beaulieu, Rennes Cedex, France

4INSERM, Visages-U746, IRISA, Campus de Beaulieu, Rennes Cedex, France

r r

Abstract: Digital atlases are commonly used in pre-operative planning in functional neurosurgical proce-
dures performed to minimize the symptoms of Parkinson’s disease. These atlases can be customized to
fit an individual patient’s anatomy through atlas-to-patient warping procedures. Once fitted to pre-oper-
ative magnetic resonance imaging (MRI) data, the customized atlas can be used to plan and navigate sur-
gical procedures. Linear, piece-wise linear and nonlinear registration methods have been used to
customize different digital atlases with varying accuracies. Our goal was to evaluate eight different regis-
tration methods for atlas-to-patient customization of a new digital atlas of the basal ganglia and thala-
mus to demonstrate the value of nonlinear registration for automated atlas-based subcortical target
identification in functional neurosurgery. In this work, we evaluate the accuracy of two automated linear
techniques, two piece-wise linear techniques (requiring the identification of manually placed anatomical
landmarks), and four different automated nonlinear atlas-to-patient warping techniques (where two of
the four nonlinear techniques are variants of the ANIMAL algorithm). Since a gold standard of the sub-
cortical anatomy is not available, manual segmentations of the striatum, globus pallidus, and thalamus
are used to derive a silver standard for evaluation. Four different metrics, including the kappa statistic,
the mean distance between the surfaces, the maximum distance between surfaces, and the total structure
volume are used to compare the warping techniques. The results show that nonlinear techniques per-
form statistically better than linear and piece-wise linear techniques. In addition, the results demonstrate
statistically significant differences between the nonlinear techniques, with the ANIMAL algorithm yield-
ing better results. Hum Brain Mapp 30:3574–3595, 2009. VC 2009 Wiley-Liss, Inc.
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INTRODUCTION

Functional neurosurgical procedures used to treat the
symptoms of Parkinson’s disease and other movement dis-
orders require careful identification of subcortical surgical
targets. These procedures include creation of lesions in the
thalamus (thalamotomy) [Atkinson et al., 2002; Duval
et al., 2005; Lenz et al., 1995; Otsuki et al., 1994], the
globus pallidus (pallidotomy) [Cohn et al., 1998; Gross et
al., 1999; Lombardi et al., 2000; Starr et al., 1999] as well as
the introduction of deep brain stimulation (DBS) electrodes
in the thalamus, globus pallidus, or the subthalamic nu-
cleus (STN) [Bardinet et al., 2005; Chakravarty et al.,
2006b; D’Haese et al., 2005a,b; Eskandar et al., 2001; Guo
et al., 2005; Krause et al., 2001; Sanchez Castro et al., 2005;
Starr et al., 1999]. Despite recent advances in medical
imaging techniques, which allow improved visualization
of the thalamus [Behrens et al., 2003; Deoni et al., 2005;
Johansen-Berg et al., 2005] and the STN [Bejjani et al.,
2000; Benabid et al., 2002; Starr et al., 1999], most clinical
magnetic resonance imaging (MRI) volumes lack the
adequate contrast and resolution required to properly vis-
ualize these subcortical subnuclei (particularly in the thala-
mus). In addition, to establish a coordinate system within
the patient’s head, volumes may be acquired with a stereo-
tactic head-frame attached to the patient’s skull. The size
of the head-frame may necessitate the use of a body coil
during MRI acquisition, resulting in a further reduction of
contrast-to-noise ratio. This affects the surgeon’s ability to
distinguish different subcortical nuclei directly for surgical
planning (see Fig. 1).

Originally, print atlases based on anatomical and histo-
logical data were used to guide functional neurosurgical
procedures [Ono et al., 1990; Schaltenbrand and Wahren,
1977; Talairach and Tournoux, 1988]. However, digital
atlases have proven to be useful in surgical planning and
guidance as they can be customized to pre-operative

patient data. Digital atlases of the thalamus and basal gan-
glia are often used to enhance pre-operative data and to
suggest the location of subcortical targets [Bardinet et al.,
2005; Bertrand, 1982; Bertrand et al., 1973, 1974; Chakra-
varty et al., 2005, 2006b; D’Haese et al., 2005a,b; Finnis
et al., 2003; Ganser et al., 2004; Guo et al., 2005; Nowinski
et al., 1997, 2000; St-Jean et al., 1998; Xu and Nowinski, 2001].

Typically atlas-to-patient transformations used to custom-
ize the atlas-to-patient MRI data are estimated using one
of two methods. The first is a direct atlas-to-patient regis-
tration of a reconstructed print atlas, where anatomical
structures on the atlas are directly matched to the same
structures in pre-operative images [Ganser et al., 2004;
Nowinski et al., 2000; Xu and Nowinski, 2001]. This type
of digital atlas creation and warping was pioneered at the
Montréal Neurological Institute in work done by Bertrand,
Olivier, and Thompson [Bertrand et al., 1973, 1974; Ber-
trand, 1982] in the early 1970s. In their original work, a
digitized version of the Schaltenbrand and Bailey atlas
[Schaltenbrand and Bailey, 1959] was matched directly to
an intra-operative ventriculogram imaging reference. The
second atlas-to-patient customization method starts with a
set of anatomical atlas contours, pre-aligned to an MRI
template. A transformation is then estimated between the
template MRI and patient’s MRI. Once this template-to-

patient transformation is estimated, the transformation is
then applied to the anatomical atlas contours, thus custom-
izing it to patient’s anatomy. Thus the atlas-to-patient
registration problem is reduced to matching an atlas to a
template MRI (estimated only once) and is followed by a
standard MRI-to-MRI registration problem (for each
patient) [Bardinet et al., 2005; Chakravarty et al., 2005;
D’Haese et al., 2005b; Sanchez Castro et al., 2006; Yelnik
et al., 2007].

Recent work has examined the accuracy of different
registration techniques used to estimate the atlas-to-patient

Figure 1.

Example of pre-operative MRI volume with headframe affixed to patient. Left: Sagittal view. Mid-

dle: Coronal view. Right: Axial view. Image volume shows lack of contrast in the subcortical

nuclei. Surgical targeting is extremely difficult in these nuclei as a result. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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transformation. Bardinet et al. [2005] reconstructed a set of
serial histological data and warped this data set to T1- and
T2-weighted reference MRIs using only linear transforma-
tions. Contours of structures in the basal ganglia and the
mesencephalon were manually traced on the histology to
allow for improved visualization of the anatomy. The atlas
was then customized to patient pre-operative data and
used to predict the location for the implantation site of the
STN DBS stimulator. Using a hierarchical registration
strategy, a rigid body transformation was estimated to
match the template MRI to the patient MRI. The transfor-
mation was then improved by estimating a subsequent
affine transformation matching the cropped region of the
basal ganglia and thalamus. The target location suggested
by the atlas was then correlated with intra-operative elec-
tro-physiological findings to evaluate the accuracy of the
atlas customization. This group recently reported details of
the techniques used for the acquisition and the reconstruc-
tion of the histological data used to create the atlas [Yelnik
et al., 2007].

D’Haese et al. [2005b] have developed an atlas using
electro-physiological intra-operative recordings from the
STN registered to a template created from the average of
pre-operative data. This choice of template was later
refined [D’Haese et al., 2005a] to a single MRI template
based on the best prediction of the final DBS location
when using a warping algorithm based on radial basis
functions to estimate the nonlinear template-to-patient
transformation [Rohde et al., 2003].

The use of expert identification of surgical targets was
used to create an atlas for STN DBS targeting by Sanchez
Castro et al. [2005, 2006], in which two experts manually
identified the ideal location for STN DBS placement on
clinical MRI data. The raters repeated the labeling on five
separate occasions to minimize intra-rater error. The final
atlas was created by averaging the optimal target points
and then transforming the average position to a single
pre-operative MRI reference volume. Four different regis-
tration techniques were evaluated (Schaltenbrand and
Wahren [1977], affine transformations [Maes et al., 1997],
Demons [Thirion, 1998], and B-splines [Rueckert et al.,
1999]). The quality of atlas-to-patient transformations was
assessed using the correspondence to the actual target
point identified in post-operative data. Their study found
that the Demon’s algorithm was most accurate when
adapted to match semi-automated segmentations of easily
identified surrounding structures (the lateral and third
ventricles, and the inter-peduncular cistern).

Though not in the context of atlas warping, other evalu-
ations of registration techniques have been performed.
Robbins et al. [2004] used the minimization of entropy
between segmented MRI volumes as a technique for the
optimization of nonlinear registration parameters of the
automatic nonlinear image matching and anatomical label-
ing algorithm (ANIMAL) of Collins et al. [Collins and
Evans, 1997; Collins et al., 1995]. In a broader study, Hel-
lier et al. [2003] studied the accuracy of commonly-used

nonlinear registration techniques using several different
criteria including: global volume, overlap of different seg-
mented tissue classes, curvature of the iso-intensity surfa-
ces, consistency of the nonlinear deformation, as well as
quantitative and qualitative evaluation of sulci after non-
linear warping.

Despite the availability of nonlinear atlas customization
techniques, subcortical target identification in functional
neurosurgical procedures is often performed using one of
two methods: (1) semi-automatically estimated linear or
piece-wise linear transformations [Nowinski et al., 2003] or
(2) through the manual identification of targets with
respect to absolute distances from easily identified subcort-
ical landmarks (e.g., the midpoint of the anterior commis-
sure or the red-nucleus) [Benabid et al., 2002;
Schaltenbrand and Wahren 1977]. The goal of this work
was to compare eight different techniques for atlas-to-
patient warping to demonstrate the value of nonlinear
registration techniques by determining which transforma-
tion model provides the most accurate atlas-based identifi-
cation of subcortical structures normally targeted in
functional neurosurgical procedures.

