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Abstract: Identifying directional influences in anatomical and functional circuits presents one of the
greatest challenges for understanding neural computations in the brain. Granger causality mapping
(GCM) derived from vector autoregressive models of data has been employed for this purpose, reveal-
ing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional
GCM methods are computationally expensive, as signals from thousands of voxels within selected
regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality,
they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work
a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The
algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest
with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local
brain networks, using conditional Granger causality. Our results show that the proposed method
achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger
causality method. Furthermore, the use of PCA components in conjunction with conditional GCM
greatly reduces the computational cost relative to the use of individual voxel time series. Hum Brain
Mapp 30:2197–2206, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) plays an
important role in the in vivo study of cognitive processing
in the human brain. Currently, research in the fMRI field
is undergoing a transition from mapping sites of activation
towards identifying the connectivity that weaves these
sites together into dynamic systems of temporally and spa-
tially interacting neural elements [Goebel et al., 2003; Lee
et al., 2003]. Impressive conceptual and methodological
progress has been made since the first description of the
functional MRI effect [Ogawa and Lee, 1990]. In particular,
functional integration [Friston, 2002] has been proposed as
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the basis for interpreting changes in the correlation struc-
tures between different brain regions. Recently, a Granger
causality mapping (GCM) method based on vector autore-
gressive (VAR) models of fMRI time series [Goebel et al.,
2003; Roebroeck et al., 2005; Sato et al., 2006] was used to
map effective connectivity in the human brain, promising
further insights into the neural mechanisms of cognitive
processing by revealing how one brain region might exert
influence on another.
Previous neuroimaging studies have shown that multi-

ple brain regions organized in interacting networks are
required to perform cognitive tasks [Dagher et al., 1999;
Liu et al., 1999; Londei et al., 2007; Owen et al., 1996].
Directional information provided by Granger causality
offers the potential for defining the anatomical pathways
that underlie neural interactions. As the traditional pair-
wise Granger causality mapping (pGCM) method cannot
clearly distinguish between direct causal influences from
one region to another and indirect ones mediated
through a third region [Chen et al., 2006; Geweke, 1984],
it is thus felt that pGCM is not suited for this task, given
the extreme anatomical complexity of the human brain.
Recent work shows that the conditional Granger causal-
ity measure can overcome this problem [Chen et al.,
2006]. Direct and indirect causal influences between
areas in a neural network and their relative weights
could be used to either generate hypothesis regarding
the underlying anatomical connectivity or test hypothe-
sis formulated from known anatomical connectivity in a
given problem.
Most commonly, fMRI data from individual voxels or

from averaging over multiple voxels were directly treated
as a vector time series in brain connectivity studies
[Goebel et al., 2003; Roebroeck et al., 2005; Sato et al.,
2006]. Some of the disadvantages of these methods are: (1)
the fitting of the VAR model to individual voxels incurs a
large computational cost, and (2) the averaging operation
may lose part of the information in the time series. Princi-
pal component analysis (PCA) [Jolliffe, 1986; Polat and
Günes, 2007] is ideally suited to identify a substantially
smaller group of time series than the number of voxels in
a region of interest (ROI) that can still adequately account
for its activity. In the current study, PCA is employed to
reduce the dimensionality of blood oxygen level depend-
ent (BOLD) data in known ROIs by combining correlated
features into a set of new orthogonal variables called
principal components (PCs). The PCA representation
reduces computational cost, while preserving statistical
information.
The PCA based conditional Granger causality mapping

(PCA-cGCM) will be first tested on simulated fMRI data.
Comparison with the traditional pGCM and other related
approaches is made to illustrate the advantage of the pro-
posed new method. The fMRI data from humans perform-
ing an emotional task were then analyzed. In particular,
the directional relationship between the right amygdala
and other activated brain regions was clarified.

