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Abstract: How humans understand the actions and intentions of others remains poorly understood.
Here we report the results of a magnetoencephalography (MEG) experiment to determine the temporal
dynamics and spatial distribution of brain regions activated during execution and observation of a
reach to grasp motion using real world stimuli. We show that although both conditions activate similar
brain areas, there are distinct differences in the timing, pattern and location of activation. Specifically,
observation of motion revealed a right hemisphere dominance with activation involving a network of
regions that include frontal, temporal and parietal areas. In addition, the latencies of activation showed
a task specific pattern. During movement execution, the earliest activation was observed in the left
premotor and somatosensory regions, followed closely by left primary motor and STG at the time of
movement onset. During observation, there was a shift in the timing of activation with the earliest
activity occurring in the right temporal region followed by activity in the left motor areas. Activity
within these areas was also characterized by a shift to a lower frequency in comparison with action
execution. These results add to the growing body of evidence indicating a complex interaction within
a distributed network involving motor and nonmotor regions during observation of real actions. Hum
Brain Mapp 31:160–171, 2010. VC 2009 Wiley-Liss, Inc.

Keywords: magnetoencephalography; grasping; reaching; mirror neurons; intention

r r

INTRODUCTION

The ability to understand and predict the actions and
intentions of others is fundamental for social cognition. In
spite of this, the neural mechanisms underlying action
understanding remains controversial. Simulation theory
proposes that the actions of others are recognized and
understood by simulating the pattern of activity within the

observer’s own neural networks via the mirror neuron sys-
tem (MNS) [Gallese et al., 1996; Rizzolatti et al., 2001]. The
discovery of mirror neurons in the premotor cortex of the
macaque monkey [Gallese et al., 1996] precipitated a grow-
ing body of research suggesting the existence of a similar
mechanism in humans for understanding the actions and
intentions of others. A wide range of brain imaging techni-
ques (fMRI, PET, EEG, TMS and MEG) have now been
used to show strong functional and anatomical associa-
tions between the execution and observation of the same
action. Two key brain regions are thought to comprise the
MNS: the premotor cortex and the inferior parietal cortex
[Rizzolatti and Craighero, 2004]. Action recognition
involves a number of processes relating to recognition and
representation of the goal of the observed action, as well
as the intentions behind the action. Goal representation is
thought to be mediated by the anterior intraparietal sulcus
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[Hamilton and Grafton, 2006]. A third area has also been
identified [Iacoboni et al., 2001; Puce and Perrett, 2003] in
the superior temporal sulcus (STS), a higher order visual
region that is known to be involved in the processing of
biological motion [Puce and Perrett, 2003; Virji-Babul
et al., 2007].

In order to isolate the processes involved in action
understanding, many of the motor based tasks used in
previous experiments have used stimuli of static images or
video clips in which a hand or arm is presented perform-
ing a particular action such as reaching for a wooden
shape [Filimon et al., 2007], manipulating a series of rings
or cups [Molnar-Szakacs et al., 2006] or simply the action
of isolated finger movements [Kessler et al., 2006].
Recently, a number of studies have examined the role of
context in action understanding. Iacoboni et al. [2005]
reported that actions embedded in contexts were associ-
ated with greater activity in mirror neuron areas such as
the inferior frontal cortex in comparison with observing
actions in the absence of context. Brass et al. [2007] also
reported that unusual actions were associated with activa-
tions in the superior temporal gyrus. These tasks have
been invaluable in extending the function of the mirror
neuron system to go beyond simply recognizing the motor
aspects of the action but also the intention of the action in
relation to the context.

A number of studies have examined how the presence
of a live model influences the activity of this network.
Nitashani and Hari [2000] reported that observing pinch-
ing movements made by an experimenter in front of the
subject, led to strong activation in the left inferior frontal
area and the primary motor area. Järveläinen et al. [2001]
examined the neuromagnetic oscillatory activity of the pri-
mary motor cortex while subjects observed either live or
videotaped movements of the hand. They found that live
motion was associated with stronger activation of the pri-
mary motor cortex. Shimada et al. [2006] compared the
activity of motor areas in infants whether they either
watched a live model performing an action or a television
version of the same action, using near-infrared spectros-
copy. They reported that the infant’s motor areas were
significantly more activated when observing a live person
in comparison with the televised action and proposed that
the human brain responds differently to the real and
virtual worlds.

We designed the present study with the goal of charac-
terizing the spatial temporal dynamics of the cortical areas
underlying action representation during observation of a
functional task. In this task the experimenter sat beside the
subject and performed a reach to grasp motion with a
coffee cup, within an MEG environment. The subjects
viewed both their own actions and the actions of the
experimenter from the same perspective. We have previ-
ously shown that this task results in significant mu sup-
pression in bilateral sensorimotor areas during action
execution and observation [Virji-Babul et al., 2008]. Given
the previous results on the influence of context on action

observation, we predicted that viewing action within a
more realistic context would activate the mirror neuron
network as well as the structures involved in perception of
social stimuli such as the superior temporal sulcus.

