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Abstract: Here we present a detailed biophysical model of how brain electrical and vascular dynamics are
generated within a basic cortical unit. The model was obtained from coupling a canonical neuronal mass
and an expandable vasculature. In this proposal, we address several aspects related to electroencepha-
lographic and functional magnetic resonance imaging data fusion: (1) the impact of the cerebral archi-
tecture (at different physical levels) on the observations; (2) the physiology involved in electrovascular
coupling; and (3) energetic considerations to gain a better understanding of how the glucose budget is
used during neuronal activity. The model has three components. The first is the canonical neural mass
model of three subpopulations of neurons that respond to incoming excitatory synaptic inputs. The
generation of the membrane potentials in the somas of these neurons and the electric currents flowing in
the neuropil are modeled by this component. The second and third components model the electrovascular
coupling and the dynamics of vascular states in an extended balloon approach, respectively. In the first
part we describe, in some detail, the biophysical model and establish its face validity using simulations
of visually evoked responses under different flickering frequencies and luminous contrasts. In a second
part, a recursive optimization algorithm is developed and used to make statistical inferences about this
forward/generative model from actual data. Hum Brain Mapp 27:896–914, 2006. © 2006 Wiley-Liss, Inc.

Key words: cerebral architecture; electrovascular coupling; brain energetic substrates; multicompartment
models of neurons

� �

INTRODUCTION

The assumption of functional specialization at the level of
cortical neuronal assemblies (sometimes referred to as mod-
ules, Gazzaniga [2000]) constitutes the foundation of mod-
ern cognitive neuroscience. In humans, studies of basic
mechanisms for segregation (i.e., activation maps) and inte-
gration (i.e., effective connectivity graphs) of such modules
have been made possible by the use of noninvasive func-
tional neuroimaging techniques such as electroencephalog-
raphy (EEG) and functional magnetic resonance imaging
(fMRI). By binding EEG and fMRI data we are able to
overcome the limitations that these techniques present in
terms of their ability to localize a single functional module in
space and time, and at the same time maximize the potential
of both [Makeig et al., 2002]. This is the chief motivation for
developing concurrent EEG and fMRI data recording sys-
tems [Goldman et al., 2000; Salek-Haddadi et al., 2003]. In
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order to properly integrate EEG and fMRI modalities, for-
ward/generative models that characterize the physiological
mechanisms underpinning the relationship between the
neuronal activity and data must be invoked. Several ap-
proaches have been proposed over the last decade [Almeida
and Stetter, 2002; Arbib et al., 1995; Aubert and Costalat,
2002; Deco et al., 2004; Friston et al., 2000, 2003; Husain et al.,
2004; Riera et al., 2005; Tagamets and Horwitz, 1998, etc.];
however, there are some critical aspects that have only been
partially discussed in these previous works. They are: (1)
How does the cerebral architecture influence observations?,
(2) What is the nature of the nonlinear electrovascular cou-
pling?, and (3) How does the brain allocate energy for exci-
tation and inhibition? We will directly or indirectly address
all three of these issues in this article.

Cerebral Architecture and Observations

It is well accepted that EEG signals reflect the summation
of small, but synchronized, extracellular electric currents
mainly flowing along the apical trunk of large layer V py-
ramidal cells (PCs) arranged in parallel [Niedermeyer and
Lopes da Silva, 1999]. The resulting large-scale extracellular
electric current constitutes a mesoscopic phenomenon (i.e.,
the primary current density, PCD). Hence, the fluctuations
of PCD during neuronal activity originate due to the unbal-
anced extracellular ionic gradient taking place between cor-
tical layers I and V, which are rich in apical and basal
dendrites of the layer V PCs, respectively [Nunez, 1981].
Additionally, we now know that electrotonic forces among
different compartments of the layer V PC mainly govern this
ionic imbalance. These forces are the result of diversely
located excitatory synaptic currents distributed along its
dendrite trees. In order to characterize these electrotonic
forces in a compartmental model of the layer V PC the
inhibitory effect of GABAergic interneurons (INs) on its
soma must also be included.

Conversely, the blood oxygenation level-dependent
(BOLD) signal, a mesoscopic phenomena in fMRI, has a
vascular-metabolic cause, thought to be more closely related
to temporal fluctuations in the concentration of deoxy he-
moglobin (dHb, a paramagnetic molecule) within a small
volume (voxel) containing a large number of postcapillary
venules. These venules can be stretched out during an in-
crease in the cerebral blood flow (CBF), producing a reduc-
tion in the effective content of dHb within the voxel. The
BOLD effect has been accurately replicated using the balloon
approach, which has its foundation in the mechanically
compelling representation of an expandable venule [Buxton
et al., 1998] and the standard Windkessel theory [Mandeville
et al., 1999]. The balloon approach, as originally proposed,
includes a passive oxygen extraction effect occurring at the
level of capillaries, although Zheng et al. [2002] generalized
it to account for a vascular-metabolic crosstalk by introduc-
ing a dynamic relationship between neuronal activation and
the oxygen extraction fraction.

Electrovascular Coupling

Even though the BOLD signal has been misinterpreted as
a locus of increased energy utilization [see Attwell and
Iadecola, 2002, for a critical discussion], the main BOLD
effect quite clearly reflects, as yet beyond our understand-
ing, a sizeable departure of the CBF from the resting states
locked to the stimulus. Recent results indicate that BOLD
signal fluctuations mainly correlate with the induced local
field potentials [Kim et al., 2004; Logothetis et al., 2001;
Logothetis, 2003]. It is known that several electrovascular
control mechanisms coexist within the functionally orga-
nized vascular networks [Harrison et al., 2002]. Although
the existence of a parallel electrical network for global vas-
cular control has been conjectured since the early discovery
of perivascular structures (e.g., smooth muscle bands at the
arterioles and plastic strips at the precapillary branching
points, which could be both stimulated by cholinergic fibers
from the basal forebrain [Attwell and Iadecola, 2002]), the
regulatory role of local nitric oxide (NO) release (closely
coupled with CBF variations) has only recently come to be
recognized as the principal mechanism for vascular control.
Unfortunately, how this mechanism is triggered during neu-
ronal activity remains a mystery.

