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Abstract: The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX.
First, we performed a standard analysis of the functional and anatomical data that includes preprocessing,
spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single-subject
and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms.
Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Follow-
ing this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Com-
ponent Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal
regions for sentence processing, besides revealing other networks related to auditory stimulation or to the
default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the
spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA
in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable
results but with a set of spatially more confined group clusters and more differential group region of interest
time courses. Hum Brain Mapp 27:392–401, 2006. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

BrainVoyager QX (http://www.BrainVoyager.com) is a
software package for the analysis and visualization of struc-

tural and functional MRI (fMRI) data. The program runs on all
major computer platforms including Windows, Linux, and
Mac OS X. BrainVoyager QX provides an easy-to-use, interac-
tive graphical user interface (GUI) on all platforms and its
functionality can be extended via C/C�� plugins and auto-
mated via scripts. In order to obtain maximum speed on each
platform, BrainVoyager QX has been programmed in C��
with optimized and highly efficient statistical, numerical, and
image-processing routines. The software includes hypothesis-
driven (univariate) and data-driven (multivariate) analyses of
fMRI time series, several methods to correct for multiple com-
parisons, and tools to run multisubject volume and surface-
based region-of-interest (ROI) analyses. The software also con-
tains tools and algorithms for the automatic segmentation of
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the brain and for the reconstruction, visualization, and mor-
phing (inflation, flattening, sphering) of the cortical surface. An
important feature of the software is that the analyses of
functional and anatomical data are highly integrated. Not
only can each type of statistical map be easily projected on
the surface rendering of a cortical reconstruction, but also
individual anatomical information (as provided, e.g., by
labeled cortical voxels and individual cortical gyral and
sulcal patterns) is actively used in the statistical analysis
of single-subject and group fMRI data, with the scope of
enhancing sensitivity and improving the spatial corre-
spondence across brains (see below). Other advanced
analyses available in BrainVoyager QX were not per-
formed due to space limitations, including BOLD latency
mapping [Formisano et al., 2002b] and effective connec-
tivity analysis (Granger causality mapping, Roebroeck et
al. [2005]).

In the present article we describe some of the methods
implemented in BrainVoyager QX (v. 1.6) in the context of
analysis of the Functional Image Analysis Contest (FIAC)
2005 dataset. The details of the dataset and the experimental
design are described in Dehaene-Lambertz et al. [2006].

First, we illustrate a standard analysis of the functional
and anatomical data, including preprocessing, spatial nor-
malization into Talairach space, hypothesis-driven statistics
of the block- and event-related paradigms for a single sub-
ject (Subject 3), and the group data. Following this standard
hypothesis-driven analysis, we apply single-subject data-
driven cortex-based Independent Component Analysis
(ICA) [Formisano et al., 2004] and a recently developed
group-level ICA technique [Esposito et al., 2005]. We com-
pare the results of this data-driven analysis approach with
the results obtained with univariate hypothesis-driven
methods. Finally, we apply a high-resolution cortical align-
ment method [Goebel, 2004] to improve the spatial corre-
spondence across brains and perform a random effects
group General Linear Model (GLM) and group ICA analysis
using the cortically aligned brains.

SUBJECTS AND METHODS

Subjects

The original FIAC 2005 dataset includes data from 16
subjects. In this article we report the results of analyses
performed individually on Subject 3 (single-subject anal-
ysis) and on a cohort of 12 subjects (group analysis). We
excluded Subject 5 (no anatomical scan was available),
Subject 7 (data from one functional run was missing), and
Subjects 8 and 12 (excessive motion, as estimated during
preprocessing).

Preprocessing of Functional Data

The functional data (ANALYZE format) was loaded and
converted into BrainVoyager’s internal “FMR” data format.
The following standard sequence of preprocessing steps was
performed for the data of each subject.

Slice scan time correction

Slice scan time correction was performed using sinc inter-
polation based on information about the TR (2500 msec) and
the order of slice scanning (ascending, interleaved).

Head motion correction

3-D motion correction was performed to detect and cor-
rect for small head movements by spatial alignment of all
volumes of a subject to the first volume by rigid body
transformations. Estimated translation and rotation param-
eters were inspected and never exceeded 3 mm or 2°, except
in Subjects 8 and 12, who were excluded from the analysis.