METHODS

Participants

Ten healthy adult participants (four males, six females)
age range 20–40 years with no history of neurological dys-
function or injury participated in this study. This study
was approved both by the Simon Fraser University
Research Ethics Board and the Down Syndrome Research
Foundation Research Ethics Committee. All participants
were right handed and all subjects gave informed consent.

Experimental Paradigm

Participants were seated in an electromagnetically
shielded room (Vaccumschmeltz). Data were collected
under three conditions: Rest, Execution and Observation.
The experimenter sat next to the subject under all three
conditions. In the Rest condition participants were asked
to sit quietly with hands on their lap and eyes open. Tim-
ing of events associated with the performed and observed
movements were measured using two nonmagnetic
response pads (Lumitouch, Burnaby, B.C.) with highly
sensitive buttons (four on each pad) placed adjacent to
each other on a wooden board in front of the participant.
For the movement task, participants began by resting their
right hand on the buttons of one pad and made self paced
movements to reach with their dominant hand and grasp
and lift a cup that was placed on the buttons of the second
button box. The participants were asked to lift the cup
approximately 2–3 inches off the box and return it to the
same position and finally return to their initial hand posi-
tion. This provided trigger signals that were recorded
along with the MEG data indicating the onset of reaching
(hand motion), onset of lifting (hand/object motion),
placement of the cup on the pad (termination of object
motion) and time of return of the moving hand (termina-
tion of hand motion). In the Observation condition partici-
pants sat with their hands in their lap and passively
observed the experimenter performing the same action in
an identical way, ensuring that timing of reaching and
lifting events was highly similar across the two conditions.
Vision of the participant’s own hands during the Observa-
tion condition was obstructed by a cloth or blanket. In
addition, the experimenter was seated on the subject’s
dominant side so that the subject viewed the action from
the same perspective as during the Execution condition.
The experimenter’s hand and reaching arm was positioned
on the table so that it was visible to the participant
throughout the session from rest to the completion of
the movement. Each reach and grasp trial lasted
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approximately 3 seconds with approximately 2–3 second
intertrial interval between trials. The average number of
trials ranged between 80 and 100 in each condition.
The Observation and Execution conditions were
counterbalanced.

MEG Data Acquisition

The MEG data was acquired using a 151-channel whole
head MEG system (VSM Medtech, Coquitlam, Canada)
installed within a magnetically shielded room. For both
Execution and Observation conditions, 420 seconds of a
continuous data were initially collected at a rate of 600
samples per second with a 150-Hz low pass filter, using
third-order gradiometer noise cancellation. The data was
manually inspected for artifacts and corresponding
segments were marked as bad. Approximately 80–100
reaching/grasping trials per condition were retained for
each subject for subsequent processing. Each data set was
then filtered to 0.2–50 Hz band and downsampled to 200
samples per second.

Four trigger events were recorded per each reaching/
grasping trial. The first event, marking the onset of the
reaching motion, was used in the present study as there
was a 2–3-second long interval preceding the first trigger,
providing a good baseline for detection of event-related
activity.

Data Processing

The SAM beamformer spatial filtering algorithm [Robin-
son and Vrba, 1999] was used to identify areas of action or
stimuli-related activity. For forward modeling of the
source fields, a multiple-sphere approximation of the scalp
surface of each participant was obtained based on their
digitized head shape. Coregistration of the functional and
anatomical data was performed by matching the digitized
head shape to the subject’s MRI image. If the latter was
missing, the best matching MRI from a database of about
one hundred images was used. To accomplish this, we
initially selected several candidate MRIs whose interfidu-
cial distances closely approximated the actual measure-
ments. The MRI that had the best fit with the subject’s
head shape was used for co-registration.

For each subject a three-dimensional spatial distribution
of averaged source activity over extended time windows
was computed using a spatiotemporal beamforming
method [Robinson, 2004]. This involved identifying active
and control windows of approximately equal lengths dur-
ing the grasp-lift and rest periods. For each voxel of a
three-dimensional grid (step 0.5 cm) covering the brain
SAM beamformer weights and source waveforms were
calculated using standard software supplied with the
MEG system (CTF MEG System Software v. 5.4). The
power of the phase-locked evoked component was com-
puted for each time point in the active window and results

were averaged over the entire window. The phase-locked
component is characterized by stable sign and latency
across the trials. To extract it, the signal at each time point
in the active window was averaged over trials and base-
lined using the mean signal in the control window [see
Robinson, 2004 for details]. The mean evoked power was
then normalized by the projected sensor noise to compen-
sate for spatial distortions and to scale the data into units
of noise variance, yielding a pseudo-Z value for the voxel
[Robinson and Vrba, 1999]. Spatial locations with high
pseudo-Z values identify brain areas where evoked activ-
ity is consistently related to the stimulus.