While a comparison of all possible registration proce-
dures is beyond the scope of this paper, we focus on eight
registration strategies here. These include two linear, two
piece-wise linear and two nonlinear techniques that are
compared to two variants of our ANIMAL nonlinear regis-
tration algorithm [Collins and Evans, 1997; Collins et al.,
1995]. The two linear techniques use 9-parameter (3 trans-
lation, 3 rotation and 3 scales) and 12-parameter (3 transla-
tion, 3 rotation, 3 scales, and 3 shears) affine mappings
since these transformation models are most often used for
linear transformations in many publicly available software
packages such as SPM [Friston et al., 1995], FSL tools
[Smith et al., 2004], AIR [Woods et al., 1998a,b] and the
mni_autoreg MINC toolbox [Collins et al., 1994, 1995;
Neelin et al., 1998]. The two manual piece-wise linear tech-
niques include the classic landmark-based Talairach map-
ping [Talairach and Tournoux, 1988] and Nowinski’s
implementation [Nowinski et al., 2003]. The former was
chosen because it was the standard procedure for target
planning and continues to be used in many centers. The
latter was chosen because it is similar to targeting techni-
ques reliant on the manual identification of subcortical
landmarks used in many centers [Benabid et al., 2002].
Since linear transformations cannot account for all possible
anatomical variability, we wanted to evaluate the improve-
ment in targeting accuracy when using nonlinear transfor-
mations. We choose to include the cosine-basis function
based procedure of SPM [Friston et al., 1995a] because it is
one of the most cited techniques in the literature and
many readers will be familiar with its performance. We
included Hellier’s ROMEO technique [Hellier et al., 2001],
because it has already been compared to ANIMAL [Col-
lins et al., 1995], Demons [Thirion, 1998], inverse consistent
linear elastic registration [Christensen and Johnson 2001]
and others. Finally, we included two optimized versions
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of our ANIMAL procedure [Collins and Evans, 1997; Col-
lins et al., 1995]. We did not include other nonlinear tech-
niques here because (1) our goal was to show that in
general, nonlinear techniques are better than linear or
piece-wise linear transformation models, and (2) we did
not have expertise to tune other algorithms, and thus felt
that a comparison with the optimized version of ANIMAL
might be unfair.

Given that a proper gold standard for inter-subject regis-
tration is ill defined, we decided to use structure align-
ment to evaluate the different registration strategies. In
many clinical situations surgeons, residents, or technicians
manually identify subcortical structures and targets during
the pre-operative planning process. As such, manually la-
beled structures definitions from eight pre-operative MRI
volumes were used to create silver standards for evalua-
tion purposes. Labels of the globus pallidus, striatum, and
thalamus from a digital atlas of the subcortical nuclei
[Chakravarty et al., 2006a] (see below) were customized
using six different fully-automated and two semi-auto-
mated techniques and subsequently evaluated against the
silver-standards. This evaluation criterion along with the
use of real pre-operative data follows the suggestions of
Jannin et al. [2006] for the validation and evaluation of dif-
ferent medical image processing algorithms and techni-
ques in the clinical context. In their work they advocate
close mimicry of the intended clinical situation during the
evaluation process.

METHODS

In this section, the digital atlas, the different registration
techniques, and the evaluation criteria are described.

Atlas of the Basal Ganglia and Thalamus

For structure identification, a bilateral version of a new
high-resolution anatomical atlas containing multiple regis-
tered representations of 105 subcortical grey and white
matter structures [Chakravarty et al., 2006a] was used.
While it might be possible to use atlases based on man-
ually labeled MRI data, such atlases do not contain the
detail needed to identify surgical targets such as subnuclei
of the thalamus. The atlas data used here was derived
from 84 sections of manually segmented serial histological
data. The atlas combines nomenclature from three sources
for gross-anatomy [Schaltenbrand and Wahren, 1977], thal-
amus [Hirai and Jones, 1989], and temporal lobe [Gloor,
1997]. The histological data used for the atlas was origi-
nally reconstructed using the technique described in
[Chakravarty et al., 2003] and later optimized in [Chakra-
varty et al., 2006a]. The multiple representations of the
atlas include (1) a set 84 slices of registered histological
data, (2) a set of 105 3D geometrical objects representing
the anatomical structures of the atlas, and (3) a 3D volume
(with 250 � 250 � 250 lm voxels) containing a voxel-label

atlas, where each voxel is assigned a unique label corre-
sponding to the corresponding anatomical structure. All
three datasets are defined in the same coordinate system
are aligned together.

Since MRI of the anatomical data was not acquired
before the histology was prepared, we decided to use the
Colin27 average MRI volume as a template for the atlas
[Holmes et al., 1998]. The MRI and histological data
needed to be registered together, since they did not come
from the same source. To estimate the nonlinear atlas-to-
template transformation, a pseudo-MRI was created by
modifying the intensities of the voxel-label atlas to match
those of the Colin27 average MRI. The ANIMAL algorithm
was used to align the atlas pseudo-MRI data with the real
MRI volume, thus registering the atlas data with the
Colin27 MRI template [Chakravarty et al., 2006a].

The different atlas representations (histological, voxel-
label, pseudo-MRI, geometric) can be viewed together or
separately. These representations, along with the Colin27
MRI template can be seen in Figure 2. The atlas and our
atlas-to-template and atlas-to-patient warping were chosen
because they have recently been validated in [Chakravarty
et al., 2008a] and cross-validated against fMRI activations
in [Chakravarty et al., 2008b].

Atlas-to-Patient Warping

In order to properly identify the subcortical anatomy of
a given patient, the atlas must be customized (or warped)
to effectively match the patient’s morphology. The linear,
piece-wise linear, and nonlinear techniques evaluated for
atlas-to-patient warping are described in more detail here.

Linear techniques

The 9- and 12-parameter transforms were used to pro-
vide a baseline for all evaluation metrics since such trans-
formation models are used in many publicly available
software packages. Our assumption was that regardless of
the choice of linear registration algorithm, nonlinear regis-
tration would improve the quality of the labeling of sub-
cortical structures.

LSQ9. The different automatic linear transformations were
estimated using the optimization scheme available in the
mni_autoreg package (packages.bic.mni.mcgill.ca) [Collins
et al., 1994]. Both cases start with the estimation of a 7-
parameter linear transformation (3 translations, 3 rotations,
and one global scale) that best aligns the source and the
target volumes by maximizing the correlation of blurred
MRI intensities and gradient magnitude evaluated over
the whole brain. Further refinement is achieved by esti-
mating a 9-parameter transformation through the maximi-
zation of the correlation of gradient magnitude data,
(again over the whole brain) using a simplex optimization
technique. Details of the size of the Gaussian kernel and
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Figure 2.

Coronal and axial representation of the atlas described in Atlas

of the Basal Ganglia and Thalamus. A: Original coronal section

from the histological dataset. B: Reconstructed transverse slice

through the histological volume. C, D: Voxel-label atlas repre-

sentation of the atlas. E, F: Pseudo-MRI representation of the

atlas. G, H: Close-up of the Colin27 MRI template in the region

of the basal ganglia and thalamus. I–K: Coronal, sagittal, and

axial views of the atlas warped to fit the Colin27 template. L:

The geometric representation of the atlas that can be manipu-

lated in 3D.
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the type of data used at each step of the fitting procedure
are given in Table I.

LSQ12. The nine-parameter transformation estimated
above is used as the starting point to estimate a 12-par-
meter transformation which maximizes the correlation of
the gradient data, evaluated over the whole brain. Details
of the size of the Gaussian kernel and data used at each
step are given in Table I.

Piece-wise linear techniques

Talairach. The Talairach transformation requires the man-
ual identification of twelve different landmarks on both
the atlas and patient data [Talairach and Tornoux 1988].
These 12 landmarks are listed below.

1. The posterior–superior margin of the anterior com-
missure (AC).

2. The anterior–inferior margin of the posterior com-
missure (PC).

3. The most superior point of the left parietal lobe.
4. The most superior point of the right parietal lobe.
5. The most posterior point of the left occipital lobe

(the occipital pole).
6. The most posterior point of the right occipital lobe

(the occipital pole).
7. The most inferior point of the left temporal lobe.
8. The most inferior point of the right temporal lobe.
9. The most anterior point of the left frontal lobe (the

frontal pole).
10. The most anterior point of the right frontal lobe (the

frontal pole).
11. The most lateral point of the left parietotemporal

lobe.
12. The most lateral point of the right parietotemporal

lobe.

These landmarks were identified by one of the authors
(MMC).

The line passing through the AC and PC landmarks
gives the main orientation of the brain. These landmarks
are used to divide the brain into two sections in the left-
right direction (between each lateral point defined on the
parietotemporal lobes and the AC–PC line). Each of these

subvolumes is further divided into two sections in the in-
ferior-superior direction (from the superior parietal point
to the AC–PC line, and from the AC–PC line to the infe-
rior temporal points) and three sections in the anterior-
posterior directions (one region from the frontal pole to
the AC, one region between the AC and PC, and one
region from the PC to the occipital pole), thus creating a
total of 12 piece-wise linear regions. See Figure 3 for the
definition of the AC–PC line, and the 12 regions.

In our implementation, the patient MRI data is trans-
lated and then rotated so the mid-sagittal plane is parallel
and coincident to that of the Colin27 template. Afterwards,
the patient data is rotated around the lateral (left-right)
axis going through the AC so that AC–PC line of the
patient overlaps with that of the atlas. In each of the 12
regions, the atlas was cropped and scaled in 3D in order
to normalize each region of the patient data with respect
to the homologous landmarks pairs.

In the Results and the Discussion sections, the abbrevia-
tion TAL will be used for the Talairach technique.

Probabilistic functional atlas. The second piece-wise lin-
ear technique was proposed by Nowinski et al. [2003] for
the creation of a probabilistic functional atlas for neurosur-
gical planning. The probabilistic functional atlas (PFA)
transformation is defined by six different landmarks:

1. The midpoint of the AC.
2. The midpoint of the PC.
3. The most superior point of the left thalamus.
4. The most superior point of the right thalamus.
5. The most lateral point left side of the third ventricle.
6. The most lateral point right side of the third ventricle.