Drift removal

Following a linear trend removal, low-frequency nonlinear
drifts of 3 or fewer cycles (0.0063 Hz) per time course for the
block- and 7 cycles (0.015 Hz) for the event-related design time
series were removed by temporal highpass filtering. Since
event-related responses have more energy at higher frequen-
cies, we could apply a higher cutoff, making the filtering of
low-frequency content (linear and nonlinear drifts) more effec-
tive. Conversely, the more sustained responses in the block
design have more energy at lower frequency and this requires
more attention in filtering the low-frequency content since
using a higher cutoff may, besides reducing drifts, also reduce
the power of the functional responses. A lowpass Gaussian
temporal filter with full-width at half-maximum (FWHM) of
two data points was applied to the block-design datasets as
well to achieve modest temporal smoothing.

Spatial smoothing

Modest spatial smoothing using a Gaussian filter (FWHM
� 5 mm) was applied for the volume-based analysis. No
spatial smoothing was used for the cortex-based analysis.

Preprocessing of the Anatomical Data

Intensity inhomogeneity correction and spatial
transformations

The anatomical data (ANALYZE format) of each subject
was loaded and converted into BrainVoyager’s internal
“VMR” data format (Fig. 1A). Since the data exhibited spa-
tial intensity inhomogeneities, a correction method
[Vaughan et al., 2001] was applied, which estimates a bias
field by analyzing the change of white matter intensities
over space (Fig. 1B). The data were then resampled to 1-mm
resolution (Fig. 1C) and transformed into AC-PC and Ta-
lairach standard space (Fig. 1D). The three spatial transfor-
mations were combined and applied backward in one step
to avoid quality loss due to successive data sampling. The
two affine transformations, iso-voxel scaling and AC-PC
transformation, were concatenated to form a single 4 � 4
transformation matrix m. For each voxel coordinates in the
target (Talairach) space a piecewise affine “Un-Talairach”
step was performed, followed by application of the inverted
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spatial transformation matrix, m�1. The computed coordi-
nates were used to sample the data points in the original 3-D
space using sinc interpolation.

Brain segmentation

For 3-D visualization, the brain was segmented from sur-
rounding head tissue using an automatic “brain peeling”
tool. The tool analyzes the local intensity histogram in small
volumes (20 � 20 � 20 voxels) to define thresholds for an
adaptive region-growing technique. This step results in the
automatic labeling of voxels containing the white and gray
matter of the brain, but also other high-intensity head tissue.
The next step consists of a sequence of morphological ero-
sions to remove tissue at the border of the segmented data.
By “shrinking” the segmented data, this step separates sub-
parts, which are connected by relatively thin “bridges” with
each other. By determining the largest connected component
after the erosion step, the brain is finally separated from
other head tissue since it constitutes the largest subpart.
Finally, the sequence of erosions is reversed but restricted to
voxels in the neighborhood of the largest connected compo-
nent. This step re-adds the tissue at the borders of the brain
that was removed by the erosion step. Figure 1D shows a
slice and Figure 1E a volume rendering of the brain after
application of the brain segmentation tool.

Cortex segmentation

In order to perform a cortex-based data analysis, the
gray/white matter boundary was segmented using largely
automatic segmentation routines [Kriegeskorte and Goebel,

2001]. Following the correction of inhomogeneities of signal
intensity across space as described above, the white/gray
matter border was segmented with a region-growing
method using an analysis of intensity histograms. Morpho-
logical operations were used to smooth the borders of the
segmented data and to separate the left from the right hemi-
sphere. If necessary, manual corrections were made to ob-
tain correct segmentation results. This was necessary in the
present data, especially in the upper part of the brains, due
to a small white/gray matter contrast-to-noise ratio. More
specifically, the segmented boundary in this region initially
did not model the white/gray matter boundary but the
outer (pial) boundary. Using optimized sequences [Howarth
et al., 2006] and averaging two T1 scans of the same subject
usually avoids this problem. Each segmented hemisphere
was finally submitted to a “bridge removal” algorithm,
which ensures the creation of topologically correct mesh
representations [Kriegeskorte and Goebel, 2001]. The bor-
ders of the two resulting segmented subvolumes were tes-
sellated to produce a surface reconstruction of the left and
right hemisphere (Fig. 1F). With a fast, fully automatic 3D
morphing algorithm [Goebel, 2000], the resulting meshes
were transformed into inflated (Fig. 1G) and flattened (Fig.
2A) cortex representations. The original folded cortex
meshes were used as the reference meshes for projecting
functional data (maps and time courses) on inflated and
flattened representations. A morphed surface always pos-
sesses a link to the folded reference mesh so that functional
data can be shown at the correct location on folded, inflated,
and flattened representations. This link was also used to