In our study we used windows of approximately 500
msec. The time windows for each participant were
selected by examining averaged MEG waveforms from
sensors located close to motor area, as illustrated in Figure
1A. Window positions relative to the marker varied
slightly depending on the subject and the condition, in
order to accommodate most of the task-related activity.
The active window always started at the onset of evoked
response, about �200 � 50 ms for execution condition and
0 � 50 msec for observation condition. Its length was
determined by the first fall off of the signal (typically
500 � 50 msec). Averaging over a time interval ensures
that possible jitter and complex, oscillatory nature of the
response are accounted for (see Fig 1). The control win-
dow preceded the active window and had the same length
to avoid statistical bias. The requirement for selection of
the active window was that it should cover all task-related
activity but not be too large as the effect may be diluted
by time averaging. The windows were therefore selected
on an individual basis. Using an identical window for
each participant would have resulted in longer window
lengths due the inter-subject variability.

Location of Peak Activity in Beamformer Images

Functional images were spatially normalized into a com-
mon template space using SPM99 package [Singh et al.,
2002]. Each image was additionally normalized on its
mean value over the entire head volume, and then a
group-averaged functional image was calculated. An addi-
tional normalization step was performed to prevent bias in
the group-averaged results that could be caused by indi-
vidual data with large pseudo-Z amplitudes.

We then examined the locations of the maxima in the
group-averaged images found using a peak detection
algorithm. This resulted in two sets of maxima for Exe-
cution and Observation conditions. Statistically signifi-
cant locations were used for further analysis. Only
maxima that satisfied the following two conditions were
retained: (a) magnitudes larger than a statistical thresh-
old obtained using surrogate data; and (b) a large num-
ber of participants should have maxima in their
individual functional images close to these group-aver-
aged locations. Since the population distribution for the
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functional image data is unknown, one way to estimate
statistical significance is to generate surrogate data and
find the distribution from it. For this purpose, nonpara-
metric permutation tests have been used in a number of
recent studies to create surrogate functional images by
randomly permuting segment labels (i.e ‘‘active’’ and
‘‘control’’ labels) multiple times [Chau, 2004; Singh,

2003]. We adopted a similar approach, but instead of
permuting the labels, we randomly varied the event
marker positions in the dataset. Namely, one hundred
sets of random event markers with 85 events per set
were generated. Within each set, the markers were dis-
tributed with a uniform probability over the entire dura-
tion of the record. A pair of 0.5 second long ‘‘active’’ and
‘‘control’’ windows was attached to every such event.
The same analysis was repeated for each participant and
for every random set as for the real set of events. The
data was then averaged over the subjects. Thus one hun-
dred surrogate group-averaged images for each condi-
tion were obtained. As the event timings were selected at
random, these images represented nothing but a mere
statistical variability. We then found a distribution of the
global maxima of these images. The upper boundary of
the 95% percentile of this distribution was used as a sig-
nificance threshold for the real group-averaged data.
Note that using the largest (global) maximum as a test
statistics allows a strong control of the Type I statistical
error in the multiple comparisons (multiple hypothesis
testing) situation [Chau, 2004, Shaffer, 1995].

To test if a group-averaged maximum represents signif-
icant number of participants, we adopted a null-hypothe-
sis that each subject has maxima distributed randomly
over the brain volume. Using simple statistical considera-
tions, one can estimate a chance probability to find a
specified number of individual maxima within a small
search distance around a group location, to obtain a
threshold value for this number depending on desired
significance level. In our analysis, we used 1.5 cm and 2
cm search radii and P value of 0.05 for the group peaks
selection (see further details of the procedure in
Appendix).

Finally, for each subject we constructed the SAM vir-
tual sensors corresponding to group maxima in the sub-
ject’s own brain space. The group locations (for each
condition) were projected back from the template space
to the subject’s head coordinates. Each projection was
replaced with the closest peak of the subject’s functional
image for the corresponding condition, provided that the
peak could be found within 2 cm distance of the group
maximum. If this condition could not be met, the pro-
jected group maximum itself was used. Thus we
obtained two final sets of locations per subject that we la-
beled ‘‘Execution’’ and ‘‘Observation’’. SAM virtual sen-
sors were constructed in a standard way [Robinson and
Vrba, 1999] for both sets. The waveforms from these sen-
sors were analyzed to obtain temporal information about
the activations and to perform the time-frequency
analysis.

In subsequent processing, we used the ‘‘Execution’’ set
for analyses in the Execution condition. In the Observation
condition, we looked at both sets as the ‘‘Execution’’ set
provided a direct comparison of two conditions at the
same locations, while the ‘‘Observation’’ set related to ac-
tivity not found in the Execution condition.