METHODS

Principal Component Analysis

PCA [Jolliffe, 1986] is a multivariable statistical analysis
technique for data compression and feature extraction.
PCA seeks linear combinations of the original variables
such that the derived variables capture maximal variance.
More specifically, for a given n-dimensional matrix n 3 m,
where n and m are the number of variables and the num-
ber of temporal observations, respectively, the p principal
axes (p � n) are orthogonal axes, onto which the retained
variance is maximal in the projected space. The PCA
describes original data space in a base of eigenvectors. The
corresponding eigenvalues account for the energy of the
process in the eigenvector directions. It is assumed that
most of the information in the observation vectors is con-
tained in the subspace spanned by the first p PCs. Consid-
ering data projection restricted to p eigenvectors with the
highest eigenvalues, an effective reduction in dimensional-
ity of the original data input space can be achieved with
minimal information loss [Soares-Filho et al., 2001]. Details
of calculations used in PCA can be found in Song and
Shao [1997]. Reducing the dimensionality of the n dimen-
sional input space by projecting input data onto the
reduced number of p directions is an important step that
facilitates subsequent Granger causality analysis.

Conditional Granger Causality Mapping

The idea below follows that of Geweke [Geweke, 1984].
Consider a multiple stationary time series Wt 5 [w1t, w2t,
. . ., wnt]

T of dimension n, where T denotes the matrix
transposition. Suppose that Wt has been decomposed into
three vectors Xt, Yt, and Zt with dimensions a, b, and c,
respectively: Wt 5 (Xt

T, Yt
T, Zt

T)T, where a 1 b 1 c 5 n.
Here Xt and Yt are two sets of a time series with no over-
lap, and Zt represents all time series indices other than Xt

and Yt in the network. The Granger causality from Yt to Xt

conditional on Zt is defined as [Geweke, 1984]:

fY!XjZ ¼ ln
varðxtjXt�1;Zt�1Þ

varðxtjXt�1;Yt�1;Zt�1Þ ð1Þ

This definition conforms with Granger’s notion of a
prima facie cause [Granger, 1980]. Without considering Zt,
the above expression becomes the pairwise Granger
causality fY!X ¼ ln varðxtjXt�1Þ

varðxtjXt�1;Yt�1Þ, which is the basis of the
pGCM method.
The above time domain definition is not easily imple-

mented in practice as it involves fitting separate autore-
gressive models to Xt and Zt and to Xt, Yt, and Zt. Estima-
tion error and uncertainty in model parameters can arise
in this process for finite data that may lead to uninterpret-
able results [Chen et al., 2006]. Here we consider a spectral
domain procedure where a single autoregressive model is fit
to Xt, Yt, and Zt. [Chen et al., 2008] and the conditional cau-
sality spectrum is derived by combining Geweke’s theory
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with spectral matrix factorization [Dhamala et al., 2008].
Time domain conditional Granger causality defined in Eq.
(1) is obtained by integrating the spectrum over frequency.
The multivariate data Wt 5 [w1t, w2t, . . ., wnt]

T is mod-
eled as a stationary VAR process:
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where, Aijk is the AR coefficient between channels i and j
at lag k and constitutes the ijth element of the AR coeffi-
cient matrix Ak, where et is a white noise residual with
zero mean and covariance matrix S, and m is the order of
the model, which can be determined by criteria, such as
Akaike Information Criterion or Bayesian Information Cri-
terion [Ding et al., 2006]. After Fourier transforming the
above equations and suitable ensemble averaging, one gets
the overall spectral matrix according to

SðxÞ ¼HðxÞRH�ðxÞ ð3Þ

where, HðxÞ ¼ I�P1
k¼1AðkÞ e�ikx

� ��1
is the transfer func-

tion.
Geweke’s spectral formulation of Granger causality (both

pairwise and conditional) is based on the quantities in Eq.
(3). Details are omitted but can be found in Geweke (1982,
1984), Chen et al. (2006, 2008), and Ding et al. (2006). For
conditional causality estimation, the essence is the compari-
son between the model of two vector time series [numerator
in Eq. (1)] and that of a three vector time series [denominator
in Eq. (1)]. To avoid fitting AR models twice, thereby elimi-
nating the problems associated with such repeated fitting,
we choose suitable entries from the spectral matrix in Eq. (3)
to form a new spectral matrix that corresponds to Xt and Zt.
Mathematically, it has been proven that this new spectral
matrix can be factorized into a transfer function and the co-
variance matrix of the corresponding noise terms [Wilson,
1972]. The two sets of spectral matrices and their associated
H and S are then used to compute the spectral representa-
tion of Granger causality from Yt to Xt conditioned on Zt.
Integrating the spectrum over frequency yields the time do-
main counter, which is used throughout this work.