In a pioneering work, Arbib et al. [1995] introduced a
theoretical model for CBF triggering to test the hypothesis
that inhibitory synapses can also produce a metabolic re-
sponse. Arbib et al. [1995] proposed a relationship between
the absolute value of integrated synaptic activity (i.e., a
quantity that mixes up excitatory and inhibitory effects) and
regional changes in CBF. Tagamets and Horwitz [1998] used
this idea in an extended model containing canonical local
circuits for multiple brain regions to give a neuronal sub-
strate and a computational framework to neuroimaging
data. Based on similar ideas, more complete models were
developed in later studies [Almeida and Stetter, 2002; Aub-
ert and Costalat, 2002]. Some authors recommended using
the hemodynamic response function in this context to incor-
porate some nonlinear features of the BOLD effect [Deco et
al., 2004; Husain et al., 2004]. Alternatively, Friston et al.
[2000] introduced a blood flow-inducing signal into the bal-
loon approach relating neuronal activity and CBF. Stochastic
driven forces were included by Riera et al. [2004a] at the
level of the vascular states of this modified balloon ap-
proach. In order to distinguish the driving and modulatory
effects among interacting neuronal masses, Friston et al.
[2003] used a new differential equation to describe the neu-
ronal activity, establishing a more ambitious link between
these two brain substrates. Recently, Riera et al. [2004b]
suggested a model of two coupled dynamics (i.e., fast elec-
trical and slow vascular responses) interacting unidirection-
ally (i.e., from electrical to vascular). In this last model, the
electrical and vascular responses were approached using
two autoregressive equations, with exogenous inputs,
linked by a static nonlinear coupling function. In order to
examine effective connectivity between brain areas, Riera et
al. [2005] fitted the model to mesostates in certain regions of
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interest obtained from concurrent EEG and fMRI recordings
during an experiment of motor coordination.

Even with all these previous achievements, the basic
activation mechanisms of the vascular response need to be
modeled in more detail. There is, for example, still no
explanation of the nonlinear relationships between the
neuronal activity and the vascular reaction reported in
animals [Devor et al., 2003; Hewson-Stoate et al., 2005;
Jones et al., 2004; Sheth et al., 2004]. In addition, the
dose–response curves (e.g., stimulus frequency and con-
trast) found in both event-related potentials and event-
related BOLD signals using visual experimental para-
digms in humans [Galia et al., 2002; Singh et al., 2003;
Zaletel et al., 2004] have not been discussed in the context
of the previous theoretical models. Also, no good reason
has been offered for the correlation observed between
dc-EEG and CBF [Vanhatalo et al., 2003].

Glucose Budget

Magistretti et al. [1999] claimed that �80% of the energy
supplied to the brain is used to fuel both glutamate uptake
from the synapses and glutamine formation in the astrocytes
by a nonoxidative glucose mechanism. This claim has
brought about an effervescent discussion regarding: 1)
whether inhibitory synapses contribute to the metabolic
(e.g., positron emission tomography, PET) and/or hemody-
namic (e.g., fMRI) signals, and 2) the role played by mito-
chondrial oxidative metabolism used for the reestablishment
of transmembrane ionic gradients, which could also trigger
vascular changes in the course of neuronal activation. These
fundamental problems are not yet completely understood.
Contradictory results have been presented in several articles
discussing the metabolic demand of the inhibitions [Caesar
et al., 2003; Tagamets and Horwitz, 2001; Waldvogel et al.,
2000] and at the same time it has been recently proven that
glucose (maybe after being transformed into lactate inside
the astrocytes) is oxidized in a phase preceding the astro-
cytic glycolysis [Kasischke et al., 2004].

Rhythmic brain activity is due to strong competition (via
inhibitions) and cooperation (via excitations) within local
micronetworks (e.g., self-sustained oscillations in the retic-
ular thalamic nucleus of cat [Bazhenov et al., 1999], oscilla-
tions in Ferrer visual cortex layer II/III [Tucker and Katz,
2003], theta oscillations in the rat hippocampus [Buzsaki,
2002]) or between different neuronal assemblies (e.g.,
thalamocortical interactions can explain oscillatory activity
during sleep or anesthesia [Steriade, 2001]). In this sense,
inhibitions play an important role in driving the synchroni-
zation [Beierlein et al., 2000; Markram et al., 2004]. The
alarming negative correlations found between the power of
the oscillatory alpha EEG activity and the vascular/meta-
bolic response [Goldman et al., 2002; Sadato et al., 1998]
could be a sign of an incomplete comprehension of the
energetic substrates of neuronal inhibitions. As a conse-
quence, it is not yet clear how the BOLD signal correlates
with neuronal oscillatory activity (e.g., delta and gamma

band activity can easily be observed at the scale of local field
potentials [Leopold et al., 2003; Salek-Haddadi et al., 2003]).

This lack of understanding of the interactions among sev-
eral physiological (e.g., electric, metabolic and hemody-
namic) processes at the level of neuronal masses, as well as
with regard to their relationships to measurements, has been
an obstacle to closing the gap that exists between functional
neuroimaging and computational neurobiology.

In the present article a local electrovascular coupling
(LEVC) model to explain concurrent EEG and fMRI record-
ings caused by neuronal computations in the neocortex is
proposed. The model combines three coupled dynamic sys-
tems that describe the temporal courses of electrical and
vascular states in a cortical unit. The first dynamic system
explains the temporal variations in the membrane potentials
at the somas of neurons belonging to a canonical neuronal
mass of the cortex. This dynamic system also characterizes
the fluctuations of the electric currents flowing in the neu-
ropil, perpendicular to the cortical surface, as a result of the
changes in these membrane potentials. A mechanism for
vascular triggering is modeled by a second dynamic system.
The third dynamic system describes vascular changes
through an extended balloon approach.

The proposed canonical neuronal mass (see Fig. 1) con-
tains three neuronal subpopulations, schematically repre-
sented by two GABAergic INs coupled with a layer V PC.
The model encapsulates the basic architectural attributes of
the neocortex at different levels (e.g., synapses diversities,
neuronal geometries, multilayer printed wiring board). The
output of the circuit is from axonal fibers of the layer V PCs
and three classes of excitatory inputs at different cortical
layers are introduced to differentiate connections with other
neuronal masses. A three-compartment model is proposed
to characterize the electrotonic interactions in the layer V PC,
while it is assumed that only one compartment can be used
in the case of GABAergic INs. A nonlinear phase is intro-
duced, which relates the size of the induced current in the
postsynaptic neuron to the membrane potential in the soma
of the presynaptic neuron. In this study the authors assume
that the metabolic deficit in each neuron is well correlated
with the capacitive energy stored across its whole mem-
brane surface. This capacitive energy summarizes all types
of transmembrane ionic currents (e.g., chemical-gated chan-
nels at the synapses, electric-gated channels, and passive
leakage). The concentration of NO in the cortical unit rep-
resents a new vascular state in our model. The contribution
of each neuron to that concentration is given by a neuron-
type dependent nonlinear function of the transmembrane
capacitive current flowing across the whole cell surface. The
sign of this transmembrane capacitive current will reflect
inward and outward currents; hence, these nonlinear func-
tions should be symmetric around zero and they must also
include a saturation phenomenon in the synthesis of NO.
The total concentration of NO within a cortical unit is ob-
tained by a weighted sum of the contributions of the three
different types of neurons. Finally, the vascular changes are
triggered by a delayed and lowpass-filtered version of NO
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concentration. This idea was inspired by the work of Arbib
et al. [1995], who proposed the synaptic current as a candi-
date responsible for triggering vascular changes. However,
in our model other types of ionic currents are also included.
The electrical and vascular states of the model are related to
mesostates obtained directly from data by two observation
equations [Riera et al., 2005].