Figure 1.

Time courses of evoked fields in execution condition. (A) Out-

put of 15 MEG sensors located over the left-central area of the

brain, for a single subject (TA) filtered to 0.2–15 Hz band.

Shaded areas illustrate active and control windows selection. (B)

Time courses of SAM virtual sensor at the left motor location

(0.2–15 Hz), for subjects PA (blue), TA (green), CA (red). (C)

Grand-averaged amplitudes of the left motor virtual sensors

outputs (0.2–8 Hz), in relative units: each waveform was normal-

ized to a unit total power before averaging, to prevent bias

caused by waveforms with larger amplitudes. Shaded area shows

bounds of a 2 STD interval.
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Laterality Index

The laterality index (LI) of the group-averaged images
was obtained by using a 95% significance statistical thresh-
old (obtained by bootstrap) to choose significant voxels in
the image. The values of these pixels were integrated sepa-
rately for left and right hemispheres, and LI ¼ (left �
right)/(left þ right) was estimated.

Timing of Activation

Virtual sensor signals from both execution and observa-
tion sets varied significantly over the group, as illustrated
by Figure 1B. This is not surprising taking into account
the complexity of the motion and the fact that many dif-
ferent strategies may be used by the human brain to ac-
complish this action. Note also that for SAM beamformer
the sign of reconstructed waveforms cannot be uniquely
identified, thus adding to the variability. For waveforms
of similar shapes, it is possible to align the signs by flip-
ping some of the curves relative to the time axis. In our
case the variability of the waveforms did not permit this
process.

One way to overcome this difficulty is to use absolute
values (amplitudes) of the signals (Fig. 1C). In this case,
the signs will be lost but the information about the
strength of the response is still preserved. Still, Figure 1C
clearly illustrates that due to the complexity of this move-
ment, and differences in individual waveforms, it is not
possible to obtain consistent results from the group time
courses.

Therefore, instead of relying on the averaged data, we
looked at the timings of the maximal activity for individ-
ual subjects in both execution and observation conditions
for both sets of locations. For each participant, the wave-
forms from virtual sensors were smoothed with an 8 Hz
low-pass filter, averaged and squared to obtain the time
course of the power. We then selected the strongest peak
in the active window and took its latency relative to the
event marker to be the timing of the activation for the cor-
responding location for each participant. A pool of latency
data obtained this way was used for statistical analyses of
relative timing of activations in different locations and
conditions.

Time Frequency Distributions

The time-frequency distributions (TFDs) of the virtual
sensor signals were analyzed by computing spectrograms
(that is, power spectrums of the short-time Fourier trans-
forms [see Cohen, 1989]). A 0.4-second long Hamming
window was moved in 5 msec steps in the interval [�1, 1]
sec relative to the event marker. For every channel, we
first calculated averaged TFDs for each subject, and then
obtained a group average. Finally, the power for each fre-
quency line was normalized on its mean in the interval

[�0.6, 0] sec. The results (in decibels) were plotted using
color encoding. To obtain significance thresholds, we took
TFD data in the interval [�0.6, 0] sec for the Observation
condition, and generated 1,000 bootstrap resamplings for
each frequency line. For every sample, global minimum
and maximum values were found, and then P ¼ 0.01
thresholds for the minima and maxima were estimated
from obtained populations. Again, using global extremes
as test statistics allows a strong control of the Type I error.
This procedure was repeated for every virtual channel.
Thus we obtained statistical thresholds for minima and
maxima as functions of the location (i.e. virtual channel)
and frequency. The frequency dependences were
smoothed using 20 Hz running average. In the time
frequency plots the points that did not reach significance
levels were explicitly set to 0 dB.

The time frequency plots typically show event-related
desynchronization (ERD) preceding and during the
motion. To compare ERDs between the conditions, we
averaged the spectrograms along each frequency line
over the time interval [0–0.5 sec] relative to the marker.
This provided an overall desynchronization as a function
of frequency in the ‘‘active’’ period. We then looked at
the minima of this dependence in four overlapping fre-
quency bands: 4–8 Hz, 7–14 Hz, 13–26 Hz, 25–50 Hz.
These bands roughly correspond to the conventional
theta, alpha, beta and gamma brain rhythms. The mini-
mum (if found) was assumed to be the desynchronization
frequency for the band for a given location. Applying
this procedure to every location in the ‘‘Execution’’ set,
we thus obtained up to 9 desynchronization frequencies
for each band per condition. Comparison of these sets
between the conditions reveals the global changes in the
ERD frequencies across the locations, as shown in the
‘‘Results’’ section.

RESULTS

Areas of Activation for Execution

and Observation

As explained in the ‘‘Methods’’ section, we used spatial
distributions of the pseudo-Z values (ratios of the phase-
locked signal power to projected sensor noise) to localize
sources of sustained evoked activity.