Significance Testing

A permutation procedure was used for the test of statis-
tical significance of the computed cGCM [Brovelli et al.,
2004; Nichols and Holmes, 2001]. Specifically, 500 synthetic
datasets were created by random rearrangement of the
realization (subject/task) order independently for all vec-
tors. Conditional Granger causality was computed for each
permutation. A distribution of Granger causality values in
time domain was obtained. For a given P-value, a threshold
was found from the distribution. The Granger causality val-
ues under the thresholds were considered not significant.

PCA-cGCM Algorithm

For convenience, we summarize the general procedure
for computing multivariate conditional Granger causality
analysis as follows:

1. Obtain the statistical brain activation map from the
fMRI data, using Brain Voyager QX (or other tools).

2. Select the reference ROI and perform PCA to yield a
new vector time series of PCs, which account for
most of the variance.

3. Select a target voxel in an activated brain region and
treat the remaining voxels as a single block.

4. Extract a set of principle components from the block.
5. Calculate the conditional Granger causality from the

reference ROI to the above selected voxel conditioned
on the remainder block.

6. Repeat Steps (3)–(5) for all voxels in the activated
brain regions.

SIMULATION

A 6 3 6 grid of voxels (Fig. 1a) was used to emulate a
brain slice. Five different ROIs in the slice were denoted P,
Q, S, R, and O. As shown in Figure 1b, region P was con-
sidered a primary area directly responding to the sequence
of stimuli, which drove region Q after a 1 unit (3 s) of
time delay and region S after 2 units of delay. Q, in turn,
drove R after 1 unit of time delay. To simulate a likely
functional situation, the 16 voxels/channels belonging to
the activated regions were individually filtered by the con-
volution between the stimuli evolution and a linear model
of the hemodynamic response function based on a gamma
function. The tau parameter in the model was set to 0.5
corresponding to short stimulus durations. Then this simu-
lation system contains two typical subsystems, which are a
sequential driving model [P(t), Q(t), R(t)] and a distinct
delayed driving model [P(t), Q(t), S(t)]. The voxel time se-
ries in each ROI come from one of the following coupled
autoregressive processes:

xiðtÞ ¼ ð0:5þ 0:01iÞxiðt� 1Þ � ð0:6þ 0:01iÞxiðt� 2Þ þ eiðtÞ
xjðtÞ ¼ ð0:5þ 0:01jÞxjðt� 1Þ � ð0:6þ 0:01jÞxjðt� 2Þ

þ ð0:66þ 0:01jÞxj�3ðt� 1Þ þ ejðtÞ
xkðtÞ ¼ ð0:5þ 0:01kÞxkðt� 1Þ � ð0:6þ 0:01kÞxkðt� 2Þ

þ ð0:66þ 0:01kÞxk�7ðt� 2Þ þ ekðtÞ
xlðtÞ ¼ ð0:5þ 0:01lÞxlðt� 1Þ � ð0:6þ 0:01lÞxlðt� 2Þ

þ ð0:66þ 0:01lÞxl�6ðt� 1Þ þ elðtÞ:
xnðtÞ ¼ ð0:5þ 0:01iÞxnðt� 1Þ � ð0:6þ 0:01iÞxnðt� 2Þ þ enðtÞ

xmðtÞ ¼ xmðtÞ � hrf
ði ¼ 1; 2; 3; 4; j ¼ 5; 6; 7; k ¼ 8; 9; 10; l ¼ 11; 12; 13;

n ¼ 14; 15; 16; m ¼ 1; 2; . . . ; 16Þ ð4Þ
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where, em(t), (m 5 1, 2, . . ., 16), are independent Gaussian
white noise processes with zero means and variances
rm