Figure 1.
Anatomical preprocessing demonstrated with data
from Subject 3. A: Selected slice of raw data as appear-
ing in BrainVoyager QX after reading the raw anatom-
ical 3-D dataset. B: The same slice after inhomogeneity
correction and removal of background noise. C: The
same slice after application of a spatial transformation
converting the voxels to isotropic 1-mm voxels based
on information in ANALYZE header. D: A slice
through the AC-PC plane after transformation of the
dataset into Talairach space; the lines and letters rep-
resent the standard proportional grid system [Talairach
and Tournoux, 1988]. For visualization purposes, head
tissue has been automatically removed by running a
brain segmentation tool (“brain peeling”). E: Result of
cortex segmentation visualized in orthographic slices of
the 3-D data in Talairach space; the yellow lines indicate
the segmented white/gray matter boundary of the two
hemispheres. The lower left inset shows a volume ren-
dering of the segmented brain. F: Visualization of the
segmented cortex as a reconstructed mesh represen-
tation; convex curvature (reflecting mainly gyri) is col-
ored in light gray, concave curvature (reflecting mainly
sulci) is colored in darker gray. G: Visualization of an
inflated representation of the cortex mesh.
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keep geometric distortions to a minimum during inflation
and flattening through inclusion of a morphing force that
keeps the distances between vertices and the area of each
triangle of the morphed surface as close as possible to the
respective values of the folded reference mesh. For subse-
quent cortex-based analysis, the folded cortex meshes were
used to sample the functional data at each vertex (node),
resulting in a mesh time course (“MTC”) dataset for each
run of each subject.

Normalization of Functional Data

To transform the functional data into Talairach space, the
functional time series data of each subject was first coregis-
tered with the subject’s 3-D anatomical dataset, followed by
the application of the same transformation steps as per-
formed for the 3-D anatomical dataset (see above). This step
results in normalized 4-D volume time course (“VTC”) data.
In order to avoid quality loss due to successive data sam-
pling, normalization was performed in a single step com-
bining a functional-anatomical affine transformation matrix,
a rigid-body AC-PC transformation matrix, and a piecewise
affine Talairach grid scaling step. As described for the ana-
tomical normalization procedure, these steps were per-
formed backward, starting with a voxel in Talairach space
and sampling the corresponding data in the original func-
tional space.

In the context of the functional-anatomical alignment,
some manual adjustment was necessary to reduce as much
as possible the geometrical distortions of the echo-planar
images, which exhibited linear scaling in the phase-encoding
direction. The necessary scaling adjustment was done inter-
actively using appropriate transformation and visualization
tools of BrainVoyager QX.

Hypothesis-Driven Analysis

Analysis steps

For each run of each subject’s block and event-related
data, a BrainVoyager protocol file (PRT) was derived repre-
senting the onset and duration of the events for the different
conditions. From the created protocols, one- and two-facto-
rial design matrices were defined automatically. In order to
account for hemodynamic delay and dispersion, each of the
predictors was derived by convolution of an appropriate
box-car waveform with a double-gamma hemodynamic re-
sponse function [Friston et al., 1998]. Using hypothesis-
driven, voxel-wise standard analyses (GLM), we tested for
overall task-related effects to check general appropriateness
of the analyses. This was followed by a GLM analysis of the
2 � 2 factorial design with three predictors testing for a
sentence repetition main effect, a speaker repetition main
effect, and a sentence � speaker interaction effect, respec-
tively. One compact way to perform a 2-factorial GLM anal-
ysis in BrainVoyager is to use the so-called factorial design
builder, which is based on the protocol definition and allows
coding each single factor effect as well as each type of

interaction effects as a separate predictor in the design ma-
trix used in the GLM fit procedure.