In the group-averaged data, we found 15 virtual loca-
tions for the Execution condition and 13 locations for the
Observation condition, significant at a ¼ 0.05 threshold for
the peak magnitude. For the same significance level, we
found that only nine group-averaged maxima (out of 15)
for the Execution condition and six (out of 13) for the
Observation condition were represented by an adequate
number of participants. Figure 2 and Table I show these
average overall group activations for both Execution and
Observation conditions. As expected, during Execution the
strongest maxima were observed in the left motor areas;
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there was however, significant activation in the right
premotor and primary motor regions as well as the right
superior temporal gyrus showing that functional action

sequences activate bilateral networks. Similarly, we
observed bilateral activation of the frontal, parietal-
temporal and temporal regions during the Observation
condition.

Laterality Index

The results from the LI estimate provided the following
values: Execution ¼ 0.73, Observation ¼ �0.50 indicating
a clear left hemisphere dominance for the Execution
condition and a right hemisphere dominance for
Observation.

Latencies of Activations

A one-way ANOVA applied to activation times of vir-
tual channels showed an effect for the Execution condition
(P ¼ 0.05), indicating that as a group, differences in laten-
cies exceed statistical variability; however the post-hoc
tests (Tukey) could not pin point specific channels with
relative delays reaching statistical significance. For the Ob-
servation condition, ANOVA yielded no effect for both
Execution and Observation locations indicating that the
variability was too large to reliably resolve time differen-
ces between individual pairs of virtual channels. We there-
fore fixed one virtual channel in the Execution set and
computed latencies of all other channels relative to this
reference channel. Making each channel in turn a refer-
ence, we obtained nine sets of latencies (one per each loca-
tion in the ‘‘Execution’’ set) for each condition. The t-tests
performed on these sets showed that three channels out of
nine had timings significantly different from all others in
the Execution condition, and two—in the Observation con-
dition, as shown in Figure 3 (P ¼ 0.005 significance level

TABLE I. Group averaged locations. Talairach coordinates are shown inmm. Execution and observation sets are shown

in order of decreasing Z2. Locations were labeled using the Talairach Client (Lancaster JL et al., 2000)

Peak # X Y Z

# subj,
r ¼ 1.5 cm

# subj,
r ¼ 2 cm Brain region

Brodmann
area #

Range
(mm)

Execution
1 �32.7 �18.1 42.5 6 9 L Precentral gyrus 4 1
2 �32.7 �2 52.8 6 10 L Middle frontal gyrus 6 0
3 �52.5 �11.1 27.5 4 7 L Precentral gyrus/STG 4 3
4 �32.7 �44.5 58.6 2 6 L Postcentral gyrus 5 0
5 46.5 �14.7 31.3 6 8 R Precentral gyrus 6 3
6 50.5 �19.9 5.8 4 5 R Superior temporal gyrus 22 1
7 3 �17 64.6 5 5 R Medial frontal gyrus 6 1
8 42.6 �13.3 60.7 6 7 R Precentral gyrus 6 0
9 10.9 �36.7 58.2 5 6 R Postcentral gyrus 4 3

Observation
10 58.4 �32.1 �4.1 4 6 R Middle temporal gyrus 21 3
11 58.4 �3.9 16 8 10 R Precentral gyrus 4 0
12 42.6 �32.8 58 6 6 R Postcentral gyrus 40 1
13 �52.5 �19.9 5.8 6 7 L Superior temporal gyrus 41 1
14 �36.6 �14.4 38.7 5 5 L Precentral gyrus 4 4
15 �28.7 �1.8 56.5 4 4 L Subgyral 6 1

Figure 2.

Average overall group activations for the execution and observa-

tion conditions. Color coding represents the group averaged

pseudo Z values. Images were generated using MRIcro software

(www.mricro.com).
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was used for t-tests to account for multiple comparisons).
On average, the left primary motor and somatosensory
areas were activated 50 ms earlier than other areas, while
the left temporal area was delayed relative to others by
approximately the same time. In the Observation condi-
tion, we found the opposite pattern: activity in the right
temporal area location was the earliest, followed by activ-
ity in the left motor areas. There were no significant time
differences among the ‘‘Observation’’ set of locations.

Time Frequency

Figure 4 shows the grand averaged virtual sensor time
frequency plots for both conditions. The frequency plots
are numbered from the channels displaying the highest
pseudo-Z values to the lowest. For any frequency line,
the start of ERD was identified as the first time point
where the absolute value of the change in the amplitude
(in dB) exceeded the significance threshold. In Execution,
ERD started approximately 150 msec before the onset of
motion (vertical red line indicates movement onset) and
continued to the completion of the motion.For the Execu-
tion condition, significant ERD was seen in both the
alpha/l (8–15 Hz) as well as the beta (15–35 Hz) fre-
quency range in the left premotor and primary motor
regions. ERD in the both frequency bands was also
observed in the right premotor, and primary motor
regions—although the onset of this activity occurred
later. In the right STG region, ERD in the alpha band was
observed after the onset of the movement.