The remainder of this article is organized as follows. In the
Theory section, the theoretical aspects of the LEVC model
and the observation equations are presented in detail. In the
Simulation Study section, two sets of simulations are pre-
sented: in the first simulation the consequences of including
stochastic driven forces (i.e., to characterize population and
diffusion random effects) are evaluated, and in the second
simulation a possible explanation of the dose–response
curves (i.e., stimulus frequency and contrast) and of the
dc-EEG and CBF correlation is provided. Finally, in the
Discussion the novelty, advantages, and limitations of the
model are discussed.

THEORY

Canonical Neuronal Mass

While performing multipurpose functions, the neocortex
operates as a circuit of high complexity that at different
levels preserves an exclusive modular organization [Break-
spear and Stam, 2005]. This hierarchical order can be ob-
served at the cellular level, where the excitatory and inhib-
itory postsynaptic potentials are decodified in the dendritic
trees, which accurately filter them in space and time to
finally produce an integrated electrotonic reflection at the
soma. For example, the dense and apparent haphazard
grove of dendrites in the layer V PC exhibits a certain degree
of specialization by discerning excitatory inputs coming
from the apical and basal paths [Lytton and Sejnowski, 1991;
Major et al., 1994; Mel and Schiller, 2004; Traub et al., 2005],
which, in a second phase, merge with the mostly inhibitory
contributions from several types of GABAergic INs that
mainly project their axons into the neighborhood of the
soma [Bacci et al., 2003; Tamas et al., 1998].

In the same way, the neurons at the level of micronet-
works are organized following particular wiring diagrams
that exhibit multiple loops with excitatory/inhibitory ele-
ments. Illustrations of such loops can be found, for instance,
in Callaway [1998] for the primary visual cortex of a ma-
caque monkey or in a recent computational detailed model
proposed by Traub et al. [2005] to explain the local origin of
gamma oscillations, sleep spindles, and epileptogenic bursts
in the neocortex. Although these cortical circuits include
assorted types of morphological and functional differenti-
ated neurons (e.g., PCs, double bouquet cells, basket cells,
spiny and aspiny stellate cells, etc.), they can be mainly
grouped in excitatory PCs and inhibitory GABAergic INs. A
basic micronetwork composed of the layer V PC connected
with two types of GABAergic INs summarizes one of the
main regularities in the cortical circuitry (see Fig. 1). These
GABAergic INs differ in terms of the inhibitory effect they
produce locally on the cortex, which could be due to feed-
forward or feedback type connections.

In the cortical sheet, the micronetworks organize in such a
way that there are horizontal tessellations that serve to es-
tablish some classes of functional severance. There is an
ongoing debate about how a single horizontal patch should
be defined on the cortical surface: whether in terms of ana-
tomical or functional boundaries [Horton and Adams, 2005;
Jones, 2000; Nelson, 2002; Rockland and Ichinohe, 2004],
ranging from the widespread columns to the diminished
minicolumns and segregates. Additionally, it is well known
that each of these cortical patches has a special vertical
construction comprising six different layers with a whole
thickness of 2–4 mm. In our model, a volume containing
several of these basic micronetworks, which are assumed to
operate with some sort of synchrony, constitute a cortical
unit. The last assumption will allow us to use a simplified
version of the mean field approach, which consists of intro-
ducing a multidimensional Wiener process characterizing
both the fluctuations in a population of neurons and the

Figure 1.
Illustration of the canonical neuronal mass model. This basic model
of a cortical unit comprises three neurons: two GABAergic INs
(Transmission and Feedback) and a layer V PC. The synaptic inputs
are all excitatory I 1

� , I2
�, and I3

�, and they reach the cortical unit
at different layers. The nonlinear phase occurs at the somatic
hillock (initial segment of the axon). Red and blue arrows repre-
sent the excitatory and inhibitory synapses, respectively. The
action potentials retransmit instantaneously via the nodes of
Ranvier.
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randomness associated with diffusion phenomena. The ex-
tension of these cortical units could cover a circular area on
the external surface of the cortex of around several millime-
ters in diameter.

A canonical neuronal mass based on the laminar archi-
tecture of the neocortex is proposed to characterize the
population dynamics of certain electrical states (i.e., mem-
brane potentials and extracellular electric currents) in a
cortical unit. The most relevant properties used in the
model are the laminar-specific projections and structural
design that permit inhibitory/excitatory-based innerva-
tions to coexist in complicated networks of feeding with
either forward or backward ingredients. For example,
there is a sole output I [Crick and Asanuma, 1986], while
three inputs I1

�, I2
�, and I3

� reaching the micronetworks at
dissimilar layers are introduced to make a distinction in
the nature of the connectivity patterns with other equiv-
alent cortical units. These input/outputs, associated with
large-scale synaptic currents, have dimensions compara-
ble to pA, and they are always set up as excitatory, with
values between 0 and 1. The layer V PCs receive synaptic
contacts of type I (excitatory) on the dendrites, in places
called spines, and, less commonly, contact in the shafts of
dendrites, while the synapses of type II (inhibitory) often
contact the cell body (soma). Figure 1 illustrates symbol-
ically the specifics of such inputs, distinguishing two
types of excitatory synapses at the layer V PCs; those
making contact with the level of basal dendrites I1

� ,
essentially correlated with activation corresponding with
thalamo-cortical afferent projections, and those reaching
either the level of tuft or trunk of apical dendrites I2

�,
mainly related with cortico-cortical interactions. The in-
hibitory synapses in the brain have a local character, and
are thought to give support to stabilizing the activity of
PCs by GABAergic INs connections (this may be crucial in
modulating complex network oscillations, [Bacci et al.,
2003]). However, two types of local inhibitory effects will
be differentiated in this model: the inhibitions by feedfor-
ward (or direct Transmission [Gil and Amitai, 1996]) IT

�,
and the well-known inhibitory Feedback IF

�. The electro-
tonic reflection of I1

�, I2
� at the soma of the layer V PCs

combines with the total inhibitory current I� � IT
��IF

�. In
our model, I3

� represents the excitatory innervations to the
transmission GABAergic IN. The dynamic equations for
the canonical neuronal mass, which summarize distinct
properties in the neuronal signaling, are deduced by ap-
plying simple electronic rules.