We performed the GLM analysis in Subject 3 (Fig. 2A–B:
block data) and in the group of 12 subjects after transforma-
tion in the conventional Talairach space (random effects
results; Fig. 3A: block data; Fig. 3B–C: event-related data).
After fitting the GLM and accounting for the effects of
temporal serial correlation (using AR(1) modeling; see Bull-
more et al. [1996]), group or individual t-maps of sentence
repetition, speaker repetition, and sentence � speaker inter-

Figure 2.
Hypothesis-driven and data-driven single-subject analysis (Subject
3). A: Single-subject, block design data, one-factorial GLM analysis:
main effects of auditory stimulation (F-statistics, P � 0.05, Bonfer-
roni corrected). B: Single-subject, block design data, two-factorial
GLM analysis: t-map (P � 0.01, � � 0.05) of sentence repetition
effect. C: Single-subject, block-design data, cortex-based ICA anal-
ysis: primary auditory component (red) and temporofrontal com-
ponent (blue). D: Average time courses from selected ROIs of the
block design data showing a strong stimulus-related response in
the auditory cortex (middle panel) and a strong speaker repetition
effect in the superior temporal gyrus/sulcus and inferior frontal
gyrus/sulcus (left and right panels). SSt � same sentence; DSt
� different sentence; SSp � same speaker; DSp � different
speaker.
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action were generated. For group-level GLM analyses, we
used a standard two-level (hierarchical) ordinary least
squares (OLS) fit procedure. Given the balanced design of
the study and a sufficient number of trials, the OLS solution
is expected to be very similar to a mixed-effects solution.
Thresholding of these maps with appropriate correction for
multiple comparisons can be performed in various ways in
BrainVoyager QX, including the false discovery rate (FDR)
[Genovese et al., 2002] approach. Here we used a recently
implemented approach based on a 3D extension of the ran-
domization procedure described in Forman et al. [1995] for
multiple comparison correction. First, a voxel-level thresh-
old was set at t � 3.1 (P � 0.01, uncorrected). Thresholded
maps were then submitted to a whole-brain correction cri-
terion based on the estimate of the map’s spatial smoothness
and on an iterative procedure (Monte Carlo simulation) for
estimating cluster-level false-positive rates. After 1,000 iter-
ations, the minimum cluster size threshold that yielded a

cluster-level false-positive rate (alpha) of 5% was applied to
the statistical maps. The implemented method corrects for
multiple cluster tests across space. For each simulated im-
age, all “active” clusters in the imaged volume are consid-
ered and used to update a table reporting the counts of all
the clusters above this threshold for each specific size. After
a suitable number of iterations (e.g., 1,000), an alpha value is
assigned to each cluster size based on its observed relative
frequency. From this information the minimum cluster size
threshold was specified in order to yield a cluster-level
false-positive rate of � � 5%.

RESULTS

Figures 2 and 3 and Table I summarize the main results of
the hypothesis-driven GLM analysis. Group analysis of
“block” data showed a significant main effect of sentence
repetition in the left anterior superior temporal sulcus and

Figure 3.
Two-factorial GLM group-level random effects anal-
ysis (12 subjects, Talairach space). A: Block design,
sentence repetition effect. B: Event-related design:
sentence repetition effect. C: Event-related design:
speaker repetition effect. T-maps (P � 0.01, �
� 0.05, see text) are projected on the average of
normalized individual brains (first three columns).
Activated clusters are also shown in a glass-brain
view (fourth column). The fifth column shows the
time course in active regions indicated by the white
cross on the left.

TABLE I. Summary of GLM results in Talairach space

Area Cluster size (mm3) t(11) (peak) Talairach coordinates x,y,z

Main effect of sentence repetition (block design)
Left anterior STS/STG 1701 7.11 �56, �13, 1

Speaker � sentence interaction effect (block design)
Left temporo–occipital cortex 904 4.64 �54, �46, �23
Right temporo–occipital cortex 603 4.87 39, �64, �27

Main effect of sentence repetition (event-related design)
Left STS/STG 5119 7.31 54, �4, �5
Right STS/STG 2088 5.56 �58, �10, �2

Main effect of speaker repetition (event-related design)
Left STS/STG 2006 6.82 49, �12, 11
Right STS/STG 239 4.12 �58, �19, 14

STG: superior temporal gyrus; STS: superior temporal sulcus.
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gyrus (STS/STG, Talairach coordinates of the peak: �56,
�13, 1, Fig. 3A). A similar effect was also evident in the data
of Subject 3, which was analyzed individually (Fig. 2B).