In the Observation condition, significant ERD started
approximately 100 msec after movement onset. Strong
desynchronization in the beta band was observed in the
left motor regions. Activity in the left parietal region
occurred in both alpha and beta bands, approximately 200
msec following movement onset. On the right side
desynchronization in the motor, parietal and STG regions
was observed primarily in the alpha band.

Spectral Analysis

In comparing the spectral distribution of ERD between
the two conditions, we noted that the Observation
condition was characterized by a downward shift in
frequency. Figure 5 shows the box-whisker plots of the
desynchronization frequencies for the locations in the
Execution and Observation conditions. The figure clearly
demonstrates the shift by 1–2 Hz in alpha and beta
bands when the subjects observed the motion. Although
relatively small, this shift is statistically significant (P <
0.01). For the theta and gamma bands similar shifts were
not observed.

DISCUSSION

The aim of this study was to determine the temporal
dynamics and spatial distribution of brain regions acti-
vated during Execution and Observation of a reach to
grasp motion using real world stimuli. There were three
main differences between these two conditions. First, each
condition was associated with specific hemisphere domi-
nance. Although movement related to grasping the cup
yielded significant activity in bilateral motor and parietal
regions, there was a clear left hemisphere dominance with
the strongest maxima in the left primary motor and pre-
motor regions contralateral to the side of movement. In
contrast, observation of the same motion resulted in a shift
of dominance to the right hemisphere as shown by the lat-
erality index. Second, the latencies of activation showed a
task specific pattern. During movement execution, the ear-
liest activation was observed in the left premotor and
somatosensory regions, followed closely by left primary
motor and STG at the time of movement onset. During
Observation, there was a shift in the timing of activation
with the earliest activity occurring in the right temporal
region followed by activity in the left motor areas. Third,
although significant ERD was seen in both conditions in
the alpha/mu and beta frequency range in a network of
areas that included bilateral frontal, parietal and temporal
regions, there was a small but statistically significant
downward shift in the overall alpha and beta band activity
during Observation.

Despite well documented changes in cortical oscillatory
rhythms during motor and cognitive tasks [e.g. Neuper
and Pfurtscheller, 2001; Schurmann and Basar, 2001], the
functional significance of these rhythms remain unclear.
ERD is generally thought to indicate active processing
[Pfurtscheller and Lopes da Silva, 1999] with the sugges-
tion that a desynchronized neural network has a larger
capacity for processing inputs and for transferring infor-
mation [Yamagishi et al., 2005]. Neuper and Pfurtscheller
[2001] have further proposed a distinction between the
lower (8–10 Hz) and upper (10–12 Hz) alpha band activity.
They suggest that lower alpha desynchronization may be
associated with nontask specific activity related to

Figure 3.

Latencies of activations. precentral gyrus (PrCG), post central

gyrus (PostCG), superior temporal gyrus (STG), Mid frontal

gyrus (MidFrG). [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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attention processes, whereas upper alpha activity is associ-
ated with task specific activity. During voluntary move-
ment they showed that lower alpha activity was widely
observed over primary sensorimotor, premotor and parie-

tal regions indicating a general readiness or pre-setting of
neural networks that are involved in the motor task, but
not necessary to support the actual movement. The upper
alpha band was associated with specific regions in the

Figure 4.

Grand averaged time frequency plots of virtual sensors. Precentral gyrus (PrCG), mid frontal

gyrus (MidFrG), superior temporal gyrus (STG), postcentral gyrus (PostCG). Note that virtual

sensor #3 is labeled LPrCG/STG as the location of this sensor was in between these two

regions and could not be localized with greater accuracy.
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contralateral motor areas related to the performed move-
ment. The shift to the lower alpha frequency that we
observed in this experiment may be related to these proc-
esses. Observation of action may activate subsets of neural
networks including motor circuits, as learned events relat-
ing to an observed movement.

The binding of coherent or coupled neural assemblies
may be disengaged and selectively re-grouped with
other task-related circuits in relation to the environmen-
tal context. The MNS might therefore involve the cou-
pling of neural networks based on previous experience,
with a constant update or adaptation by disengaging

and newly engaging a coupling of task-specific relevant
neuronal ensembles. Previous findings have already
indicated selective thalamo-cortical network activations
during sensory processing [Llinás and Ribary, 1993;
Ribary, 2005; Ribary et al., 1991] and during particular
motor tasks [Schnitzler et al., 2005; Volkmann et al.,
1996].