Membrane potentials

A model of multiple compartments is introduced (see
Appendix A for details) to explain the linear spatiotemporal
integration at the dendro-somatic scale for both the layer V
PC and the GABAergic INs. The system of Eqs. 1 and 2
summarize the dynamics of the membrane potentials and
other intrinsic electrical states in the excitatory and inhibi-
tory neuronal subpopulations:

GABAergic INs

�m

dVIN
T �t�
dt

� VIN
T �t� � I3

��t�Rm
0 �Transmission� (1a)

�m

dVIN
F �t�
dt

� VIN
F �t� � I��t � �PC�Rm

0 �Feedback� (1b)

Layer V PC

�m

dVPC�t�
dt

� ��0 � �
k

1
	k�VPC�t� �


�t�

�
k

	k

� RmI��t � �IN�

� �
k
� Rm�k�t�

�Ri
k � Re

k�
�

���t�
	k � (2a)

�m

d
�t�
dt

� 
�t� � Rm �
k

	k�VPC�t� � �k�t��
�Ri

k � Re
k�

� VPC�t� � ���t� (2b)

�m

d�k�t�
dt

� �k�t� � RmIk
��t� k � �1,2 (2c)

�m

d���t�
dt

� ���t� � RmI��t � �IN� (2d)

Instantaneously, each of the inhibitory synaptic currents
contributing to the delayed I� (t � �IN) at the layer V PC
soma has a nonlinear dependency with the membrane
potentials VIN

l of the presynaptic GABAergic INs Il
� �

�INfIN(VIN
l ), with l � {T,F} symbolizing the transmission or

feedback innervations type. Besides providing inhibition to
the layer V PCs, the GABAergic INs also receive excitatory
inputs. In the same way as for layer V PCs, the electrotonic
reflections at the GABAergic INs soma of the excitatory
synaptic currents serve to regulate the dynamic of the mem-
brane potential of this type of neuron. In our model, the
synaptic input I3

� and the delayed-excitatory synaptic cur-
rent I� (t��PC) target the transmission and feedback
GABAergic INs, respectively. Instantaneously, I� � �PC-
fPC(VPC) is proportional to the membrane potentials VPC at
the layer V PC soma.

For all types of neurons, it is assumed that spikes are not
initiated at the dendrite level. Instead, they can be generated
in the hillock and initial segment of the axon, an area en-
dowed with a large number of sodium channels substan-
tially reducing the global threshold of excitability [Mainen et
al., 1995]. The functions fIN and fPC are introduced to de-
scribe the dependency of the membrane potential at the
soma in both types of neurons with the size of the postsyn-
aptic effect they induce. Four different phenomena are mod-
eled by these nonlinear functions: the fast dynamics of the
Hodgkin-Huxley subsystem due to voltage-dependent vari-
ations in the intrinsic ionic currents Ii (which vary depend-
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ing on the type of neuron, see Figs. A1 and A2 in Appendix
A), the highpass linear filter predictable from the particular
characteristics of the propagation of spikes along the axon,
the lowpass filter describing the diffusion of neurotransmit-
ters in the synaptic cleft, and the mechanisms of chemically
dependent channels at the postsynaptic neurons. However,
this function is normalized; hence, the constants �k k
� {PC,IN} are introduced to account for scaling factors in the
postsynaptic effects produced by these two types of neu-
rons.

In this study the generalized logistic (or Richard’s) curve
is used to model the voltage–ampere relationship, which
characterizes the nonlinear phase. This curve is defined by
the lower asymptote Al, the upper asymptote Au, the mem-
brane potential of maximum growth V0

k, the growth rate �k,
and the membrane potential value near which asymptote
maximum growth occurs T:

fk�V� � Al �
Au

�1 � Te��k�V�V0
k��1/T

k � �PC, IN (3)

For biophysical reasons, we fixed Al � 0, Au � 1, and
T � 0.03.

Extracellular electric current

Large layer V PCs have a peculiar spatial geometry that
facilitates the production of an undersized electric current in
their extracellular surroundings (i.e., the neuropil). In our
model, this electric current (i.e., i2) is that which flows
through the longitudinal resistance Re

2 of the extracellular
medium along the apical stem of the layer V PCs (i.e.,
equivalent electric circuit; Fig. A1, left). It can be shown that
i2(t) � �(t)/Re

2 (see Appendix B), with the electric potential
� satisfying the differential equations:

�m

d��t�
dt

� ��0 � �
k

1
	k���t� �

��t�

�
k

	k

�

Re
2

�Ri
2 � Re

2�
�RmI��t � �IN� � Rm

2 I2
��t��

�
�Rm

1 ����t� � �2�t�� � Rm��2�t� � �1�t���Re
2

�
k

�Ri
k � Re

k�
(4a)

�m

d��t�
dt

� ��t� � �1 � Rm �
k

1
Rm

k ���t� (4b)

Mostly layer V PCs are arranged in parallel and perpen-
dicularly oriented to the surface of the cortex; hence, this
electric current represents a mesoscopic effect resulting from
their spatial average within a cortical unit (Fig. 2).

Extended Balloon Approach

It is also postulated that the capillary bed and postcapil-
lary venules are arranged in the cortical sheet in a way that
correlates very well with its columnar organization [Harri-
son et al., 2002]. This hypothesis permits us to combine the
modified balloon approach and the canonical neuronal mass
by introducing some coupling mechanisms between the
electrical and vascular states locally limited to each single
cortical unit.

In this extended balloon approach, a set of four ordinary
differential equations (Eq. 5) governs the dynamics of the
flow-inducing signal, the CBF, the cerebral blood volume
(CBV), and the concentration of dHb. The whole dynamic
system is driven by the input u(t), which has been delayed
and dc-shifted:

ds�t�
dt

� �u�t � �h� � u0� �
s�t�
�s

�
�f�t� � 1�

�f
(5a)

df�t�
dt

� s�t� (5b)

�0

d��t�
dt

� f�t� � ��t�1/� (5c)

�0

dq�t�
dt

�
f�t�
E0

�1 � �1 � E0�
1/f�t�� � q�t���t��1���/� (5d)

The delay �h is introduced to account for a retarded re-
sponse of the vasculature and the dc u0 explains the basic
energy demand during resting condition.

Figure 2.
Neuronal representation of the PCD. More than a few of the layer
V PCs are thought to be oriented in parallel and perpendicular to
the surface of the cortex within a cortical unit (i.e., the orientation
�� ). The large-scale extracellular electric current i2 flows through
the neuropil existing between the apical trunks of these neurons
(with longitudinal resistance Re

2).
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Electrovascular Coupling

It is also hypothesized that instantaneously the input u(t)
is proportional to a lowpass-filtered version of the total
concentration of NO (i.e., CNO) in the cortical unit (Eq. 6).
Mechanisms associated with NO synthetase are in the neu-
rons (i.e., dendrite and/or soma) and also in the endothelial
cells. After transient stimulation, the energy required to
re-establish the transmembrane ionic gradients in the neu-
rons and also that used to reuptake neurotransmitters from
the synaptic cleft could trigger the synthesis of NO. The
transmembrane capacitive current summarizes three differ-
ent ionic flows that change these gradients: the purely syn-
aptic currents (neurotransmitter-receptor gated ionic chan-
nels), the intrinsic electrophysiological currents (voltage-
gated ionic channels, e.g., sodium, potassium, calcium, etc.)
and the flow of ions through the membrane by means of
passive channels (leakage currents). Hence, transmembrane
capacitive currents also indirectly contain information about
the concentration of the released neurotransmitters. We pro-
pose that the synthesis of NO can be explained by a nonlin-
ear function of the transmembrane capacitive currents in the
whole cell surface. However, for simplicity, in this work we
have included only those contributions coming from the
somatic surface. These nonlinear functions are required to be
symmetric around zero (to take account of both inward and
outward ionic currents) and they should also include an NO
saturation effect.