One transformation is estimated for each hemisphere
using the following formulae

x0 ¼ x� Vpatient

2
� Vtemplate

2

� �
; y0 ¼ y�ACPCpatient

ACPCtemplate
;

z0 ¼ z� Tpatient

Ttemplate
ð1Þ

where (x0,y0,z0) represents a point in the patient space, (x,
y, z) represents a point in the atlas space, and (Vpatient,
ACPCpatient, Tpatient) and (Vtemplate, ACPCtemplate, Ttemplate)
represent the magnitude of the ventricle widths V, the
AC–PC line length ACPC and the height of the thalamus
T with respect to the AC–PC in the patient and Colin27
template respectively. Here the y and z coordinates are
scaled linearly for the size of the thalamus and ACPC line;
however there is only an offset in the x direction. Similar
to our implementation of the Talairach proportional grid
transformation, the patient data is rotated so the mid-sagit-
tal plane is parallel to that of the Colin27 template and
both volumes were rotated around the lateral axis going
through the AC and PC so that both AC–PC lines overlap.

TABLE I. Parameters used to estimate a 9-parameter

and 12-parameter atlas-to-patient transformation

Transformation type FWHM (mm) Data used

7 16 Intensity
7 8 Intensity
7 8 Gradient
9 4 Gradient
12 4 Gradient
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We will use the abbreviation PFA for referring to this
technique in the Results and Discussion sections.

Nonlinear techniques

For all nonlinear techniques the LSQ9 transformation
estimated for each MRI volume was first applied prior to
further refinement through nonlinear transformation esti-
mation. This allowed for a common starting point for the
four nonlinear registration algorithms evaluated.

SPM. The SPM registration technique refers to the nonlin-
ear registration technique [Friston et al., 1995a] provided
in the Statistical Parametric Mapping [Friston et al., 1995b]
toolbox (SPM5 was used in the experiments performed).
In their approach, a transformation dx matches a source S
to a target T volume using a set of smoothly varying spa-
tial basis functions:

dx ¼ xþ
X

dkb
q
k (2)

where �q
k(x) is an expansion of smoothly varying basis

functions. The source object can be transformed iteratively
using the following first order approximation:

S½dðxÞ� � SðxÞ þ
X

dkb
q
kðxÞ �

d½SðxÞ�
dx

(3)

Although any set of basis functions could be used, the
default SPM implementation of the nonlinear registration
algorithm uses discrete cosine transform (DCT) and a sixth
order expansion for the coefficients estimated at each con-
trol node using least-squares optimization procedure to
minimize the sum of squared differences. The default con-
figuration of the registration algorithm was used for all

experiments and uses both source and target volumes con-
volved with an 8 mm Gaussian kernel for transformation
estimation.

ROMEO. The Romeo registration method [Hellier et al.,
2001] is based on the optical flow hypothesis. The optical
flow algorithm expresses the registration process as the
minimization of a cost function depending on two terms: a
flow-based similarity measure, and a regularization term.
The optical flow hypothesis, introduced by Horn and
Schunck [1981], assumes that the luminance of a physical
point does not change when the point moves with the
flow: f(SþdS,x1)�f(S,x2) ¼ 0, where S is a voxel of the vol-
ume, x1 and x2 are the indices of the volumes (temporal
indices for a dynamic acquisition, indices in a database for
multi-subject registration), f is the luminance function and
d the expected 3D displacement field.

Generally, a linear expansion of this equation is pre-
ferred: rf(S,x)�dS þ fx(S,x) ¼ 0 where rf(S,x) stands for
the spatial gradient of luminance and fx(S,x) is the voxel-
wise difference between the two volumes. The resulting
set of undetermined equations has to be complemented
with some prior on the deformation field. This prior is
defined according to the quadratic difference of the defor-
mation field computed between neighbors. Using an
energy-based framework the regularization problem may
be formulated as the minimization of the following cost
function:

Uðd; f Þ ¼
X
s2S

rf ðs; xÞ � ds þ fxðs; xÞ½ �2 þ a
X

hs;ri2C
ds � drk k2 (4)

where S is the voxel lattice, C is the set of neighboring
pairs with respect to a given neighborhood V on S(hs,ri[C
, s [ V(r)), and � controls the balance between the two

Figure 3.

Left: The Talairach definition of the AC–PC line. Also shown are the divisions anteriorly and

posteriorly and in the superior–inferior directions. Right: The 12 regions defined by the Talairach

proportional grid system. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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energy terms. The first term is the linear expansion of the
luminance conservation equation and represents the inter-
action between the field and the data. The second term is
the smoothness constraint. In order to cope with large dis-
placements, a classical incremental multi-resolution proce-
dure was developed. A pyramid of volumes is constructed
by successive Gaussian blurring and subsampling. At the
coarsest level, displacements are reduced and the lineari-
zation hypothesis (linear expansion of the optical flow hy-
pothesis) can be used. At the subsequent resolution level
k, only an increment is estimated and used to refine esti-
mate from the previous level. Furthermore, at each resolu-
tion level, a multigrid minimization based on successive
partitions of the initial volume is achieved. A grid level is
associated to a partition of cubes. At a given grid level l, a
piece-wise affine incremental field is estimated. The result-
ing field is a rough estimate of the desired solution, and it
is used to initialize the next grid level. This hierarchical
minimization strategy improves the quality and the con-
vergence rate. For the experiments, the parameter � was
set to a relatively high value (5,000) to obtain a regular de-
formation field.

The abbreviation ROM will be used in the Results and
Discussion sections for the ROMEO algorithm.

ANIMAL-1. The ANIMAL algorithm is an iterative proce-
dure that estimates a 3D deformation field that matches a
source volume to a target volume. The algorithm is divided
into two steps. The first is the outer loop, where large
deformations are estimated on data that has been blurred
using a Gaussian kernel with a large full-width-at-half-
maximum (FWHM). These larger deformations are then
input to subsequent steps where the fit is refined by esti-
mating smaller deformations on data blurred with a Gaus-
sian kernel with smaller FWHM.

At each step of the outer loop, the ANIMAL algorithm
is applied iteratively in an inner loop to optimize the non-
linear transformation (N) that maximizes the similarity
between a source volume (S) and a target volume (T) with
the following objective function C:

CðS;T; NÞ ¼ bðS; T; NÞ þ CðNÞ; (5)

where � is the local similarity measure (i.e., the correlation
ratio) and C is the cost function. The cost function yields

large values for large deformations and smaller values for
smaller deformations, thus effectively penalizing the objec-
tive function when large deformations are estimated.

The nonlinear transformation is represented by a defor-
mation field that is iteratively estimated in the inner loop
using a two step process: the first step involves the estima-
tion of local translations for each node defined by optimiz-
ing Eq. (5) and the second is a smoothing step to ensure
that the deformation field is continuous and does not
cause stretching, tearing, or overlap. Three parameters can
be set which help define the quality of the nonlinear trans-
formation: the similarity (which balances the objective
function with the cost function), the weight (which deter-
mines the proportion of each local translation estimated at
one iteration that will be used at the next iteration), and
the stiffness (which determines the smoothness of the non-
linear deformation field). The similarity, weight, and stiff-
ness are all set to the same value for all iterations (0.3, 1,
and 1 respectively) according to the parameter optimiza-
tion of Robbins et al. [2004]. The final transformation esti-
mated was defined by vectors on a grid of equally spaced
nodes that are 2 mm apart. The reader is referred to
[Chakravarty et al., 2006a; Collins and Evans, 1997; Rob-
bins et al., 2004] for more details on these parameters.

ANIMAL-1 refers to the version of ANIMAL optimized
by Robbins et al. [2004]. The parameters used at each hier-
archical step are summarized in Table II. We will refer to
the ANIMAL-1 technique using the abbreviation A1 in the
Results and Discussion sections.

ANIMAL-2. Although similar to ANIMAL-1, ANIMAL-2
was the final nonlinear technique evaluated. There are two
main differences between ANIMAL-1 and ANIMAL-2.
While the Colin27 template is still used as the source vol-
ume, a cropped volume containing only the subcortical
nuclei is used to limit the transformation estimation to
reduce the computational burden of estimating a higher-
resolution transformation. The hierarchical nonlinear trans-
formation estimation of this technique outputs a final
transformation defined by vectors on a grid of equally
spaced nodes that are 1 mm apart. The parameters for
ANIMAL used for this template-based transformation esti-
mation are shown in Table III. We hypothesize that ANI-
MAL-2 will give better results than ANIMAL-1 due to the
higher resolution deformation.

TABLE III. ANIMAL parameters for high-resolution

template-based atlas-to-subject linear transformation

estimation in Method ANIMAL-2

Step
Step

size (mm)
Sublattice
diameter Sublattice Iterations

1 4 8 6 15
2 2 6 6 15
3 1 6 3 15

TABLE II. ANIMAL parameters used for template-

based atlas-to-subject nonlinear transformation

estimation in Method ANIMAL-1

FWHM (mm)
Step

size (mm)
Sublattice
diameter Sublattice Iterations

8 8 24 6 30
8 4 12 6 30
4 2 6 6 10
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Evaluation on Clinical Data

The following sections present the anatomical validation
data used for each registration technique used in this
study.

Subjects

The eight registration techniques used for atlas-to-
patient warping presented in the previous section were
evaluated using clinical T1-weighted pre-operative images
from 8 patients who had undergone thalamotomies (4
males and 4 females, 4 left and 4 right thalamotomies). All
MRIs were taken between 1997 and 2002 with the stereo-
tactic headframe attached using a Philips 1.5T MRI scan-
ner (Best, The Netherlands). Data was acquired with axial
slices with a 1 mm in plane voxel spacing and 1.5 mm
thick slices with TE ¼ 9 ms and TR ¼ 27 ms. Since the
headframe cannot fit inside the headcoil, scans were
acquired in the body coil. Informed consent was obtained
from all subjects involved in this study, and the ethics
board of the Montréal Neurological Hospital and Institute
approved the research protocol.

Anatomical validation

Since a gold standard for anatomical validation was not
available, manual structure segmentations were used to
evaluate the ‘‘goodness-of-fit’’ of the atlas-to-patient warp-
ing techniques. To estimate inter-rater variability, five
expert raters identified the striatum (the caudate nucleus,
the putamen, and the nucleus accumbens), the thalamus,
and the globus pallidus bilaterally in the patient MRI data.
All raters were trained according to rules developed by
the authors. As shown in Figure 1, patient scans acquired
with the head-frame in a body coil suffer from a lack of
contrast and resolution (making it difficult for the raters to
properly label the subcortical nuclei). To aid the raters, the
pre-operative scan used for diagnostic purposes was regis-
tered to the head-frame scan (using a rigid-body transfor-
mation [Collins et al., 1994]) and the two were averaged to
improve the signal-to-noise ratio and contrast to facilitate
the identification of the subcortical nuclei mentioned
above.