The shift to the right hemisphere during Observation
may also be related to these task-related circuits. Given
that our task did not require imitation, it likely precludes
active preparation based on the observed motion. It is
more likely that right hemisphere activation is related to
attention control, processing of spatial functions, encod-
ing the global features of the task or for coding intention.
It is important to highlight that mirror neurons are a
subset of a population of neurons that are active during
observation and execution of actions and there is still
much debate about whether this response is due to the
activity of a distinct population of neurons that codes
both perception and action [Dinstein et al., 2008].
Recently, Chong et al. [2008] showed for the first time
that the right inferior parietal lobe (IFL) selectively
responds to motor and perceptual representations of
action, suggesting that the IFL may play a critical role in
action understanding.

This recent finding in combination with our results
showing a right hemisphere dominance during observa-
tion and early activation in the right temporal region,
may be another essential link between perception and
action. It has been suggested that the temporal cortex
interacts with premotor and parietal cortex particularly
during imitation, by integrating visual input with reaffer-
ent copies of the imitated action [Iacoboni et al., 2001].
Although in our study there was no requirement for imi-
tation we found that the strongest maxima was in the
right temporal region. This area is also involved in cogni-
tive processing related to perspective-taking [Schulte-
Rüther et al., 2007]. The ability to distinguish between
the actions of the self from others may in fact be medi-
ated by an interaction of the temporal-parietal region
with motor related areas. In the present experiment, the
task took place within a social context with a live model
and was designed from the first person perspective with
the experimenter sitting next to the subject during the
task. The combination of this visual perspective occur-
ring within a real world context may have led to the acti-
vation of a network involving the STG, frontal and
parietal regions.

Keysers and Perrett [2004] have recently reviewed the
animal and human literature relating to the mirror neuron
system and showed that while neurons in the STS,
posterior parietal lobe and the premotor cortex respond to
the sight and sounds of the actions of others, only the
parietal and motor regions respond to the agent’s own
actions. Over time, the STS becomes critical for learning
and discriminating self produced actions from the actions
of others. They propose that the STS, posterior parietal

Figure 5.

Desynchronization frequencies for the locations in the execution

and observation conditions. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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lobe and the premotor cortex should be considered as a
functional circuit with reciprocal connections that facili-
tates information in both directions to facilitate social
understanding.

We should also note that in contrast to some previ-
ous fMRI studies on action observation, we did not
observe significant group activations in the inferior
frontal areas. Within the fMRI literature there is cur-
rently a debate on whether this area should in fact, be
considered a mirror neuron area. In a recent review
Morin and Geres [2008] note that activations in the in-
ferior frontal gyrus (IFG) tend to be more ‘‘erratic’’
and do not appear to be sensitive to goal directed
actions. In our study while we observed the largest
group activations in the more posterior regions of the
frontal cortex, we did observe activations in the infe-
rior frontal regions in some subjects; however these
were not large enough to be detected in the group av-
erage. While it is beyond the scope of this paper to
discuss this debate in detail, we should point out that
there are two key differences between our MEG results
and previous fMRI studies that should be considered.
First, the interval that we focused our analysis was
from 0 to 500 msec. This very early time interval is
well suited for MEG but is not within the scope of the
response time of fMRI. A second well-known issue
that must be mentioned is that in MEG the signal to
noise ratio for inferior sources is less than ideal. As a
result, sources in these areas may require very large
activations to be detected. Whether the IFG is activated
during this early time period during the reaching
phase is therefore still unclear and requires further
investigation.

In summary, our results show that observing behavior
within a real world context involves a complex interaction
within a distributed network involving activation of spe-
cific frequency bands associated with attention related
processes within a motor context. Our findings confirm
previous reports of regions of overlap in the neural areas
involved during the execution and observation of the
same action with less complex motor tasks [Caetano et al.,
2007]. In our study these regions of overlap were the left
and right precentral gyrus, and the left midfrontal gyrus.
Activity in the motor areas is the central component of
the traditional mirror neuron network. This type of activ-
ity has been reported not only during observation of
human motion but also in the observation of robotic
motion [Gazzola et al., 2007] and object motion [Virji-
Babul et al., 2007] suggesting that the perception of
motion involves this subset of a more general network
involved in linking perception with action. These data
suggest that the MNS hypothesis may need to be
expanded when considering movements occurring in a
real environment. Further studies involving task-specific
neural network recruitments, binding and synchronization
during action execution and observation will help to
refine the MNS hypothesis.
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Caetano G, Jousmäki V, Hari R (2007): Actor’s and observer’s
primary motor cortices stabilize similarly after seen or heard
motor actions. Proc Natl Acad Sci USA 104:9058–9062.

Chau W, McIntosh AR, Robinson SE, Schulz M, Pantev C (2004):
Improving permutation test power for group analysis of spa-
tially filtered MEG data. Neuroimage 23:983–996.