2(t), and each time step is assumed to be 3 s. The spe-
cific region of interest assignment was: P(t) 5 [x1(t); x2(t);
x3(t); x4(t)], Q(t) 5 [x5(t); x6(t); x7(t)], S(t) 5 [x8(t); x9(t);
x10(t)], R(t) 5 [x11(t); x12(t); x13(t)], and O(t) 5 [x14(t); x15(t);
x16(t)]. A data set of 12 realizations each with 120 time
points was generated. To mimic the typical sampling rate
of fMRI data, every point of each simulated time series
was taken, corresponding to a repetition time of RT 5 3 s.
All methods were implemented in a Matlab environment
on a PC (Intel R Core 2, 1.67 GHz CPU, and 2 Gb RAM).
Region P was chosen as the reference region and its

causal influence on each of the remaining voxels was cal-
culated by pGCM and PCA-cGCM. Figure 2a shows the
pGCM result. As can be seen, the connections P ? S and
P ? Q were correctly identified. However, the P ? R
influence is clearly spurious, indicating that pGCM could
not resolve the indirect causality mediated by Q. For the
application of PCA-cGCM, the causality from P to each
voxel conditioned on the remaining voxels was shown in
Figure 2b. Again P ? S and P ? Q were correctly identi-
fied. More importantly, the P ? R influence was removed,
demonstrating the recovery of the true network connectiv-
ity underlying the simulation model (Fig. 1b).
Next we analyzed the interaction between each distinct

pair of ROIs with pGCM and PCA-cGCM. Fitting a second

order VAR model [Ding et al., 2000] to the simulated data
set, the results are shown in Figure 3. For pGCM, the iden-
tified connectivity pattern is shown in Figure 1c. Specifi-
cally, non-zero Granger causality values were found for
P(t) ? R(t) and Q(t) ? S(t), which is clearly spurious
when compared with the model network in Figure 1b,
again demonstrating the inability of the pGCM method in
revealing true system relations. In contrast, the PCA-
cGCM approach was shown to identify the correct model
network configuration. Here for each pair of ROIs the
Granger causality values were computed with the remain-
ing vectors in the network conditioned out. Indirect causal
influences were eliminated with the cGCM (as shown in
Fig. 3) and the sequential driving pattern as well as differ-
ential delays driving pattern were all clearly resolved. We
believe that the benefits offered by the PCA-cGCM method
will be substantial when real fMRI data are analyzed to
characterize functional networks in the human brain.
Each ROI can be represented by its entire set of voxel

time series, a single average time series or a set of PCs.
The use of different representations can affect the quality
of the result and the computation time. For a specific pair
of ROIs P(t) and R(t), we compared pGCM and cGCM in
the frequency domain, using each of the three aforemen-
tioned representations. In Figure 4a,b, a strong influence
was found from P(t) to R(t) but little influence from R(t) to
P(t) was detected, using the pGCM method based on origi-

Figure 1.

(a) Synthetic fMRI 6 3 6 voxels slice used for the validation of

the PCA-cGCM method. The slice simulates four functionally

activated regions (P, Q, R, and S) and one deterministic region

(O) not associated with the presumed task. Region P, which is

composed of four voxels, is considered as the primary area

directly activated by the stimuli; and the other three functional

regions (Q, R, and S) are causally related with the region P. All

the other voxels not included in the above five regions are the

background regions. (b) Schematic illustration of a four-node

network, including a simple delay driving system (P, Q, and S)

and a simple sequential driving system (P, Q, and R). (c) Granger

causality network identified by pGCM analysis.
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Figure 2.