The nonlinear functions gk(x) � �k(1 � exp(�x2/�k)), with
positive constants �k, and �k (k � {PC, IN}), have the above-
referred properties and were proposed in Riera et al. [2005]
to match synaptic activity with the flow-inducing signal.
This proposal is in agreement with recent results found by
Wan et al. (2006), who demonstrate from concurrent EEG
and fMRI recordings that the power of the PCD in the visual
cortex of humans correlates linearly with the estimated
value of the synaptic efficacy in the modified balloon ap-
proach. The constants �k represent scaling factors, which
would allow us to deal with the dissimilarities in the phys-
ical dimensions between the EEG and fMRI data. The con-
stants �k, instead, could be mainly associated with the
susceptibility of the vasculature to variations in the trans-
membrane capacitive currents in each neuron:

u�t� � � ��t � ��CNO���d� (6)

CNO�t� � �
l��T,F

�INgIN�IC
INl� � �PCgPC�IC

PC� (7)

The magnitudes IC
INl and IC

PC represent the total transmem-
brane capacitive currents at the somas of the three neurons:

IC
INl�t� � Cm

0
dVIN

l �t�
dt

, with l � �T,F IC
PC�t� � Cm

dVPC�t�
dt

The constants Cm
0 and Cm are the effective membrane capac-

itances in the somas of these neurons. Note that constants �k

could absorb the scaling factors resulting from these capaci-
tances. The energetic factors �IN and �PC are introduced in
order to make a distinction between the relative metabolic
demand in neurons of different types. The function � describes
a lowpass filter originated due to the diffusion phenomenon of
NO within the cortical unit as well as its reaction with scav-
enges (e.g., the free hemoglobin). Also, it imitates a much-
required downsampling because of the slow temporal scale of
the BOLD signals. In Riera et al. [2005], the function � com-
prises a Kaiser class filter with windows parameter � � 1 and
a boxcar of around 3 s in length. In this article, we propose a
lowpass filter defined by the impulse response function in the
Laplace domain �(s) � A�0

2/(s2 � 2��0s � �0
2) with gain A,

angular high cut frequency �0, and damping factor �. Hence,
the linear convolution (Eq. 6) transforms into a dynamic equa-
tion system (Eq. 8):

dr�t�
dt

� �2��0r�t� � �0
2u�t� � �0

2ACNO�t� (8a)

du�t�
dt

� r�t� (8b)

A description of the model’s parameters as well as a table
with the dimension and physiological range are provided in
Appendix C.

Observation Equations

The LEVC model is represented by a set of stochastic
differential equations (SDE) describing the dynamics of the
states vector x� (Eq. 9). The SDE system is defined by the
ordinary differential Eqs. 1, 2, 4, 5, and 8 plus a multidimen-
sional Wiener process, which acts as stochastic external
forces with different strengths (or variances) gi (i.e., G
� diag(gi)) perturbing the dynamics of the states:

dx� � f��x�, t�dt � Gdw� (9)

The vector of states, x� � {VIN
T,F, VPC, 
, �1,2, ��, �, �, r, u, s,

f, �, q}, is related to the measurements by the discrete observa-
tion equations. In EEG and fMRI experiments, the data are
composed of voltage differences in a set of lead electrodes
positioned on the scalp and the BOLD signals at the mesh of
voxels inside the head. However, in this study the electrical
and vascular states are directly related to the mesostates �t (fast
dynamics) and �t (slow dynamics) defined in terms of certain
areas of interest [Riera et al., 2005]. The PCD is assumed to
depend linearly on the mesostates �(t) (i.e., J�(t) � �(t)�� ). The
orientation of the PCD �� , which is a normalized vector, does
not depend on time, and it is defined by the cortical curvature,
ensuring that it is always perpendicular to the surface of the
cortex. The mesostates �t correspond with averaged BOLD
signal within the region of interest after being corrected by its
potential drift in each voxel. The discrete observation equations
in our model are defined by:
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�t � h��x��t�� � et
� (10a)

	t � h	�x��t�� � et
	 (10b)

In general, the errors at the mesoscopic level for both
measurements are assumed to be i.i.d. ek � N(0, �k

2) with k �

{�, 	}. In the case of the fast dynamic process, its associated
error et

	 may implicitly explain variations in the orientation
of the layer V PCs within the cortical unit. The spatial
heterogeneity of the BOLD signals within a region of interest
may be the source of the error et

�.

EEG case

The temporal variations of the mesostates �(t) are well
approximated by the extracellular electric current i2(t) along
the layer V PC apical trunk time an electrical gain factor �
(see Fig. 2; henceforth, for simplicity it is assumed � � 1).
The GABAergic INs more often than not have spherical
symmetry, yielding an external electric field that decreases
rapidly in the radial direction [Niedermeyer and Lopes da
Silva, 1999]. Therefore, the EEG observation function is:

h��x��t�� � ���t� (11a)

fMRI case

The CBV and the concentration of dHb are directly related
to the mesostates �(t) by the nonlinear fMRI observation
function [Buxton et al., 1998]:

h	�x��t��

� V0�k1�1 � q�t�� � k2�1 �
q�t�
��t�� � k3�1 � ��t��� (11b)

The factors k1, k2, and k3 are dimensionless and corre-
spond to how the (extra/intra) vascular systems and the
changing balance effect contribute to the BOLD effect, re-
spectively. Their values depend on the characteristic of the
fMRI recording system. In the particular case of a 1.5 T
scanner with a TE of around 40 ms, these factors can be
evaluated empirically by the expressions: k1 � 7E0, k2 � 2
and k3 � 2E0 � 0.2 [Boxerman et al., 1995; Ogawa et al.,

Figure 3.
A schematic representation of the whole LEVC model. The cor-
tical unit, represented by a large gray box (limited by dashed line),
comprises the canonical neuronal mass, a mechanism for electro-
vascular coupling and the extended balloon approach. The canon-
ical neuronal mass encloses two subsystems, one describing the
membrane potentials (and other implicit electrical states) in the
three neurons and another associated with the electric currents
flowing along the neuropil between the apical trunks of layer V
PCs. A multidimensional Wiener process Gdw� additively perturbs
the dynamics of electrical and vascular states in the LEVC model.
The LEVC model describes the dynamics of mesostates through
two observation equations, which also include measurement er-
rors at a mesoscopic level.