In the group analysis of the block data, there was also a
significant sentence-by-speaker interaction (map not shown)
ventrally in the left and in the right temporal-occipital cortex
(�54, �46, �23, and 39, �64, �27). However, the amplitude
of the average BOLD responses to each condition in these
regions was much smaller than in STS/STG.

Group analysis of event-related data showed a similar but
more extended and bilateral main effect of sentence repeti-
tion in the left and right STS/STG (�58, �10, �2, and 54,
�4, �5, Fig. 3B). In addition, there was also a main effect of
speaker repetition located in the STG but more superiorly
(�58, �19, 14, and 49, �12, 11, Fig. 3C).

Data-Driven Analysis

Analysis steps

Single-subject ICA [Formisano et al., 2002a,b, 2004] and
Group ICA [Esposito et al., 2005] were applied to the first
run of the block design experimental time-series. The data of
Subject 3 were used for the single-subject cortex-based ICA
analysis and the whole sample of 12 subjects was used for
the volume-based and cortex-based group-level analysis in
Talairach space and in the aligned cortical space (see below),
respectively.

Individual and self-organizing group-level ICA were ap-
plied to the preprocessed functional time series using two
C�� plugin extensions of BrainVoyager QX. The single-
subject ICA plugin implements methods described in
Formisano et al. [2002a,b, 2004] and includes a C�� imple-
mentation of the fastICA algorithm [Hyvärinen and Oja,
2001; Esposito et al., 2002]. Prior to the ICA decomposition,
the initial dimensions of the functional dataset were reduced
from 191 (i.e., number of timepoints) to 40 using principal
component analysis (PCA), which corresponded to more
than 20% of the initial temporal dimensions and accounted
in all subjects for more than 99.9% of the total variance-
covariance.

Individual ICA (Fig. 2C) detected two consistently task-
related components, one including bilaterally primary and
secondary auditory cortex regions and one including a more
distributed temporofrontal circuit, with clusters located
along the superior temporal sulci and gyri (STS/STG) and in
the inferior frontal gyri (IFG). The time courses of activity of
both components were positively correlated with auditory
stimulation in all four conditions, but only the temporofron-
tal component demonstrated a substantial adaptation effect
during the sentence repetition and speaker repetition inter-
vals. The amplitude of the component time course was
higher during the blocks with different sentences and dif-
ferent speakers than during the blocks with the same sen-
tences.

The ICA decompositions obtained from the datasets of
each subject were submitted to the self-organizing group
ICA (sogICA) procedure, which has been implemented as a

C�� plugin in BrainVoyager QX according to the methods
and component clustering algorithm described in Esposito
et al. [2005]. In this framework, the independent components
from individual datasets are “clustered” at the group level.
The clustering algorithm is based on components’ mutual
similarity measures implemented as linear spatial correla-
tions in a common anatomical space. The common space
may be either the voxels of a whole-brain mask defined in
the resampled Talairach volume or vertices from cortical
surface meshes resampled on the standard sphere linked to
each other by the cortex-based alignment procedure (see
below). In general, the sogICA framework allows the simi-
larity matrix to be a combination of spatial and temporal
measures. Using pure spatial similarity allows investigation
of the consistency of independent components in a group of
subjects despite the timing of experiments (e.g., differences
in stimulus presentation across subjects). The similarity ma-
trix is then transformed into a dissimilarity matrix, which is
used as a “spatial distance” matrix within a hierarchical
clustering algorithm [see also Himberg et al., 2004]. Cluster
“group” components were calculated as random effects
maps. The random effects statistic for each voxel was calcu-
lated as the mean ICA z-value of that voxel across the
individual maps divided by its standard error, resulting in a
t-statistic, which was converted to a z-statistic. The resulting
map of z-values was visualized using a threshold of z � 2.2
(P � 0.0139, one-sided). The cluster size in the subject com-
ponent space was set to 12 components per subject. Thus,
components with maximal spatial consistency across the
whole sample of 12 analyzed subjects were extracted first
and ranked high with respect to the mean intracluster sim-
ilarity.