The abbreviation man will be used to identify the results
of manual segmentation in the Results and Discussion sec-
tions. When referring to specific manual raters, the abbre-
viation man1 will be used for Rater 1, man2 will be used
for Rater 2 and so forth.

Derivation of a silver standard

In the absence of an anatomical ‘‘gold standard’’ a series
of ‘‘silver standards’’ were created from the manual labels
in a leave-one-out fashion, where a single rater’s labels are
compared to a silver-standard developed through the
agreement of other labels (as described in Algorithm 1).

Essentially, voxels in the silver standard are set to one if at
least three of the four raters have labeled the voxel. This
was used to evaluate the registration-based atlas-to-patient
labeling of the 8 patients.

Algorithm 1: Technique for the derivation of the silver
standard for five manual raters

for subject do

for all raters ido

R ¼ set of all raters j 6¼ i

for voxel vj do

Silver ¼
1 if

X
vj � 3;

0 otherwise

8<
:

Evaluation Metrics

The kappa overlap metric

The labels defined by the atlas or a single rater (defined
as the test structure) are compared to a silver standard by
determining the level of overlap using the kappa metric
(j):

j ¼ 2a

2aþ bþ c
(6)

where � is the number of voxels common to the test struc-
ture and the silver standard, and (b þ c) represents the
sum of the voxels uniquely identified by either the test
structure or the silver standard. The kappa metric was
previously used in our validation work done in [Chakra-
varty et al., 2005, 2008a], where the sensitivity due to
simulated error was demonstrated. Typically, � � 0.7 are
deemed acceptable in the segmentation and classification
literature, but this value depends on the shape and size of
the structure. For objects with a high surface-to-volume ra-
tio, a lower value for kappa can be expected.

Distance metrics

Two different metrics based on the chamfer distance
[Borgefors, 1984] (an approximation of the more accurate
Euclidean distance [Duda et al., 2000]) were used. In both
cases, a positively signed distance map (on both the inside
and outside of each structure) was estimated using the bi-
nary labels for each of the three structures labeled in each
of the silver standards. This is similar to the implementa-
tion of VALMET of Gerig et al. [1998]. Contours were
generated from the test structure (data from the manual
rater or the labels created by one of the registration algo-
rithms) by using a single 26-connected voxel erosion of
the label data. These border voxels were intersected with
the distance maps to compute the two metrics.

The first metric is the mean distance, l, between the
voxel contours generated and the silver standard. This
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metric gives an idea of how well the structure borders
match. Values near zero indicate good agreement.

The second metric is the maximum distance, M, between
voxel contours and the silver standard. This metric was
used to approximate the symmetric Hausdorff distance. In
the case of this metric, we followed the same computation
as the symmetric Hausdorff distance: if M1 ¼ H(a,b) and
M2 ¼ H(b,a), where H is the Hausdorff distance, then M ¼
max(M1,M2).

Total volume

The total volume, V, was also estimated for each of the
structures labels identified by the manual raters, the atlas
customization techniques and each of the silver standards.

Statistical analysis

The quality of the manual segmentations were first
assessed to determine their usefulness as a silver standard.
For the kappa and two distance metrics, each of the results
of the manual rater and the estimated silver standard
were analyzed using an ANOVA. Differences between the
volume estimates from each manual rater were also ana-
lyzed using an ANOVA. In cases where statistical differen-
ces were found between raters, a post-hoc analysis was
done using a Tukey Kramer HSD.

In order to have an equal number of observations, the
results of the manual raters were pooled when comparing
the atlas warping techniques and the raters. In the analysis
of the kappa and distance metrics a repeated-measures
one-way ANOVA was performed for each structure. The
five values estimated using the five silver standards were
considered the repeated measurements. Significant differ-
ences in the results were once more analyzed using a post-
hoc Tukey Kramer HSD. In this case, the volume measure-
ments from the five silver standards were averaged in
order to have the same number of measurements for the
silver standard and the atlas-warping techniques (as each
rater has one volume measurement for each structure
tested on each subject).

The results of the Tukey Kramer HSD are reported as
follows. Methods falling into group A perform with signif-

icantly better values than the methods of group B. Simi-
larly, the methods of group B have significantly better
values than group C, and so on. This means that the larger
values for the kappas will fall into Group A. However for
the distance metrics, the lower values will fall into the
group A. For the analysis of volume, the groups are
ranked in ascending order. Post-hoc analysis separated
results into groups with P < 0.05. A method can be
included in multiple groups if it shows no significant dif-
ference with one of the methods of each group. All statisti-
cal analyses were performed with JMP 5.1.2 (The SAS
Institute Inc., Cary, USA).

RESULTS

Manual Raters

Kappa overlap metric

Results for the kappas and the ANOVA (and the post-
hoc Tukey Kramer HSD) for each of the manual raters
labels are summarized in Table IV.

The results of the ANOVA for the globus pallidus show
significant differences between all raters (F ¼ 13.13, DF ¼
4, P < 0.001). The results show that Rater 2 has highest
mean kappa score (jman2 ¼ 0.684). The post-hoc test shows
no differences between raters 1 (jman1 ¼ 0.641), 2, and 3
(jman3 ¼ 0.629) or between raters 3 and 4 (jman4 ¼ 0.531).
Rater 5 had significantly lower kappas than all other raters
(jman5 ¼ 0.450).

The results of the ANOVA results for the striatum also
show significant differences between all raters (F ¼ 23.73,
DF ¼ 4, P < 0.0001). Results for the striatum once again
show that Rater 2 has the highest mean kappa (jman2 ¼
0.842). The post-hoc Tukey Kramer HSD showed no signif-
icant differences were observed between raters 1 (jman1 ¼
0.838) and 2. Rater 1 also showed no significant differences
with the results of raters 3 (jman3 ¼ 0.810) and 4 (jman4 ¼
0.808). Rater 5 once again has a mean kappa significantly
lower than the rest of the raters (jman5 ¼ 0.746).

The ANOVA performed on the results for the thalamus
demonstrates significant differences in each of the rater’s
agreement with the silver standard (F ¼ 8.04, DF ¼ 4, P <
0.0001). Once again, the Rater 2 shows highest mean

TABLE IV. Result from post-hoc Tukey Kramer HSD test for kappas (j) from raters only

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Rater 1 A 0.641 � 0.114 (0.429–0.834) A, B 0.838 � 0.029 (0.797–0.895) B 0.799 � 0.053 (0.675–0.872)
Rater 2 A 0.684 � 0.101 (0.441–0.839) A 0.842 � 0.025 (0.806–0.890) A 0.862 � 0.030 (0.783–0.907)
Rater 3 A, B 0.629 � 0.119 (0.373–0.809) B 0.810 � 0.037 (0.810–0.895) A 0.849 � 0.030 (0.786–0.886)
Rater 4 B 0.531 � 0.112 (0.322–0.732) B 0.808 � 0.034 (0.727–0.863) A, B 0.836 � 0.048 (0.712–0.885)
Rater 5 C 0.450 � 0.066 (0.314–0.555) C 0.746 � 0.032 (0.746–0.808) B 0.799 � 0.036 (0.727–0.851)

Raters are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and stand-
ard deviations of the kappas are also provided.
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agreement with the silver standard (jman2 ¼ 0.862). No sig-
nificant differences between raters 2, 3 (jman3 ¼ 0.849), and
4 (jman4 ¼ 0.836). Significant differences were also not
observed between the results of raters 1 (jman1 ¼ 0.799), 4,
and 5 (jman5 ¼ 0.799).

Mean chamfer distance

Results for the mean chamfer distance between surfaces
of each rater’s labels and the silver standard as well as the
ANOVA are summarized in Table V.

The ANOVA performed on the results of the globus pal-
lidus show significant differences across raters (F ¼ 12.06,
DF ¼ 4, P < 0.0001). Rater 2 had lowest mean results
(lman2 ¼ 1.38 mm). The results for raters 1 (lman1 ¼ 1.72
mm) and 3 (lman3 ¼ 1.76 mm) were not statistically differ-
ent from Rater 2. Mean distances for raters 1, 3, and 4
(lman4 ¼ 2.04 mm) showed no significant differences, and
results for 5 (lman5 ¼ 2.49 mm) were not significantly dif-
ferent than those of Rater 4.

Significant differences were observed from the ANOVA
performed on the results from the striatum (F ¼ 7.59, DF ¼ 4,
P < 0.0001). For the striatum, Rater 2 showed the mean cham-
fer distance closest to zero (lman2 ¼ 1.23 mm). Results from the
post-hoc analysis shows no statistical difference between
raters 1 (lman1¼ 1.35 mm), 2, 3 (lman3¼ 1.26 mm), and 4 (lman4

¼ 1.30 mm). The results of Rater 5 showed significantly higher
error than the other raters (lman5¼ 1.66 mm).

For the thalamus, the results show significant differences
between raters (F ¼ 8.30, DF ¼ 4, P < 0.0001). Rater 3, shows
the mean values closest to zero (lman3 ¼ 1.32 mm), and the
results of post-hoc test show no significant differences
between raters 2 (lman2 ¼ 1.49 mm), 3, and 4 (lman4 ¼ 1.51
mm). Raters 1(lman1 ¼ 1.67 mm), 2, and 4 form a second
group. The final group is composed of raters 1 and 5 (lman5

¼ 1.77 mm).

Maximum chamfer distance

Results for the maximum chamfer distance between sur-
faces of each rater’s labels and the silver standards as well
as the ANOVA are summarized in Table VI.

Results from the ANOVA on the globus pallidus show
significant differences between raters (F ¼ 15.41, DF ¼ 4, P
< 0.0001). The post-hoc analysis shows that Rater 2 (Mman2

¼ 3.92 mm) showed lowest error, but no significant differ-
ences with Rater 4 (Mman4 ¼ 5.80 mm). Raters 1 (Mman1 ¼
6.40 mm) and 4 form the next group, followed by the next
group formed by raters 1 and 3 (Mman3 ¼ 7.88 mm). Raters
3 and 5 (Mman5 ¼ 8.95 mm) formed the final group with
largest maximum chamfer distance.