Granger causality analysis results from the synthetic fMRI data of

the single 6 3 6 slice. Region P is the reference area, which

includes four voxels with time courses defined by the stimuli

sequence, regions Q, R, and S are three target areas, including

three voxels each. The color bar indicates the value of Granger

causality and each voxel’s color stands for the causality value

from region P to each voxel. (a) Granger causality mapping

result of synthetic data by the pGCM method. (b) Granger cau-

sality mapping result of synthetic data by the PCA-cGCM

method. For both methods, Granger causalities in target regions

were found related to the reference region, but different maps

show the decrease in influence values with the PCA-cGCM

method (b) compared with the pGCM method (a). Obviously no

causality was found from region P to region R based on the

cGCM method.

Figure 3.

Time domain Granger causality results for four functional regions (P, Q, R, and S), using cGCM

and pGCM methods. Charcoal grey bar is the pairwise causality results based on pGCM

method and light grey bar is the conditional causality results based on cGCM method in each

subgraph. *P < 0.05. Vertical bars indicate estimated standard errors.
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nal vector values, PC vector values and average values. As
indicated earlier, this is a spurious result. The PCA gave a
concise representation of each ROI. When combined with
the cGCM method (PCA-cGCM), correct network configu-
ration was identified (Fig. 4c,d), namely, no direct causal-
ity was found between P(t) and R(t). Similar results were
also found, by using the entire set of time series within
each voxel (cGCM 1 Original). However, the use of aver-
age time series gave poor results (cGCM 1 AVG), indicat-
ing that average time series loses information and is not a
good representation of ROI activity.
The computation costs from the PCA-cGCM and cGCM 1

AVG methods are much less than the computation costs,
using the original voxel values (Table I). For real fMRI data,
activated clusters always include a large number of voxels. It
is thus difficult to apply the Granger causality method to the
voxel time series directly. The proposed PCA-cGCM method
can solve this problem. Although the conditional method
needs more time than the pairwise method, the benefit of
distinguishing direct from outweighs this weakness. It is
worth noting that these cost comparisons are only valid for
the present example. More general claim can be made after a
more thorough investigation.

ANALYSIS OF HUMAN fMRI DATA

Subjects

Twelve right-handed volunteers with normal vision
were recruited. The subjects did not report any neurologi-
cal or psychiatric history and were not on psychoactive
medications in the previous 6 months. The Granger analy-
sis results from two subjects are reported here to illustrate
our method. The analysis of data from all the subjects will
be presented elsewhere. The research protocol for the

Figure 4.

Frequency domain Granger causality results between region P and region R of the multivariate

analysis; PCA-cGCM and pGCM methods were applied to original vector values, principal com-

ponents and average values. Dashed line indicates the result based on original vector values,

bold solid line indicates the result based on principal components vectors, and the dotted line

indicates the result based on average values.

TABLE I. Causality recognition rate and time cost

comparison using different strategies

Methods
Recognition
rate (%)

Computation
time (s)

pGCM 1 AVG 75% (9/12) 2.130
pGCM 1 Original 75% (9/12) 2.610
pGCM 1 PCA 75% (9/12) 2.352
cGCM 1 AVG 83.3% (10/12) 120.528
cGCM 1 Original 100% (12/12) 715.386
cGCM 1 PCA 100% (12/12) 287.052
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human study was approved by the University of Florida’s
Institutional Review Board.

Task

The subjects performed a face matching task. Three con-
ditions were used: (1) emotion condition, in which partici-
pants were asked to match faces by their expressed emo-
tion (happiness, fear, or anger) from a target face to two
probe faces positioned below the target face; (2) identity
condition, in which participants were asked to match the
identify of neutral faces; (3) control condition, in which the
participant was asked to match pixilated patterns derived
from neutral face pictures. The task was ordered in blocks
of six 3-s trials of the same condition, preceded by a 3-s
instruction screen. The block condition was presented in a
fixed sequence that repeated four times. The entire run,
lasting 369s, consisted of twelve 21-s task blocks inter-
spersed with thirteen 9-s rest blocks [for detailed fMRI
protocol see Wright and Liu, 2006].