Results

Figure 4 shows the results of sogICA. Self-organizing
group-level ICA identified a number of neurophysiologi-
cally meaningful group components, whose selection was
facilitated by the ranking of the clusters given by the intra-
cluster similarity measures. Among the first 10 clusters, we
found the consistently task-related component of early au-
ditory processing, mainly focused in primary and secondary
auditory regions (Fig. 4A, red component), and at least four
other nontask-related or negatively task-related compo-
nents, a parietofrontal component (Fig. 4A, cyan compo-
nent), a parieto-cingulate component (Fig. 4A, yellow com-
ponent), an occipital component (Fig. 4A, green component),
and a sensory-motor component (Fig. 4A, purple compo-
nent). These components reflect known circuits of functional
connectivity and include the so-called “default-mode” net-
work [Raichle et al., 2001; Grecious et al., 2004].

Most important for the repetition paradigm, we found a
temporofrontal component (Fig. 4B) whose time course of
activity was, again, positively and consistently correlated
with auditory stimulation in all four conditions and exhib-
ited the adaptation effect during the sentence repetition and
speaker repetition intervals of stimulation. The spatial lay-
out of this component was more lateralized in the left hemi-
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sphere and activated extended clusters along the STS/STG
and the IFG.

Analysis in Aligned Cortical Space

A common cortical space potentially offers a more pow-
erful group-level functional data analysis due to a substan-
tially improved anatomical alignment, which also improves
the alignment of homologous functional regions (see below).
Since gyri and sulci are not well aligned after standard
Talairach or Montreal Neurological Institute (MNI) normal-
ization procedures, suboptimal group results may be ob-
tained since active voxels of some subjects will be averaged
with nonactive voxels of other subjects due to pure align-
ment. In order to increase the overlap of activated brain
areas across subjects, the functional data of each subject is
extensively smoothed, typically with a Gaussian filter with
an FWHM of 8–12 mm. While such an extensive spatial
smoothing increases the overlap of active regions, it intro-
duces other problems, including averaging of nonhomolo-
gous functional areas within and across subjects and the
introduction of a bias for the statistical inference for clusters
equal to or larger than the chosen Gaussian filter (matched
filter theorem). The goal of cortex-based alignment schemes
is to explicitly align corresponding gyri and sulci across
subjects in order to reduce these problems.

High-resolution intersubject cortex alignment

While functional areas do not precisely follow cortical
landmarks, it has been shown for areas V1 and motor cortex

that a cortical alignment approach substantially improves
statistical group results by reducing anatomical variability
[Fischl et al., 1999]. In BrainVoyager QX, a high-resolution,
multiscale version of such a cortical mapping approach has
been developed [Goebel et al., 2002, 2004], which automat-
ically aligns brains using curvature information of the cor-
tex. Since the curvature of the cortex reflects the gyral/sulcal
folding pattern of the brain, this brain matching approach
essentially aligns corresponding gyri and sulci across sub-
ject’s brains. The implemented high-resolution, multiscale
cortex alignment procedure has been proven to substantially
increase the statistical power and spatial specificity of group
analyses [e.g., Van Atteveldt et al., 2004].

Cortex-based alignment operates in several steps. The
folded, topologically correct, cortex representation of each
hemisphere (see Anatomical Preprocessing) constitute the
input of the alignment procedure. In the first step, each
folded cortex representation is morphed into a spherical
representation (Fig. 5A), which provides a parameterizable
surface well suited for across-subject nonrigid alignment.
Each vertex on the sphere (spherical coordinate system)
corresponds to a vertex of the folded cortex (Cartesian co-
ordinate system) and vice versa. The curvature information
computed in the folded representation is preserved as a
curvature map on the spherical representation. The curva-
ture information (folding pattern) is smoothed along the
surface to provide spatially extended gradient information
driving intercortex alignment minimizing the mean squared
differences between the curvature of a source and a target