The results from the ANOVA showed no significant dif-
ference between the raters for the striatum (F ¼ 0.5448, DF
¼ 4, P < 0.7033). The means of maximum chamfer dis-
tance are written here in ascending order: Rater 4 (Mman4

TABLE V. Result from post-hoc Tukey Kramer HSD test for mean chamfer distance (l) from raters only

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Rater 1 A, B 1.72 � 0.53 (1.16–2.91) A 1.35 � 0.28 (1.00–2.16) B, C 1.67 � 0.27 (1.25–2.23)
Rater 2 A 1.38 � 0.34 (1.11–2.42) A 1.23 � 0.17 (1.07–1.64) A, B 1.49 � 0.23 (1.22–2.11)
Rater 3 A, B 1.76 � 0.60 (1.15–2.42) A 1.26 � 0.17 (1.00–1.63) A 1.32 � 0.16 (1.14–1.80)
Rater 4 B, C 2.04 � 0.50 (1.25–2.97) A 1.30 � 0.20 (1.03–1.72) A, B 1.51 � 0.26 (1.18–2.21)
Rater 5 C 2.49 � 0.37 (1.96–3.38) B 1.66 � 0.23 (1.30–2.12) C 1.77 � 0.28 (1.35–2.44)

Raters are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and stand-
ard deviations of the mean distances are also provided. All measurements provided in millimeters.

TABLE VI. Result from post-hoc Tukey Kramer HSD test for maximum chamfer distance (M) from raters only

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Rater 1 B, C 6.40 � 2.69 (3.10–11.98) A 7.37 � 2.82 (3.68–14.96) C 5.74 � 1.21 (3.68–8.50)
Rater 2 A 3.92 � 1.42 (2.52–7.73) A 7.80 � 3.18 (3.28–15.32) A, B 4.33 � 0.56 (2.90–5.36)
Rater 3 C, D 7.88 � 2.42 (5.02–13.91) A 8.47 � 2.80 (4.07–12.94) A 3.96 � 0.94 (2.43–5.90)
Rater 4 A, B 5.80 � 1.37 (3.49–8.37) A 6.02 � 2.42 (3.10–12.94) B, C 5.49 � 1.46 (3.97–8.46)
Rater 5 D 8.95 � 2.14 (5.24–13.33) A 6.83 � 1.60 (4.45–10.75) C 5.95 � 1.50 (4.26–9.85)

Raters are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and stand-
ard deviations of the maximum distances are also provided. All measurements provided in millimeters.
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¼ 6.02 mm), 5 (Mman5 ¼ 6.83 mm), 1 (Mman1 ¼ 7.37 mm), 2
(Mman2 ¼ 7.80 mm), and 3 (Mman3 ¼ 8.47 mm).

ANOVA results for the maximum distance values
recorded for the thalamus revealed significant differences
between raters (F ¼ 9.00, DF ¼ 4, P < 0.0001). Rater 3
showed results closest to zero (Mman3 ¼ 3.96 mm) and the
post-hoc analysis showed no significant difference with
Rater 2 (Mman2 ¼ 4.33 mm). Raters 2 and 4 (Mman4 ¼ 5.49
mm) also showed no significant differences between their
results. Additionally, no significant differences were
observed between raters 1 (Mman1 ¼ 5.74 mm), 4, and 5
(Mman5 ¼ 5.95 mm).

Volumes

The results for the volumes and the ANOVA performed
on these results are summarized in Table VII.

Significant differences were observed between the vol-
umes of the globus pallidus labeled (F ¼ 4.57, DF ¼ 4, P <
0.0023). Raters 1 (Vman1 ¼ 928 mm3), 2 (Vman2 ¼ 935 mm3),
3 (Vman3 ¼ 1,083 mm3), and 4 (Vman4 ¼ 1,268 mm3) showed
no significant differences between their results and form
group A. Rater 5 labeled the largest mean volume (Vman5

¼ 1,363 mm3) and post-hoc analysis showed no significant
difference with the volume labeled by raters 3 and 4.

The results of the analysis on the volume of the man-
ually labeled striatum indicate a significant difference in
the volume between all raters (F ¼ 5.03, DF ¼ 4, P <
0.0012). Raters 1 (Vman1 ¼ 6,569 mm3), 2 (Vman2 ¼ 5,913
mm3), 4 (Vman4 ¼ 7,469 mm3), and 5 (Vman5 ¼ 6,031 mm3)
show no differences in the structure volumes. Rater 4
shows the highest mean volume over all raters, however
the post-hoc analysis showed no significant differences
between raters 1, and 3 (Vman3 ¼ 7,467 mm3).

The ANOVA results indicate significant intra-rater differ-
ences in thalamic volume (F ¼ 14.87, DF ¼ 4, P < 0.0001).
Raters 2 (Vman2 ¼ 5258 mm3), 3 (Vman3 ¼ 6,017 mm3), and 5
(Vman5 ¼ 5,305 mm3) showed no significant differences in
volume labeled and form the first group. Raters 3 and 4
(Vman4 ¼ 6,248 mm3) show no statistical differences in their
results and form the next group. The post-hoc analysis
shows that Rater 1 (Vman1 ¼ 7,207 mm3) labeled a signifi-
cantly higher volume than the other raters.

Since no manual rater was consistently different from
the rest, the silver standards for all raters were used to
evaluate the eight warping techniques in the next section.

Evaluation of Atlas Warping Techniques

An example of the results from all manual raters and all
warping techniques is included is Figure 4. The figure
shows consistent definitions over all structures by the man-
ual raters. Variable definitions of the globus pallidus, medial
and posterior borders of the thalamus, and the medial por-
tion of the head of the caudate can also be observed.

Kappa overlap metric

Results from the kappas and the post-hoc Tukey Kramer
HSD for each structure are shown in Table VIII for all
structures and a graphical representation is given in the
top panel of Figure 5.

The repeated measures ANOVA showed significant dif-
ferences between the eight techniques tested (F ¼ 13.12,
DF ¼ 8, P < 0.0001). The results for the globus pallidus
show that the raters (jman ¼ 0.587) and both ANIMAL-
based techniques perform statistically better than all other
registration techniques tested for atlas-to-patient warping
(jA1 ¼ 0.547, jA2 ¼ 0.573). The remaining nonlinear techni-
ques (jSPM ¼ 0.513, jROM ¼ 0.532) and the linear techni-
ques (jLSQ9 ¼ 0.530, jLSQ12 ¼ 0.545) show statistically
similar results and have mean kappas lower than the tech-
niques in group A. The piece-wise linear techniques show
the lowest kappa values (jTAL ¼ 0.389, jSPM ¼ 0.369).

The ANOVA reveals significant differences between the
methods tested for the striatum (F ¼ 19.34, DF ¼ 8, P <
0.0001). Results of the post-hoc analysis demonstrate that
the manual raters (jman ¼ 0.809) perform statistically better
than all other methods. Both ANIMAL-based techniques
perform better than the remaining registration methods
and are the only two techniques to have kappas over 0.7
(jA1 ¼ 0.732, jA2 ¼ 0.754). The linear (jLSQ9 ¼ 0.630,
jLSQ12 ¼ 0.658) and remaining nonlinear (jSPM ¼ 0.665,
jROM ¼ 0.668) techniques make up the next group, but all
fail to reach kappas over 0.7. The piece-wise linear techni-
ques perform statistically worse than all other techniques
(jTAL ¼ 0.482, jPFA ¼ 0.404).

TABLE VII. Result from post-hoc Tukey Kramer HSD test for volumes (V) from raters only

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Rater 1 A 928 � 266 (448–1564) A, B 6569 � 1347 (4043–9050) C 7207 � 907 (5715–9331)
Rater 2 A 935 � 385 (460–2074) A 5913 � 1371 (331–8055) A 5258 � 873 (3588–7167)
Rater 3 A, B 1083 � 330 (605–1651) B 7467 � 1324 (5114–9359) A, B 6017 � 901 (4888–7681)
Rater 4 A, B 1268 � 304 (829–1872) A, B 7469 � 1340 (5644–9758) B 6248 � 734 (5151–7714)
Rater 5 B 1363 � 498 (768–2495) A 6031 � 1260 (3515–8206) A 5305 � 702 (4138–6632)

Raters are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and stand-
ard deviations of the maximum distances are also provided. All measurements provided in cubic millimeters.
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Figure 4.

Results of the atlas warping. From top to bottom: Original data unlabeled, result from the data

labeled by the five manual raters, results from the linear (LSQ9, LSQ12) and piece-wise linear

(PFA, Talairach) atlas warping, and results from the nonlinear atlas warping (SPM, Romeo, ANI-

MAL-1, ANIMAL-2).
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Kappa results for the thalamus show significant differ-
ences between methods (F ¼ 9.56, DF ¼ 8, and P <
0.0001). The post-hoc analysis shows no significant differ-
ences between manual raters (jman ¼ 0.829) and ANIMAL-
2 (jA2 ¼ 0.818) form group A, however there are no statis-
tical difference between ANIMAL-1 (jA1 ¼ 0.787) and
ANIMAL-2. Once again the remaining nonlinear (jSPM ¼
0.736, jROM ¼ 0.749) and linear techniques (jLSQ9 ¼ 0.745,
jLSQ12 ¼ 0.748) make up the next group, followed by the
piece-wise linear techniques (jTAL ¼ 0.643, jPFA ¼ 0.649).
Only the piece-wise linear techniques do not achieve the
threshold of 0.7.

Mean chamfer distance

The results for the mean distances for each structure
and post-hoc Tukey Kramer HSD are shown in Table IX
and a graphical representation is given in the second panel
of Figure 5.