Imaging Protocol

The fMRI data was collected with a Siemens Allegra 3.0
Tesla MR scanner (Siemens, Munich, Germany) with a
dome-shaped standard head coil. Structure images were
acquired using a T1 MPRAGE sequence in the sagittal
plane at 1.0 mm3 resolution, TR 5 1,780 ms, TE 5 4.38 ms,
flip angle 5 88. Functional images were acquired using a
T2* weighted echo planar imaging BOLD sequence in the
axial orientation (parallel to the AC-PC line), covering the
entire brain with 36 slices, 3.8 mm thick with no gap using
TR 5 3,000 ms, TE 5 30 ms, flip angle 5 908, a 240 mm2

FOV and a 64 3 64 voxel matrix, resulting in a 3.75 mm
in-plane resolution. A total of 125 volumes were scanned
during the matching task experiment and the first two
volumes were discarded before analysis to allow for T1
equilibration.

Preprocessing and General Linear Model Analysis

Imaging data were analyzed using Brain Voyager QX
(Brain Innovation, Maastricht, Netherlands). Anatomic and
functional images were coregistered and normalized to
Talairach space [Talairach and Tournoux, 1988] for the
subjects. Functional images underwent 3D motion correc-
tion, linear trend removal, and slice timing correction. Spa-
tial smoothing was applied using a Gaussian filter of
6.00 mm full-width half maximum and no temporal
smoothing was applied to the functional data. Regional
activations were estimated using a general linear model.
Statistical maps based on group activation pattern with
12 subjects [Wright and Liu, 2006] were created using ran-
dom effects analysis. Individual voxel time series were
regressed onto the model combined with these predictors,
and clusters of voxels with significant differences between
predictors had a statistical threshold of t(11) � 4.0 (P <
0.002) and a minimum cluster size of 100 mm3. Two exper-
imental conditions (Emotion and Identity) were contrasted
with the control condition to identify activation within
specific brain regions. The primary significant differences
in modeled signal activations are summarized in Table II.

Granger Causality Analysis

To investigate the brain network underlying emotional
processing, the BOLD signal from the region of the right
amygdala activated during the emotion condition was
used as a reference for calculating causality to all the other
voxels in the brain imaging data. The PCA-cGCM method
treated all voxels except for those in the amygdala and the
target voxel as a combined region to be conditioned out.
PCA was used for dimensionality reduction for the refer-
ence region and the combined region. To assign signifi-
cance levels to the computed measures a permutation pro-
cedure was applied [see Methods section]. The significance
thresholds corresponded to P < 0.05.

TABLE II. Clusters of activation

Region Hemisphere
Brodmann

area
Talairach

coordinates Size (mm3) T score

Emotion > identity and control
Inferior frontal sulcus L 9/44 244, 17, 30 208 5.1
Precentral gyrus R 4 51, 23, 53 162 5.0
Pregenual cingulated gyrus L 24/32 23, 38, 9 180 24.8

Emotion and identity > control
Amygdala R N/A 23, 26, 29 510 6.2
Subgenual cingulate gyrus R 32 4, 38, 27 120 5.3
Fusiform gyrus R 37 40, 241, 218 248 5.1
Inferior temporal sulcus R 37 49, 270, 23 293 6.2
Middle temporal gyrus R 39 54, 258, 11 1,005 8.6
Posterior cingulated gyrus R 23 2, 255, 25 1,770 6.0

Minimum cluster size: 100 mm3.
‘‘Emotion > identity and control’’ was a conjunction of ‘‘Emotion > identity’’ and ‘‘Emotion > control.’’
‘‘Emotion and identity > control’’ was a conjunction of ‘‘Emotion > control’’ and ‘‘Identity > control.’’
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Figure 5.

Mapping of the causal relationship during emotional processing for Subject I. The reference

region is defined as the right amygdala. Causalities between the reference region and each voxel

in activated regions, while conditioning out the remaining voxels in the brain were calculated.

(a–c) Show the causalities from regions to the right amygdala. (d–f) Show the causalities from

the right amygdale to other activated regions. The color bar indicates the value of causality.

Figure 6.

Mapping of the causal relationship during emotional processing for Subject II. The reference

region is defined as the right amygdala. Causalities between the reference region and each voxel

in activated regions, while conditioning out the remaining voxels in the brain were calculated.