Figure 4.
Self-organizing group-level ICA analysis (12 subjects, Talairach space). A: Auditory component (red), parietofrontal component (cyan),
parieto-cingulate component (yellow), occipital component (green), sensory-motor component (purple) (t-maps, P � 0.01). B:
Temporofrontal component t-map (P � 0.01) with group condition-averaged time-course showing a speaker repetition effect.
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sphere. The essential step of the alignment is an iterative
procedure following a coarse-to-fine matching strategy.
Alignment starts with highly smoothed curvature maps and
progresses to only slightly smoothed curvature representa-
tions. Starting with a coarse alignment as provided by AC-
PC or Talairach space, this method ensures that the
smoothed curvature of the two cortices possess enough
overlap for a locally operating gradient-descent procedure
to converge without user intervention [Goebel et al., 2002,
2004]. Visual inspection and a measure of the averaged
mean squared curvature difference reveal that the alignment
of major gyri and sulci can be achieved reliably by this
method. Smaller structures, visible in the curvature maps
with minimal smoothing, are aligned to a high degree but

cannot be perfectly aligned due to anatomical differences
between the subjects’ brains.

The program offers two approaches to define a target
brain for alignment. In the explicit target approach, one sphere
is selected as a target to which all other spheres are subse-
quently aligned. The target sphere can be derived from one
of the brains of the investigated group or from a special
reference brain, such as the MNI template brain. Although
tests have shown that achieved alignment results are very
similar when using different target spheres, the selection of
a specific target brain might lead to suboptimal results if the
selected brain contains many regions with a nontypical fold-
ing pattern. In the moving target group averaging approach, the
selection of a target sphere is not required. In this approach
the goal function is specified as a “moving target” computed
repeatedly during the alignment process as the average
curvature across all hemispheres at a given alignment stage.
The procedure starts with the coarsest curvature maps. Then
the next finer curvature maps are used and averaged with
the obtained alignment result of the previous level. Figure
5A shows the obtained result from the moving target align-
ment approach. The four spheres show the averaged curva-
ture maps of the 12 cortices before and after alignment for
the left and right hemispheres. Figure 5B shows a folded
averaged cortex representation of the left and right hemi-
sphere of 12 subjects after cortex alignment. This represen-
tation is obtained by averaging 3-D coordinates of vertices of
the folded meshes on the basis of the established correspon-
dence mapping. This representation demonstrates the suc-
cessful operation of the cortex-based alignment approach,
revealing an averaged cortex representation containing al-
most the same level of detail as each of the 12 individual
brains.

The established correspondence mapping between verti-
ces of the cortices is used to align the subjects’ functional
data. As described above, the functional time course data is
attached to the vertices (nodes) of the cortex meshes by
sampling the volume time courses (“VTCs”) at the vertex
positions of the folded cortex meshes of each subject, result-
ing in a mesh time course (“MTC”) for each run of each
subject’s data (Fig. 5C). The fixed and random-effects GLM
and the group-level ICA procedures work in the same way
as in standard volumetric space but are modified to take as
input the cortically aligned mesh time course data.

Hypothesis-driven cortex-based group analysis

The results of the cortex-based random-effects (RFX)
group GLM analysis confirmed the volume-based analyses
in Talairach space. The results from the spatially un-
smoothed block data is shown in Figure 6 superimposed on
the average group cortex. The overall activation map (Fig.
6A) demonstrates the good alignment of the cortices of the
12 subjects by revealing activity confined within and around
Heschl’s gyrus (P � 0.01, corrected). A sentence repetition
RFX effect (t(11) � 3.1, P � 0.01, uncorrected for multiple
comparisons) was found bilaterally, with a more extensive
region in the left STS than in the right STS. It can be seen

Figure 5.
High-resolution intersubject cortex alignment. A: Lateral view of
left (LH) and right (RH) hemispheres before and after alignment of
12 subjects; for the cortical alignment, the 24 (2 � 12) cortices
were morphed to a sphere. To visualize the correspondence
between gyri and sulci, the curvature information of the cortices
has been superimposed prior to and after alignment. B: Average
cortex of left and right hemisphere of 12 subjects after cortex
alignment; this representation is obtained by averaging 3-D coor-
dinates of vertices on the basis of the established correspondence
mapping. C: Visualization of the creation of “mesh time courses,”
which are used to run hypothesis-driven (cg-GLM) and data-driven
single and group analyses (cg-ICA) directly in aligned cortex space.
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from the averaged time course that the adaptation effect
evolves over time, since the difference between the two
different sentence (DSt) vs. the two same sentence (SSt)
conditions is almost absent at the beginning but clearly
visible towards the end of the block. This difference was also
more pronounced in the clusters of the left STS than in the
cluster of the right STS. While not significant, the largest
trend for a speaker repetition effect was found in the right
anterior STS (Fig. 6C).