ANOVA results for the globus pallidus show significant
differences between methods (F ¼ 18.03, DF ¼ 8, P <
0.0001). The manual raters have mean results closest to
zero (lman ¼ 1.87 mm). The results from the post-hoc
Tukey-Kramer HSD test show no significant differences
between Romeo (lROM ¼ 2.10 mm), the ANIMAL-based
techniques (lA1 ¼ 2.03 mm, lA2 ¼ 2.00 mm), the linear
techniques (lLSQ9 ¼ 2.10 mm, lLSQ12 ¼ 1.93 mm), and the
manual raters. However, no significant differences were
observed between SPM (lSPM ¼ 2.45 mm) and LSQ9 and
nonlinear techniques. The Talairach (lTAL ¼ 4.17 mm) and
PFA (lPFA ¼ 5.13 mm) techniques perform significantly
worse than all other techniques and have significantly dif-
ferent results from one another.

Repeated measures ANOVA results for the striatum
show significant differences between methods (F ¼ 22.26,
DF ¼ 8, P < 0.0001). The manual raters, once again show
mean error closest to zero (lman ¼ 1.34 mm). No significant
differences were observed between Romeo (lROM ¼

2.14 mm), the ANIMAL-based techniques (lA1 ¼ 2.12 mm,
lA2 ¼ 2.07 mm) and the linear techniques (lLSQ9 ¼ 2.11
mm, lLSQ12 ¼ 2.04 mm). However, no significant differen-
ces were observed between SPM (lSPM ¼ 2.44 mm) and
Romeo. Once again, the Talairach (lTAL ¼ 3.13 mm) and
PFA (lPFA ¼ 4.09 mm) techniques perform significantly
worse than all other techniques and have significantly dif-
ferent results from one another.

Thalamic ANOVA results demonstrate statistically sig-
nificant differences (F ¼ 12.56, DF ¼ 8, P < 0.0001). The
manual raters demonstrated the mean error with value
closest to zero (lman ¼ 1.55 mm). The post-hoc Tukey
Kramer HSD demonstrated no significant differences
between the manual raters, and ANIMAL-2 (lA2 ¼ 1.68
mm). The LSQ9 (lLSQ9 ¼ 1.82 mm) and ANIMAL-based
techniques (lA1 ¼ 1.85 mm) also show no significant dif-
ferences. The linear techniques (lLSQ12 ¼ 1.91 mm) formed
group C, while SPM (lSPM ¼ 2.05 mm), and Romeo (lROM

¼ 2.06 mm) formed group D. The piece-wise -linear tech-
niques formed the group with largest error (lTAL ¼ 2.44
mm, lPFA ¼ 2.45 mm).

Maximum chamfer distance

The results for the maximum chamfer distances for each
structure and post-hoc Tukey Kramer HSD are shown in
Table X and a graphical representation is provided in the
third panel of Figure 5.

The results from the repeated measures ANOVA show
significant differences between all labeling methods (F ¼
11.28, DF ¼ 8, P < 0.0001) for the globus pallidus. The
manual raters show mean error closest to zero (Mman ¼
6.59 mm). Results from the post-hoc Tukey Kramer HSD
showed no significant differences between the raters,
LSQ12 (MLSQ12 ¼ 7.27 mm), and Romeo (MROM ¼ 7.39
mm). A second group showing no significant differences
was formed by the linear techniques (MLSQ9 ¼ 7.88 mm),
SPM (MSPM ¼ 8.39 mm), Romeo, and ANIMAL-1 (MA1 ¼

TABLE VIII. Result from post-hoc Tukey Kramer HSD test for kappa (j) values from raters and all warping

techniques for all test structures

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Manual raters A 0.587 � 0.133 (0.319–0.839) A 0.809 � 0.047 (0.693–0.895) A 0.829 � 0.047 (0.675–0.907)
LSQ9 B 0.530 � 0.071 (0.359–0.668) C 0.630 � 0.093 (0.533–0.810) C 0.745 � 0.044 (0.680–0.836)
LSQ12 B 0.545 � 0.075 (0.344–0.668) C 0.658 � 0.077 (0.455–0.823) C 0.748 � 0.046 (0.665–0.838)
Talairach C 0.389 � 0.122 (0.206–0.679) D 0.482 � 0.121 (0.395–0.683) D 0.643 � 0.133 (0.335–0.822)
PFA C 0.369 � 0.132 (0.319–0.839) D 0.404 � 0.136 (0.300–0.708) D 0.649 � 0.114 (0.358–0.786)
SPM B 0.513 � 0.112 (0.211–0.686) C 0.665 � 0.121 (0.443–0.813) C 0.736 � 0.066 (0.626–0.852)
Romeo B 0.532 � 0.125 (0.268–0.718) C 0.668 � 0.134 (0.430–0.860) C 0.749 � 0.113 (0.477–0.871)
ANIMAL–1 A 0.547 � 0.086 (0.380–0.702) B 0.732 � 0.051 (0.612–0.842) B 0.787 � 0.040 (0.678–0.845)
ANIMAL–2 A 0.573 � 0.090 (0.418–0.749) B 0.754 � 0.049 (0.651–0.855) A, B 0.818 � 0.034 (0.689–0.861)

Techniques are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and
standard deviations of the kappas are also provided.
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Figure 5.

Summary of results from all metrics. From top to bottom: kappa, mean chamfer distance, maxi-

mum chamfer distance, and volume results for all methods tested for the globus pallidus (red),

striatum (green), and thalamus (blue). Extents of each box represent the standard deviation and

error bars represent the range of the data. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]



8.19 mm). Group C was formed by LSQ9, SPM, Romeo,
and the ANIMAL-based techniques (MA2 ¼ 8.45 mm). The
piece-wise linear techniques (MTAL ¼ 11.21 mm, MPFA ¼
11.10 mm) showed significantly larger errors than all other
methods.

The repeated measures ANOVA showed significant dif-
ferences between all methods used for the data from the
striatum (F ¼ 19.29, DF ¼ 8, P < 0.0001). The results of the
post-hoc analysis show that the manual raters (Mman ¼
7.30 mm) have significantly smaller error values than
tested methods. All other warping techniques show no sig-
nificant differences between results and are listed in here
in descending order: LSQ12 (MLSQ12 ¼ 10.92 mm), LSQ9
(MLSQ9 ¼ 11.15 mm), Romeo (MROM ¼ 11.35 mm), SPM
(MSPM ¼ 11.67 mm), ANIMAL-2 (MA2 ¼ 12.04 mm), ANI-
MAL-1 (MA1 ¼ 12.28 mm), and PFA (MPFA ¼ 12.47 mm).

The repeated measures ANOVA, once again showed dif-
ferences between all techniques for the thalamus (F ¼
11.27, DF ¼ 8, P < 0.0001). The manual raters show errors
closest to zero (Mman ¼ 5.33 mm). The post-hoc Tukey

Kramer HSD showed that the linear techniques (MLSQ9 ¼
6.23 mm, MLSQ12 ¼ 6.37 mm) had no significant differences
with the raters and also formed Group B with ANIMAL-2
(MA2 ¼ 6.64 mm). Group C was formed by Talairach (MTAL

¼ 7.67 mm), SPM (MSPM ¼ 6.68 mm), Romeo (MROM ¼ 7.77
mm), and the ANIMAL-based (MA1 ¼ 7.63 mm) techniques.
The final group was formed by the PFA (MPFA ¼ 8.14 mm),
SPM, Romeo, and ANIMAL-1 techniques.

Volume

The results from the analysis of the volume (including
results from corresponding post-hoc analyses) are in Table
XI and a graphical representation is given at the bottom of
Figure 5.

The repeated measures ANOVA, showed differences
between all techniques for the globus pallidus (F ¼ 11.65,
DF ¼ 8, P < 0.0001). The post-hoc analysis revealed that
the average silver standard of the manual raters show a
mean volume significantly lower than any of the

TABLE IX. Result from post-hoc Tukey Kramer HSD test for mean chamfer distance (l) values from raters and all

warping techniques for all test structures

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Manual Raters A 1.87 � 0.60 (1.11–3.38) A 1.34 � 0.25 (1.00–2.16) A 1.55 � 0.28 (1.14–2.44)
LSQ9 A, B 2.10 � 0.42 (1.46–3.04) B 2.11 � 0.40 (1.37–3.19) B, C 1.82 � 0.21 (1.34–2.45)
LSQ12 A 1.93 � 0.40 (1.37–2.80) B 2.04 � 0.43 (1.38–3.11) C 1.91 � 0.22 (1.34–2.33)
Talairach C 4.17 � 1.80 (1.70–8.89) D 3.13 � 0.86 (1.69–4.93) E 2.44 � 0.68 (1.51–4.44)
PFA D 5.13 � 2.47 (2.30–10.73) E 4.09 � 1.41 (2.34–7.06) E 2.45 � 0.50 (1.61–3.72)
SPM B 2.45 � 0.64 (1.55–3.93) C 2.44 � 0.60 (1.14–3.60) D 2.05 � 0.34 (1.63–3.52)
Romeo A, B 2.10 � 0.64 (1.29–4.39) B, C 2.14 � 0.45 (1.37–3.27) D 2.06 � 0.35 (1.62–3.25)
ANIMAL-1 A, B 2.03 � 0.38 (1.43–3.28) B 2.12 � 0.36 (1.43–3.01) B, C 1.85 � 0.25 (1.13–3.25)
ANIMAL-2 A, B 2.00 � 0.37 (1.31–2.81) B 2.07 � 0.37 (1.37–2.96) A, B 1.68 � 0.24 (1.01–2.64)

Techniques are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and
standard deviations of the mean chamfer distance are also provided. All distances are provided in millimeters.