Chong TT, Cunnington R, Williams MA, Kanwisher N, Mattingley
JB (2008): fMRI adaptation reveals mirror neurons in human
inferior parietal cortex. Current Biology: CB 18:1576–1580.

Cohen L (1989): Time-frequency distributions—A review. Proc
IEEE 77:941–981.

Dinstein I, Gardner JL, Jazayeri M, Heeger DJ (2008): Executed
and observed movements have different distributed represen-
tations in human aIPS. The Journal of Neuroscience: The Offi-
cial Journal of the Society for Neuroscience 28:11231–11239.

Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007): Human corti-
cal representations for reaching: Mirror neurons for execution,
observation, and imagery. Neuroimage 37:1315–1328.

Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996): Action recogni-
tion in the premotor cortex. Brain 119 (Pt 2):593–609.

Gazzola V, Rizzolatti G, Wicker B, Keysers C (2007): The anthro-
pomorphic brain: The mirror neuron system responds to
human and robotic actions. Neuroimage 35:1674–1684.

Hamilton AF, Grafton ST (2006): Goal representation in human
anterior intraparietal sulcus. The Journal of Neuroscience: The
Official Journal of the Society for Neuroscience 26:1133–1137.

Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau
MC, Mazziotta JC, Rizzolatti G (2001): Reafferent copies of
imitated actions in the right superior temporal cortex. Proc
Natl Acad Sci USA 98:13995–13999.

Iacoboni M, Molnar-Szakacs I, Gallese, V Buccino G, Mazziotta JC,
Rizzolatti G (2005): Grasping the intentions of others with
one’s own mirror neuron system. PLoS Biol 3:e79.
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APPENDIX

Significance Test for the Number of Subjects

Showing a Local Maximum in the Vicinity of a

Group Maximum

To determine if a group maximum represents a statisti-
cally significant number of participants, we adopt a null-
hypothesis that each subject has exactly Npeaks peaks in
their functional images, that the peaks are independent
and have a uniform random distribution over the brain
volume Vbrain. Let us estimate a chance probability to
find k or fewer subjects that have minimum one peak
within a sphere of radius r centered at a group maximum
location.

First we look at an individual subject. If Npeaks ¼ 1, then
ignoring edge effects a probability to find a peak within a
certain search volume vsearch of subject’s functional image
is p1 ¼ vsearch/Vbrain, where vsearch ¼ (4/3)pr3. For Npeaks >
1 we have a standard Bernoulli trials model, because the
peaks are independent. Probability P to find at least one
peak within the search volume is then P ¼ 1 � (1 � p1)

Npeaks.
Assume that total number of participants is Nsubj. For

each one the probability of having one or more peaks
within the search volume is P. As subjects are all inde-
pendent, we have a Bernoulli trials case again. Conse-
quently the total number of subjects having peaks within
the search volume has a binomial distribution with param-
eters P and Nsubj. The probability of having k or fewer
subjects with at least one peak within the search volume is
simply a CDF of this distribution, which is given by the
formula:

Fðk;Nsubj;PÞ ¼
Xk

j¼0

Nsubj

j

8
>:

9
>;Pj 1� Pð ÞNsubj�j

Finally, setting some significance level a, for example a ¼
0.05, one can find a threshold value for the number of sub-
jects k* such that a chance probability to get k � k* is less
than a: 1�F(k*; Nsubj, P) < a.

In practice, the total number of peaks varied slightly
from subject to subject. In our estimates the mean numbers
of peaks were used: Npeaks ¼ 15 for the execution and
Npeaks ¼ 17 for the observation condition, respectively. To
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obtain the brain volume V, we chose a spherical head
model with radius 8.5 cm and assumed that the brain
occupies 2/3 of the sphere. With these settings, finding
four (six) subjects or more with peaks within the search
volume was significant at P ¼ 0.05 level for 1.5 (2) cm
search distance.

We used a pair of search radii (r ¼ 1.5 and 2 cm)
instead of just one to account for discrete nature of the
statistic in question (the number of individual peaks
located within the search distance) and relative arbitrari-
ness of the choice of r. The problem may be illustrated
by an example. Suppose four individual peaks are found
within r ¼ 1.5 cm search distance from some group loca-

tion. At the same time, five peaks are found using r ¼ 2
cm. With all other parameters set as specified above, this
group location should be retained as significant if r ¼ 1.5
cm is used. On the contrary, it should be discarded if r
¼ 2 cm is used. Similar problem occurs if three peaks
are found with r ¼ 1.5 cm (insignificant) and say six
peaks with r ¼ 2 cm (significant). However any particu-
lar choice of r is rather subjective and we would like to
be less sensitive to it. A simple way to achieve this
adopted in this study was to use two reasonable values
for r instead of one, and to retain the group location if it
meets the significance criterion for any of them (or for
both).
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