Data-driven cortex-based group analysis

Although unsmoothed functional data was used, the self-
organizing group-level ICA in the spherically aligned cortex
space produced highly consistent results with the volume-

based group ICA. Limiting our description to the two task-
related components, cortex-based ICA provided a much
more anatomically detailed picture of the same two-compo-
nent model at the group level than the Talairach space ICA.
Figure 7 shows these components superimposed on the
average cortex brain. The first task-related component ex-
hibited a consistently task-related pattern of activation with-
out a sentence or speaker repetition effect and encompassed
the primary and secondary auditory regions (red overlay in
Fig. 7); the second, frontotemporal, component (blue overlay
in Fig. 7) exhibited again a substantial adaptation effect, but
encompassed more precisely and more bilaterally the STS
and the IFG than the volume-based result.

CONCLUSIONS

The present study illustrates a range of processing meth-
ods and algorithms that are included in BrainVoyager QX
and that can be used to analyze functional and anatomical
MRI data. Our hypothesis-driven analysis of the FIAC 2005
data in Talairach space revealed regions exhibiting a signif-
icant sentence repetition effect in the block data and signif-
icant sentence and speaker repetition effects in the event-
related data. The event-related paradigm thus seems better
suited to reveal a speaker effect than the blocked paradigm.
It should be noted, however, that the strength of the sen-
tence effect is substantially stronger than the speaker effect
in both paradigms. We observed a trend toward a speaker
effect. Without spatial smoothing of the functional data, the
cortex-based analysis confirmed the volume-based analysis,
providing, however, more focal clusters and more differen-
tial group ROI time courses, indicating an improved func-
tional alignment. Group averaged time courses for the sen-
tence repetition effect in the STS showed that this effect is
almost absent at the beginning of a block and increases to
reach its maximum roughly in the middle of the block.

The data-driven ICA analysis complements the voxel-wise
statistical analysis by focusing on network-related activity.
The results of this analysis were surprisingly similar to the
GLM results separating a main component in and around
Heschl’s gyri and a more widespread component in higher
auditory cortices, insular, and frontal cortex. We think that

Figure 6.
Hypothesis-driven cortex-based group-level random effects anal-
ysis on spatially nonsmoothed mesh time courses (12 subjects,
block data). A: Group map of overall stimulation vs. baseline
superimposed on average group cortex mesh obtained from cor-
tex-based alignment procedure; time courses are drawn from
regions around left and right Heschl’s gyrus. B: Group map show-
ing a strong sentence repetition effect in two clearly identifiable
clusters in the superior temporal sulcus in the left hemisphere and
a weaker sentence repetition effect in the anterior superior tem-
poral sulcus and gyrus in the right hemisphere. C: Group map
showing a weak speaker repetition effect (nonsignificant, see text)
in the right anterior superior temporal sulcus and gyrus. The time
course reveal that the small trend is more pronounced within the
DSt (different sentence) conditions than the SSt (same sentence)
conditions.

Figure 7.
Data-driven cortex-based group-level analysis. Results of the self-
organizing group-level ICA. Auditory (red) and temporofrontal
(blue) group components projected on the average group cortex
mesh (t-maps, P � 0.01).
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the two-component representation provided by the group
ICA results reflects the functional role of each pattern in
relation to early primary auditory processing of the sen-
tences and higher-level integration of sentence and voice-
related information processing. While consistent with the
current models of language and voice processing [see, for
instance, Belin et al., 2003, 2004], this representation pro-
vides a different and more distributed view of the neural
processes elicited by the prolonged auditory stimulation.
This functional connectivity model nicely complements the
more localized and effect-specific view of the studied effects
provided by the conventional hypothesis-driven statistical
analysis of the same data.
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