TABLE X. Result from post-hoc Tukey Kramer HSD test for difference for maximum chamfer distance (M) values

from raters and all warping techniques and structures

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Manual raters A 6.59 � 2.68 (2.50–13.91) A 7.30 � 5.01 (3.10–15.32) A 5.33 � 1.58 (2.43–9.85)
LSQ9 B, C 7.88 � 1.67 (2.52–13.91) B 11.15 � 2.68 (6.75–19.89) A, B 6.23 � 1.65 (3.24–10.43)
LSQ12 A, B 7.27 � 1.74 (4.25–10.92) B 10.92 � 2.25 (6.42–18.98) A, B 6.37 � 1.45 (3.86–10.38)
Talairach D 11.21 � 3.98 (3.65–14.92) B 11.33 � 4.01 (6.50–24.32) C 7.67 � 2.59 (4.64–14.54)
PFA D 11.10 � 2.54 (4.98–14.21) B 12.47 � 5.52 (7.50–24.52) D 8.14 � 2.20 (4.64–14.40)
SPM B, C 8.39 � 2.07 (5.30–19.62) B 11.67 � 2.68 (6.24–15.06) C, D 6.68 � 1.49 (4.23–12.35)
Romeo A, B, C 7.39 � 2.64 (4.03–11.53) B 11.35 � 2.05 (6.04–18.08) C, D 7.77 � 2.23 (4.44–17.92)
ANIMAL-1 B, C 8.19 � 1.70 (3.48–14.29) B 12.28 � 2.33 (6.42–15.60) C, D 7.63 � 2.10 (3.52–14.48)
ANIMAL-2 C 8.45 � 1.52 (3.85–12.51) B 12.04 � 2.17 (6.24–15.08) B, C 6.64 � 1.69 (2.52–10.46)

Techniques are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and
standard deviations of the maximum chamfer distance are also provided. All distances are provided in millimeters.
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automated methods (Vman ¼ 710 mm3). The LSQ12 (VLSQ12

¼ 1,157 mm3), PFA (VPFA ¼ 1,090 mm3), and nonlinear
techniques (VSPM ¼ 1,312 mm3, VROM ¼ 1,210 mm3, VA1 ¼
935 mm3, VA2 ¼ 1,361 mm3), yield volumes of which are
not significantly different from one another. Results from
the linear techniques (VLSQ9 ¼ 1,187 mm3), SPM, Romeo,
and ANIMAL-2 show no significant differences between
them. Similarly LSQ9 and Talairach (VTAL ¼ 1,406 mm3)
show no significant differences between them.

The repeated measures ANOVA, revealed differences
between all techniques for the striatum (F ¼ 10.95, DF ¼ 8,
P < 0.0001). The post-hoc analysis demonstrated that the
average silver standard of the manual raters (Vman ¼ 5,786
mm3) show significantly smaller volumes than the rest of
the atlas warping techniques tested. The linear techniques
(VLSQ9 ¼ 8,194 mm3, VLSQ12 ¼ 7978 mm3), the PFA (VPFA

¼ 7383 mm3) and the nonlinear techniques (VSPM ¼ 8338
mm3, VROM ¼ 8290 mm3, VA1 ¼ 7398 mm3, VA2 ¼ 8,414
mm3) show significantly higher volumes when compared
than the manual raters, but show no differences between
them. The Talairach technique shows the highest volume
(VTAL ¼ 9,667 mm3) and no differences with SPM, Romeo,
and ANIMAL-2.

The repeated measures ANOVA, once again showed dif-
ferences between all techniques for the thalamus (F ¼
11.15, DF ¼ 8, P < 0.0001). The ANIMAL-1 (VA1 ¼ 3951
mm3) technique showed the lowest volume and the post-
hoc analysis showed no differences with the PFA (VPFA ¼
4,500 mm3) and LSQ9 (VLSQ9 ¼ 4,404 mm3). No significant
differences were observed between the manual raters
(Vman ¼ 5,155 mm3), LSQ9, LSQ12 (VLSQ12 ¼ 4,777 mm3),
PFA (VPFA ¼ 4,500 mm3), Romeo (VROM ¼ 5,065 mm3),
and ANIMAL-2 (VA1 ¼ 5,563 mm3). SPM (VSPM ¼ 5,501
mm3) has higher volumes and has no differences with the
manual raters, LSQ9, LSQ12, PFA, and Romeo. Talairach
(VTAL ¼ 5,823 mm3) shows the highest volume and is sig-
nificantly different than all other techniques.

DISCUSSION

Summary

This paper presents a comparison of eight different
registration techniques in order to evaluate their accuracy,
precision, and consistency for atlas-to-patient warping.
The digital atlas used was developed in our group using a
segmented set of serial histological data [Chakravarty
et al., 2006a]. The reconstructed atlas was nonlinearly
warped to a high signal- and contrast-to-noise ratio tem-
plate [Holmes et al., 1998].

Two linear techniques based on the least-squares optimi-

zation of the cross-correlation objective function [Collins

et al., 1994] were used to estimate 9-parameter (3 transla-

tions, rotations, and scales) and a 12-parameter (3 transla-

tions, rotations, scales, and shears) transformations.
Two piece-wise linear techniques requiring the manual

identification of homologous landmarks on both the tem-
plate and the patient imaging volumes were also eval-
uated. The first is the well-known Talairach transformation
[Talairach and Tournoux, 1988] which separates both the
template and the patient MRI volume into 12 different
subvolumes, and estimates a unique 9-parameter linear
transformation for each of these sections. The second is
the PFA technique (used in [Nowinski et al., 2003] in the
development of a probabilistic functional atlas), which esti-
mates a unique nine-parameter transformation per hemi-
sphere, based on subcortical landmarks.

Nonlinear transformations were estimated using four
different methods. The first is from the well known SPM
package [Friston et al., 1995a,b] and estimates a transfor-
mation based on the sixth order expansion of a set of
smoothly varying spatial basis functions (discrete cosine
transform) optimized using a least squares procedure. The
second nonlinear technique (the Romeo algorithm) was
developed by Hellier et al. [2001] and uses the optical flow

TABLE XI. Result from post-hoc Tukey Kramer HSD test for volumes (V) from raters and all warping techniques

for all test structures

Globus pallidus Striatum Thalamus

Method Groups Mean � SD (range) Groups Mean � SD (range) Groups Mean � SD (range)

Manual Raters A 710 � 216 (469–1224) A 5786 � 1234 (3719–7918) B, C 5155 � 576 (4316–6274)
LSQ9 C, D 1187 � 110 (998–1393) B 8194 � 721 (7105–9543) A, B, C 4404 � 440 (4228–5753)
LSQ12 B, C 1157 � 98 (989–1359) B 7978 � 593 (7074–9243) B, C 4777 � 364 (4231–5566)
Talairach D 1406 � 278 (632–1703) C 9667 � 1895 (4386–11 456) D 5823 � 1184 (2679–7091)
PFA B 1090 � 239 (749–1475) B 7383 � 1425 (5437–9581) A, B 4500 � 902 (3226–5908)
SPM B, C 1312 � 179 (946–1580) B, C 8338 � 1306 (6678–11 730) C 5501 � 683 (4557–6059)
Romeo B, C 1210 � 182 (904–1660) B, C 8290 � 1004 (6685–10 455) B, C 5065 � 741 (4312–5908)
ANIMAL-1 B 935 � 333 (447–1477) B 7398 � 1209 (5310–9078) A 3951 � 888 (2614–5178)
ANIMAL-2 B, C 1361 � 163 (716–1602) B, C 8414 � 1343 (6381–11 768) B 5563 � 588 (3385–6717)

Techniques are grouped based on the result of Tukey Kramer HSD post-hoc analysis (P < 0.05). The mean, minimum, maximum, and
standard deviations of the volumes are also provided. All distances are provided in cubic millimeters.
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hypothesis to estimate a nonlinear transformation through
minimization of a luminance equation using an iterative
hierarchal registration strategy. The last two techniques
are based on the ANIMAL algorithm developed by Collins
and coworkers [Collins and Evans, 1997; Collins et al.,
1995] and optimized by Robbins et al. [2004]. The first
uses the standard implementation of ANIMAL used at the
Montréal Neurological institute and was called ANIMAL-1
in this paper. This technique uses a hierarchical registra-
tion strategy to maximize the similarity between the tem-
plate and patient MRI volumes. The final transformation
was defined on a set of nodes spaced 2 mm apart. The sec-
ond ANIMAL-based technique (called ANIMAL-2 in this
paper) estimates a transformation using only a cropped
region of the template volume focused only on the thala-
mus and the basal ganglia. This permitted the estimation
of a final nonlinear transformation on set of nodes spaced
1 mm apart.

All atlas-warping techniques were validated against
manual segmentations of the globus pallidus, striatum,
and thalamus. In the absence of an anatomical ‘‘gold
standard’’ a series of ‘‘silver standards’’ were created from
the manual labels in a leave-one-out fashion, where a sin-
gle rater’s labels are compared to a silver standard devel-
oped through the agreement of other labels. Four metrics
were used to evaluate the atlas warping techniques. The
first was the kappa which assesses the overlap between
two sets of labels. The second is the maximum of the
chamfer distance [Borgefors, 1984] between the surfaces of
two sets of labels and is an approximation of the Haus-
dorff distance. The third uses the mean distance between
the surfaces of two label volumes. The final is the total
volume for each structure.

On the Use of a Silver Standard

One of the main novelties of this study resides in the
use and derivation of a silver standard from manual raters
for the comparison of different registration techniques
used for atlas warping. Despite the variability of the man-
ual raters definitions, each rater used is known to have an
accurate definition of the structures tested and the method
used in this study shows that the raters can effectively
provide an upper limit for the accuracy of anatomical
labeling.

Work by Warfield et al. [2004] has addressed this issue
by developing an expectation maximization algorithm that
estimates an optimal segmentation from the different
methods being evaluated. Using this technique, each
method can then be weighted depending upon its esti-
mated performance level with respect to the other meth-
ods being tested. The specificity and sensitivity parameters
used in STAPLE could add valuable information to the
evaluation of the data presented in this paper. Further-
more, the probabilistic ground truth of the manual rater
data generated by STAPLE could also be used for evalua-

tion instead of the discrete silver standard generated
through consensus used in the work presented here.

Quality of the Silver Standard

To estimate the variability between the labels provided
by each of the raters, all labels from manual rater were
assessed using the metrics that were described in the
Methods section. All results show significant variability
for all raters across all metrics (except for the maximum
chamfer distance test in the striatum). Statistically, tests
revealed that while each manual rater may have a differ-
ent definition of the subcortical structures that were la-
beled, none could be considered outliers from the rest of
the raters. However the variability of the results demon-
strate the difficulty in obtaining a consistent estimate for
the location of different anatomical structures. This under-
scores the importance of using the five different silver
standard estimates of the anatomy for each anatomical
structure tested in these experiments. This variability in
manual segmentation also underscores the need for an
automated, objective, and robust technique to identify the
basal ganglia and thalamus in patients for surgical plan-
ning for movement disorders. Better identification of the
anatomy should lead to better identification of the func-
tional targets, and thus better clinical results after surgery.