TABLE I. Summary of the electrical and vascular states: physical
meaning and symbol

Electrical and vascular states Symbol

Membrane potential at the soma of GABAergic IN (Transmission) VIN
T

Membrane potential at the soma of GABAergic IN (Feedback) VIN
F

Membrane potential at the soma of layer V PC VPC
Voltage difference (meaningless) (i.e., voltage divisor effect) 

Equivalent voltage source at the layer V PC basal dendrites �1
Equivalent voltage source at the layer V PC apical tuft dendrites �2
Equivalent voltage source at the soma of layer V PC ��

Extracellular voltage difference along the layer V PC apical trunk �
Voltage difference (meaningless) (i.e., voltage divisor effect) �
Time derivative of the input (extended balloon approach) r
Input (extended balloon approach) u
Flow-inducing signal s
CBF f
CBV �
Concentration of dHb q

IN, interneurons; CBF, cerebral blood flow; CBV, cerebral blood volume; dHb,
deoxyhemoglobin.
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1993]. The resting blood volume fraction is set up as in
previous studies V0 � 0.02.

A schematic representation of the whole LEVC model is
shown in Figure 3 and the electrical and vascular states are
summarized in Table I.

SIMULATION STUDY

In this section, the performance of the LEVC model is
evaluated in terms of simulated data. For this purpose, a
single “quasi-instantaneous” event at the synaptic inputs is
modeled by a Gaussian function of 15.6 ms in width (Fig. 4,
top). This function was decided on based on the population
dynamics of neuronal spikes observed in the afferent path-
ways by means of multiunitary recordings. The stimulus
used in this simulation is defined as a series of single events
during the time window of 2 to 6 s. We analyze the dynam-
ics of electrical/vascular states and mesostates in a cortical
unit for different frequency of appearance and amplitudes of
these single events. This simulation can be thought of as
visually evoked responses under different flickering fre-
quencies and luminous contrasts.

The neuronal (�IN, �PC) and vascular �h delays were set to
zero in the simulations considering the small extension of a

cortical unit and also due to mathematical difficulties that
emerge while trying to integrate an SDE system with delays.
The inhibitory GABAergic synapses on layer V PCs in a
cortical unit are denser than the excitatory synapses in con-
tact with feedback GABAergic INs. Also, the inhibitory neu-
rons (i.e., fast spiking) respond to a depolarizing pulse with
a higher frequency than glutamatergic neurons [Contreras
and Palmer, 2003]; hence, we assumed that excitatory �PC

and inhibitory �IN synaptic factors are comparable (see val-
ues in Appendix C). In this simulation, the synaptic input I3

�

(red, Fig. 4, top) to the transmission GABAergic INs was
delayed by 100 ms with respect to the latency of synaptic
input at the basal compartment of the layer V PC I1

� (black,
Fig. 4, top). However, we believe the latencies of the synap-
tic inputs will not affect the results presented henceforth. In
Part II of these two companion articles we will use actual
latencies for the synaptic inputs in the striate cortex of
humans. Any kind of cortico-cortical interaction was ne-
glected; hence, a random white noise was introduced at the
apical tuft compartment I2

� of the layer V PC. The vector x�0

defines the initial values of the states (see Table II). The
variances of the Wiener processes gi are assumed to be
different and they are summarized in Table II. The magni-

TABLE II. Initial values of the states and the variances of the Wiener processes

VIN
T VIN

F VPC 
 �1,2 �� � � r u s f � q

x0
i 0 0 0 0 0 0 0 0 0 u0 0 1 1 1

gi � 1 1 1 1 1 1 3 3 0 0 0.03 0.03 0.03 0.03

Figure 4.
The integration of the SDE. The synaptic in-
puts and their derivatives are shown in the
upper panel. A single realization of the electri-
cal states VIN

T,F, VPC, 
, �1,2, �� are shown in the
panels below. The plot for the membrane po-
tential at VPC the soma of the layer V PC and
the implicit electrical state 
 corresponding to
a single event is highlighted on the right. For
visualization, 
 was rescaled by a factor of
0.15. The black bar represents the stimulation
window. The membrane potentials and intrin-
sic electrical states are given in mV.
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tude u0 corresponds to the resting energy demand and de-
pends on the variances of the Wiener processes. For the
variances used in this simulation, u0 � 0.1. The standard
deviations for the mesostates with fast and slow dynamics
were �� � 0.223 and �	 � 0.00316, respectively. The SDEs
(Eq. 9) were integrated by using the local linearization
method. The full practice and theory of this method can be
found in Jimenez et al. [1999], Jimenez and Biscay [2002],
and Jimenez [2002]. In Riera et al. [2004a], this method was
used to integrate the modified balloon approach.

Simulation 1: Consequences of Including
Stochastic Driven Forces

A set of 20 single trials was generated with single events
occurring at 4.0 Hz. The states corresponding to a single
realization of the SDE, the synaptic inputs Ik

� and their
temporal derivative dIk

�/dt are shown in Figure 4. The am-
plitudes of synaptic inputs for the transmission GABAergic
IN and basal compartment in the layer V PC were 0.4 pA and
1.0 pA, respectively (see Fig. 4, upper panel). The values of

the membrane potentials and other intrinsic electrical states
are given in mV.

Note the fact that membrane potentials in the three neu-
rons fluctuate most of the time around the resting membrane
potential (in this model set to zero), which represents the
equilibrium state of the system (as illustrated in Fig. 5).
However, during stimulations the membrane potentials
reach large values for all neurons; hence, there is a substan-
tial increase in the probability that they generate postsynap-
tic currents. The voltage–ampere relationships (top) and the
histograms of the membrane potentials (bottom, in a loga-
rithmic scale) for each neuron are plotted in Figure 5.

Figure 6 shows the nonlinear function gk� (top) and the
histograms of the transmembrane capacitive currents (bot-
tom, in a logarithmic scale) for each neuron.

The temporal dynamics of CNO (given in nM) in the cor-
tical unit seems to be highly contaminated with noise ema-
nating from the electrophysiological level (Fig. 7, upper
panel). However, in spite of the random appearance of CNO,
the input to the vasculature u(t) (a lowpass-filtered version

Figure 5.
Top: represents the voltage-ampere relationships for each neuron.
Bottom: the histograms of the membrane potentials (logarithmic
scale) obtained from a single realization. These histograms were
obtained from dividing the voltages range within which these

membrane potentials vary (i.e., 0.5–1.5 mV) in small intervals. The
values of the histogram were calculated by evaluating how many
times the membrane potential reach a value within a particular
interval.

Figure 6.
Top: the neuron-type dependent nonlinear function gk�. Bottom:
the histograms of the transmembrane capacitive currents for each
neuron (logarithmic scale) obtained from the same single realiza-
tion used in Fig. 5. These histograms were calculated in a similar

way as described in Figure 5 for the membrane potentials, but in
this case the small intervals were defined in the variations range of
the transmembrane capacitive currents.
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of CNO) shows a clear correlation with the stimulus win-
dows. The dynamics of other vascular states (flow-inducing
signal, CBF, CBV, concentration of dHb) are shown in Figure
7 (lower).