(a–c) Show the causalities from regions to the right amygdala. (d–f) Show the causalities from

the right amygdale to other activated regions. The color bar indicates the value of causality.
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The difference maps of conditional Granger causality
were individually shown for the two subjects, respectively
(Fig. 5 for Subject I and Fig. 6 for Subject II). The difference
maps for each subject demonstrate two directions: (1) the
amygdala ? other activated voxels (Figs. 5a–c and 6a–c);
and (2) other activated voxels ? the amygdala (Figs. 5d–f
and 6d–f). The difference maps from these two subjects are
mostly consistent, which allows the determination of direct
causal relations between the reference region, right amyg-
dala, and other brain regions (or voxels) activated during
the task. The pattern of such interactions shown in our results
is in agreement with the findings in the previous studies
using various approaches [Etkin et al., 2006; Johansen-Berg
et al., 2006; Mayberg, 2003; Ochsner and Gross, 2005; Vogt,
2005]. It should be emphasized that the integrated PCA
method is crucial in enabling a whole brain mapping at a
reasonable computational cost.

DISCUSSION

Mapping functional neuroconnectivity is an essential
step toward unraveling the brain mechanisms of cognition
and emotion. Recently, effective connectivity with direc-
tional influences from on brain region to the other has
been extracted from fMRI data based on the fMRI hemo-
dynamic signals instead of neural activity signals [Goebel
et al., 2003; Valdés-Sosa et al., 2005]. However, the estab-
lished pGCM method has two drawbacks: (1) it is not able
to clearly distinguish direct from indirect causal relation-
ships, and (2) it is computationally intensive. Efforts have
been undertaken to address various aspects of this prob-
lem [Baccalá and Sameshima, 2001; Eichler, 2005; Valdés-
Sosa et al., 2005]. In this study, we have proposed a new
approach combining PCA and cGCM. The method,
referred to as PCA-cGCM, was validated by using both
simulation and in vivo fMRI data. Using simulated data,
we showed that the PCA-cGCM method can provide more
detailed and accurate information than the traditional
pGCM by distinguishing direct connectivity from indirect
connectivity. Using fMRI data from human experiment, we
were able to identify patterns of connectivity within a
neural network implicated in emotional processing that
were consistent with previous studies [Etkin et al., 2006;
Johansen-Berg et al., 2006].
Conditional Granger causality, by being able to differen-

tiate direct from indirect causal influences, has been an
essential method for linking network dynamics with net-
work anatomy [Chen et al., 2006; Ding et al., 2006]. The
incorporation of cGCM in functional connectivity imaging
opens the possibility of better identifying the anatomical
substrate that mediates cognitive and affective processing.
A key issue in effective connectivity mapping is how to
define ROIs and the assumable connections between them
and how to represent the information in given ROIs in
connectivity analysis. The classical pGCM method is often
applied to single voxel time series or to ROI based average
time series [Goebel et al., 2003; Roebroeck et al., 2005]. The

former representation leads to high computational cost,
while the latter representation is prone to information loss.
The proposed approach performs a PCA analysis to extract
components from a ROI based on the covariance structure
of the data. These components account for most of the
data variance but are much smaller in number when com-
pared with that of the original voxel time series. Combin-
ing PCA with cGCM is shown to be effective in detecting
network connectivity, while reducing the computational
cost. Although these are preliminary observations, we are
confident that the new method offers advantages over the
classical methods.
In conclusion, our new analysis method based on PCA

and conditional Granger causality has been shown to be
useful in measuring complex effective connectivity with
indirect influences from one brain region to the others.
Most importantly, the use of PCA only leads to a mini-
mum loss of information, which did not affect the connec-
tivity analysis. The new method has a major strength in its
ability to perform a direct connectivity mapping of the
whole brain within a reasonable time frame. We thus sug-
gest that the PCA-cGCM technique is a potentially valua-
ble tool to be used in the investigation of causality rela-
tions in brain connectivity studies.

REFERENCES
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