It is important to note that the lack of a gold standard
limits our ability to evaluate the segmentation procedures.
Essentially, none of the automatic techniques can agree
more with the silver standard that the manual raters agree
with each other. Thus, the mean kappa of the manual
raters acts as a ceiling for the kappa values associated
with the automatic techniques.

Overlap of Structures

The kappa metric was used to compare the agreement
between structures manually defined in the silver stand-
ards and those defined by the 8 different atlas-customiza-
tion techniques. While the kappa metric is often used for
such comparisons, it is not without problems. First, if one
assumes that the difference between label sets will occur
at structure borders, then the kappa will discriminate
against smaller structures. Therefore, the lower mean kap-
pas found for the globus pallidus were expected. Second,
kappa depends on the surface to volume ratio of the struc-
ture. For example, the striatum (containing the putamen,
nucleus accumbens and caudate) has roughly the same
volume as the thalamus, but has perhaps twice the surface
area. This explains the consistently higher kappa values
for the thalamus. Finally, the atlas was defined using a set
of high-resolution and high-contrast histological data and
contains certain structural details that could not be identi-
fied by the raters at the posterior pallidum and striatum,
thus negatively biasing the kappa values for the striatum
and globus pallidus.
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The results demonstrate a similar pattern over all struc-
tures (Table VIII). The consistently lower kappa values for
the Talairach and PFA techniques may be due to errors
associated with manual landmark identification and the
limited degrees of freedom offered by the PFA technique.
One could also expect the piece-wise linear techniques to
outperform the linear techniques; however this is not the
case here. We hypothesize that this may be due to land-
mark placement issues inherent in algorithms requiring
manual feature identification. Furthermore, the transfor-
mation optimization strategy employed in the fitting of the
template volume to the patient volume may serve as an
advantage when compared to the limited features of the
piece-wise linear techniques.

Surprisingly, the LSQ9, LSQ12, SPM and Romeo techni-
ques yield similar results. With their additional degrees of
warping freedom, one would expect that SPM and Romeo
techniques would yield better results compared to the lin-
ear matching methods. This also contradicts our hypothe-
sis as all nonlinear registration algorithms will not offer
better identification of subcortical structures when com-
pared to linear techniques. Further, this suggests that the
choice of nonlinear algorithm is crucial for automated
identification of subcortical targets. However, given the
number of patients labeled and the variability of the kappa
values between patients, there may not be sufficient statis-
tical power to tease out a separation between these techni-
ques. In particular, Romeo was designed using a
hypothesis that the luminescence between source and tar-
get volumes will be similar. The acquisition limitations in-
herent to data acquired with the stereotactic headframe
limits grey/white matter contrast, thus the luminescence
hypothesis may not be valid when matching this data to a
high-contrast, high-resolution template. Romeo may bene-
fit from the usage of a single MRI template that is selected
from a database of population- and acquisition-specific
MRI-volumes [D’Haese et al., 2005b]. For an application
such as this the correlation coefficient may be a more ro-
bust similarity criterion. This interpretation is supported
by the results from both ANIMAL-based techniques as
they consistently yielded the best kappa values. Finally,
for the globus pallidus and thalamus, the ANIMAL-2 tech-
nique yielded kappas that were not different from the
manual raters, indicating that it performed on par with
the expert anatomists for these two structures in this set of
patients.

Distance Metrics, Volumes,

and the Bias of the Atlas

While the kappa value gives an idea of how well the
label sets overlap, its value cannot be easily translated to a
quantitative measure of structure mismatch. For this rea-
son we computed the mean chamfer distance metric, l, to
judge how well the atlas customization procedures could
identify the structure borders on each patients’ MRI. To

place the automatic procedures in context, the 3D mean
chamfer distances were 1.34 mm, 1.55 mm and 1.87 mm
for the manually identified striatum, thalamus and globus
pallidus, respectively. Given the discrete nature of the
voxel labels, this means that on average, each of the man-
ual raters were within approximately a single voxel of the
sliver standard in any of the transverse, coronal or sagittal
planes.

The pattern of mean chamfer distance results (Table IX)
for the automatic procedures is not as clear as that seen
for the kappa metric. The Talairach and PFA techniques
consistently have the largest mean mismatch over the
three structures (2.44-5.13 mm). This may be due to the
limitations of these techniques discussed above. Surpris-
ingly, the LSQ12 technique marginally outperforms all
other automated techniques evaluated for the globus pal-
lidus and the striatum. An additional surprise is SPM’s
poor performance on these two structures. Of the remain-
ing automated techniques (LSQ9, LSQ12, Romeo, and
ANIMAL-1, ANIMAL-2), none is clearly superior based
on the pallidal and striatal results, however ANIMAL-2
shows nearly identical values to LSQ12 for these struc-
tures. The main improvement of the ANIMAL-based tech-
niques is in the thalamus, where ANIMAL-2 shows lowest
values.

The maximum chamfer distance (Table X) results are
heavily biased by resolution differences between the MRI
data and the atlas. The high-resolution and contrast of the
initial histological data used to develop the atlas heavily
biases these results. In particular small substructures at
the tails of the globus pallidus and striatum can be
resolved on the histological data and not on the pre-opera-
tive MRI data. The striatal results are a reflection of this
difference as all warping methods show no significant dif-
ferences, but have approximately 4–5 mm more error than
that of the manual raters. These differences explain the
variability in the results for the globus pallidus and the
thalamus. The results demonstrate that the nonlinear tech-
niques are prone to outliers in the thalamus and in the
globus pallidus. Due to the nature of the pre-operative ac-
quisition, local fitting at the borders of these structures
and the internal capsule is compromised. This may explain
why in the thalamus, the groups formed by the raters and
linear methods yield the lowest error. The poor perform-
ance of the piece-wise linear techniques may again be
linked to the manually selected landmarks required for
these techniques.

The significant differences between the volume (Table
XI) of the structures defined by the atlas and the manual
raters for both the globus pallidus and the striatum may
also be due to the difference in spatial resolution of the
atlas and the MR data (as mentioned above). Results from
the Talairach techniques suggest that it consistently over
estimates the volume of each structure, while the PFA
technique consistently provides volumes that are closest to
the manual raters. The choice of landmarks used for trans-
formation estimation may be the reason for these
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differences. The Talairach technique uses cortical land-
marks, while the PFA technique uses only subcortical
landmarks. Thus the PFA may actually account for sub-
cortical atrophy in these structures better than other the
Talairach technique, however it may be limited in accu-
racy (as seen above). However, no other technique yields a
consistently larger (or smaller) volume across all struc-
tures, thus it is difficult to draw further conclusions from
this test.

CONCLUSIONS AND FUTURE WORK

In this paper eight different techniques (two linear, two
piece-wise linear, and four nonlinear) were compared
against manual raters for atlas-to-patient warping. It was
shown that the ANIMAL-2 algorithm (estimating a final
transformation of a set of nodes with 1 mm spacing) gave
the best results using the kappa metric and was consis-
tently amongst the lowest in the mean chamfer distance
test. These two tests also showed that the two piece-wise
linear techniques tested (PFA and Talairach) performed
significantly worse when compared to the other
techniques.

Future work will involve testing with other nonlinear
registration algorithms and intra-operative data used for
target localization and post-operative data. Further pro-
spective and retrospective studies will be performed on
additional patient data to determine the clinical efficacy of
this atlas for the localization of subcortical surgical targets.
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Hellier P, Barillot C, Mémin E, Pérez P (2001): Hierarchical estima-
tion of a dense deformation field for 3D robust registration.
IEEE Trans Med Imaging 20:388–402.

Hellier P, Barillot C, Corouge I, Gibaud B, LeGoualher G, Collins
DL, Evans AC, Malandain G, Ayache N, Christensen GE, John-
son HJ (2003): Restrospective evaluation of intersubject brain
registration. IEEE Trans Med Imaging 22:1120–1130.

Hirai T, Jones EG (1989): A new parcellation of the human thala-
mus on the basis of histochemical staining. Brain Res Brain
Res Rev 14:1–34.

Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC
(1998): Enhancement of MR images using registration for sig-
nal averaging. J Comput Assisted Tomogr 22:324–333.

Horn BPK, Schunck BG (1981): Determining optical flow. Artif
Intell 17:185–203.

Jannin P, Grova C, Maurer CR Jr (2006): Model for defining and
reporting reference-based validation protocols in medical
image processing. Int J Comput Assisted Radiol Surg 1:63–73.

Johansen-Berg H, Behrens TEJ, Sillery E, Ciccarelli O, Thompson
AJ, Smith SM, Matthews PM (2005): Functional-anatomical vali-
dation and individual variation of diffusion tractography-based
segmentation of the human thalamus. Cerebral Cortex 15:31–39.

Krause M, Fogel W, Heck A, Hacke W, Bonsanto M, Trenkwalder
C, Tronnier V (2001): Deep brain stimulation for the treatment
of Parkinson’s disease: subthalamic nucleus versus globus pal-
lidus internus. J Neurol Neurosurg Psychiatry 70:464–470.

Lenz FA, Normand SL, Kwan HC, Andrews D, Rowland LH, Jones
MW, Seike M, Lin YC, Tasker RR, Dostrovsky JO, Lenz YE
(1995): Statistical prediction of the optimal site for thalamotomy
in parkinsonian tremor. Movement Disorders 10:318–328.

Lombardi WJ, Gross RE, Trepanier LL, Lang AE, Lozano AM,
Saint-Cyr JA (2000): Relationship of lesion location to cognitive
outcome following microelectrode-guided pallidotomy for Par-
kinson’s disease: Support for the existence of cognitive circuits
in the human pallidum. Brain 123:746–758.

Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P
(1997): Multimodality image registration by maximization of
mutual information. IEEE Trans Med Imaging 16:187–198.

Neelin P, MacDonald D, Collins DL, Evans AC (1998): The MINC
file Format, from bytes to brains. In: Evans AC, editor. The 4th
International Conference on Functional Mapping of the
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