The respective dynamics for the states corresponding to
the extracellular electric currents are shown in Figure 8.
Due to the fact that a considerable number of cortical
layer V PCs are required to be oriented in parallel to
produce a sizeable extracellular electrical current within
the cortical unit, large variances were used to simulate the
Wiener processes in these electrical states. This assump-
tion implies that even when the dynamics of the mem-
brane potentials are not much contaminated by popula-
tion and diffusion random effects, their reflections in the
neuropil show remarkable stochastic fluctuations.

The observation equations (Eq. 10) were used to generate
the mesostates. In Figure 9 the mesostates are plotted for a
single trial (left) and the average of 20 trials (right). These
mesostates show very similar aspects to those obtained from
actual EEG and fMRI data [Riera et al., 2005].

Simulation 2: Dose–Response Curves (Flickering
Frequency and Luminous Contrast)

In this simulation the effects of changing the frequency of
appearance and the amplitude of the single events were
examined. In both cases a set of 20 trials was used to obtain
the final event-related response of PCD and BOLD types.

In the first case, different flickering frequencies (0.5, 1.0, 2.0,
4.0, 8.0, 16.0 Hz) were used to generate the series of single
events for both synaptic inputs, the basal dendrites I1

� (ampli-
tude 1.0 pA), and the delayed version at the transmission
GABAergic IN I3

� (amplitude 0.4 pA). The amplitudes of the
PCD and BOLD mesostates increase until the flickering fre-
quency reaches the critical value of 8.0 Hz; afterward, these
amplitudes decrease considerably (Fig. 10, top). This result is in
agreement with experimental findings using animals [Hew-
son-Stoate et al., 2005; Sheth et al., 2004] and humans [Singh et
al., 2003].

In the second case, the flickering frequency was fixed at 4.0
Hz, but the luminous contrasts (amplitudes in both I1

� and I3
�)

were varied as 13.2%, 19.7%, 29.6%, 44.4%, 66.7%, and 100%.
Note that these luminous contrasts are just relative values used
in the simulations and, as a result, they do not represent the
real percentage of luminance. The 100% luminous contrast is
reached when I1

� � 1.0 pA and I3
� � 0.4 pA. It was found that

the amplitudes of the PCD and BOLD mesostates increase with
the level of luminous contrast. The results (Fig. 10, bottom) are
also comparable with those reported previously using experi-
mental data [Devor et al., 2003; Galia et al., 2002; Hewson-
Stoate et al., 2005; Jones et al., 2004; Logothetis et al, 2001; Sheth
et al., 2004; Zaletel et al., 2004].

We studied different electrical indexes to gather the NO
release within the cortical unit (e.g., membrane potentials, syn-
aptic currents, transmembrane capacitive currents). All of them
failed to replicate the nonlinear (flickering frequency) and lin-
ear (luminous contrast) dose–response curves with the excep-
tion of that proposed here (i.e., the transmembrane capacitive
current). Our explanation for this fact is: When an RC circuit is

Figure 8.
The integration of the SDE. A realization of the electrical states �
and �. For visualization, the electrical state � was rescaled by a
factor of 0.04.

Figure 7.
The integration of the SDE. A single realization showing the
temporal dynamics of the concentration of NO CNO (in nM) in
the cortical unit (upper panel). The panels below show a
realization of the input to the extended balloon approach u and
its derivative r � du/dt. Also, single realizations of the flow-
inducing signal s, the CBF f, the CBV v, and the concentration of
dHb q are shown in the last panel. The black bar represents the
stimulation window.
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stimulated with a periodic current source, the voltage and also
its derivative (i.e., the capacitive current) will oscillate. The
frequency of these oscillations will increase proportionally
with the frequency of stimulation. However, there exist a crit-
ical frequency in the stimulus from which the voltage will start
showing a saturation phenomenon; hence, the amplitude of the
oscillations in the capacitive current will start decreasing. This
is due to the fact that a capacitor needs a time constant to be
fully discharged. Therefore, the critical frequency depends on
the values of the resistances and capacitors used in the RC
circuit.

Furthermore, the significant dc level that appears in the
PCD signals for both cases (Fig. 10) is strongly dependent on

the stimuli characteristics and it correlates, somehow, with
the CBF [Vanhatalo et al., 2003].

DISCUSSION

In this work the LEVC model has been proposed to charac-
terize the neuronal activity and the hemodynamics of the brain
within a common biophysical framework. The model describes
the dynamics of physiological states as well as their interac-
tions. An additional multidimensional Wiener process has
been incorporated to represent stochastic forces driving these
dynamics, thus providing a common cause for the correlated
noise observed in the EEG and fMRI signals. This is of great

Figure 9.
The mesostates associated with the PCD
and BOLD signal. A single trial is plotted on
the left, and the average of 20 trials is
plotted on the right.

Figure 10.
Comparisons of mesostates BOLD (left) and PCD
(right) for variations in the frequency of appear-
ance (top) and amplitudes (bottom) of the single
events. The PCD and BOLD signal were obtained
after averaging 20 trials.
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significance when analyzing multimodal data recorded con-
currently. The model gives explanations for several experimen-
tal findings: (1) the dose–response curves for the neuronal
electrical activity and vascular/metabolic signals obtained in
both animals and humans; and (2) the correlation found be-
tween dc-EEG variations and CBF.

The novelties and advantages of the model are listed
below.

I. The electrical and morphological properties of single
neurons constituting a basic micronetwork of the neo-
cortex were considered in order to obtain a forward/
generative model of the EEG dynamics.

II. Based on simulations performed in our group (not
shown in the present study), it is suggested that the
trigger for vascular changes may not be the membrane
potentials or the synaptic currents but the transmem-
brane capacitive currents (which somehow includes
synaptic activity). A nonlinear mechanism of coupling
between the electrical and the vascular states was pro-
posed.

III. The energetic components supplied to the neurons for
excitatory and inhibitory synaptic activation within
the overall glucose budget can be discriminated after
identifying the LEVC model from concurrent EEG
and fMRI recordings.

IV. The implications of the present work in the analysis
of effective connectivity are 2-fold: (i) connections
with a cortical unit can be of three types (e.g., I1, I2,
and I3); and (ii) the fMRI and EEG data must be
combined to correctly identify interactions between
cortical regions. In the light of recent work [David
et al., 2004; Deco et al., 2004; Friston et al., 2003;
Husain et al., 2004; Tagamets and Horwitz, 1998],
the analysis of competitions and cooperations be-
tween different cortical units should be done on the
basis of forward/generative models.

However, the proposed model has several limitations that
constitute aims for future research in our group.

1. The incorporation of temporal delays between neurons
of the basic micronetwork could slightly affect some of
the results presented in this article. Unfortunately, the
theory for the numerical integration of SDE with delays
is still under construction.

2. In order to include inhibitory and diffuse granular bands
existing within a cortical unit, the Fokker-Planck equa-
tions [Knight, 2000; Nykamp and Tranchina, 2000] must
be obtained for the canonical neuronal mass model. The
population dynamics approaching equilibrium of the
membrane potentials of GABAergic INs defining these
bands must be properly considered.

3. The neocortex is modeled in this study on a basic
micronetwork. The wiring diagram within a cortical
unit can be extended to include, for example, different
types of PCs and also different inhibitory and excita-
tory INs (i.e., double bouquet cells, basket cells, spiny

and aspiny stellate cells, etc.) [Tamas et al., 1998; Traub
et al., 2005]. In addition, the electrotonic model of the
layer V PCs can be generalized to include also a com-
partment for the apical oblique dendrites trees.

4. The voltage–ampere relationship in the nonlinear
phase was modeled in this work by a generalized
logistic curve, which does not take account of spikes
adaptation. This function was inspired in the pla-
tonic model of neurons (Na-K spikes). However, the
cortical neurons in mammalians have in fact ionic
currents of different types (i.e., calcium T-type, K
calcium-dependent, hyperpolarization, persistent
Na, fast K A-type, etc.). In the future, the authors
are considering whether or not general functions that
describe complex spike dynamics might be more
suitable. Also, these functions must be generalized to
depend on the type of postsynaptic neurons as well.

5. The spikes can be also generated at the dendrites and
they can propagate forward and backward along the
dendrite tree, a phenomenon that was not taken into
consideration in our model [Poznanski, 2002].
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APPENDIX A

Multicompartment Models for Layer V PCs and
GABAergic INs

Two GABAergic INs interconnected with a layer V PC
constitute the proposed canonical neuronal mass model. As
a consequence of the particular geometry of the layer V PC
and the characteristics of the connections with GABAergic
INs, this basic microcircuit represents a system of multiple
inputs with heterogeneous impedances and a single output.
In this appendix, the equations for the electrotonic propaga-
tion in both types of neurons are deduced.

Layer V PC

The soma and the dendrite trees take part in the spatiotem-
poral integration of postsynaptic potentials in the layer V PCs
(Fig. A1, left). The dendrites can be classified as either basal or
apical according to where the main stems of their trees connect
to the soma. The basal path is represented by a virtual com-
partment that summarizes a huge number of synapses arriving
at multiple bifurcated branches of the basal dendrites tree and
a small stem connecting it with the equivalent somatic com-
partment. In this model we assumed that the basal stem orig-
inates at the site where the basal dendrites tree reaches the
maximal number of intersections [Wong et al., 2000]. On the
basis of morphological and electrotonic properties, the apical
path is classified in three compartments: oblique, tuft, and
trunk [Mainen et al., 1995]. However, in this model the contri-
butions of synaptic activity in the oblique and trunk compart-
ments have been neglected (or they have been merged, in the
equivalent electrical sense, with the synaptic activity inflowing
into the basal [Gil and Amitai, 1996] and apical tuft compart-
ments, respectively). Therefore, it is assumed that the apical
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tuft compartment connects to the soma by a long isolated stem
(Fig. A1, middle). However, the inclusion of the oblique com-
partment is being considered in an article in progress in our
group. The final configuration of the two electric compart-
ments with differentiated effective membrane resistances Rm

k

and capacitances Cm
k (k � 1 basal and k � 2 apical tuft) can be

interpreted as a parallel circuit (Fig. A1, right). They are connected
to the somatic compartment by two stems of different lengths;
hence, distinct effective longitudinal resistances should be used.
The somatic compartment has a comparable but different effective
membrane resistance Rm and capacitance Cm.

GABAergic IN

Conversely, a single somatic compartment, with correspond-
ing effective resistance Rm

0 and capacitance Cm
0 , can be used to

represent electrotonic spatiotemporal integration in the
GABAergic INs (Fig. A2, middle). In this particular circum-
stance the space collapses, since this type of neuron holds an
isotropic distribution of the synapse clouds with a radial sym-
metry around the soma (Fig. A2, left). The equivalent electric
circuit is presented in Figure A2 (right).

Equivalent circuits

A resistance R, a capacitor C , and a current source in
parallel I, represented in Figure A3 (left), constitute the
common basic element to account for the electrical pro-
cesses taking place in a unitary area of the membrane for
both neuronal circuits. In the frequency domain, a com-
parable resistance R* � (R/(i��m � 1)), with �m � RC
symbolizing a membrane time contact, models the effect
of resistive and capacitive components connected in par-
allel (Fig. A3, middle). Finally, with the use of the Norton-
Thévenin theorem (Fig. A3, right) for a one-port network,
the current source in parallel with a resistance can be
represented by a voltage source in series with the resis-
tance [Rizzoni, 2003].

In general, the time variations of voltage source � is de-
termined by the differential equation:

�m

d�

dt
� � � IR (I1)

The equivalent circuits for both layer V PCs and GABAer-
gic INs are schematically represented in Figure A4.

The membrane potentials at the somatic compartment for
both types of neurons are represented by magnitude V,
which satisfies the following mesh equation:

V � iR* � �� (I2)

Figure A2.
The GABAergic interneuron. A symbolic representation of the
inputs and output (middle). The equivalent electrical circuit
(right). On the left, biocytin-filled and reconstructed FS (fast-
spiking) and LTS (low threshold-spiking) GABAergic INs in the
neocortical layer V of rodents [adapted from Bacci et al., 2003,
� 2003 by the Society for Neuroscience]. The axons are in blue
and the dendrites are in red.

Figure A1.
The pyramidal cell. A symbolic representation of
the inputs and output (middle). The equivalent
electrical circuit (right). On the left, an illustration
of the typical layer V PC of rat somato-sensory
cortex, filled with biocytin and stained according
to the ABC procedure [adapted from Rauch et al.,
2003; used with permission from the American
Physiological Society].
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The sign of magnitude �� in Eq. I2 depends on the type
of neurons (��� and ��� stand for layer V PCs and
GABAergic INs, respectively). The crucial problem,
henceforth, is the determination for both cases of the
effective current i through the membrane of the soma. In
the particular case of GABAergic INs, this current is by
definition equal to zero because of the classical electric
equivalence of the membrane potential for one-compart-
mental neurons. For that reason, the output VIN of the
GABAergic INs is described by Eq. (I3):

�m

dVIN

dt
� VIN � IINRm

0 , with IIN � I� � Ii (I3)

In the case of neurons with a multiple compartmental
arrangement, as for layer V PCs, to determine the effective
current i the Kirchoff equations must be formulated for the
equivalent circuit presented above (Fig. A4, left):

i1 � i2 � i � 0 �Node equation� (I4a)

��1 � i1�R*1 � Ri
1 � Re

1� � iR* � �� � 0
��2 � i2�R*2 � Ri

2 � Re
2� � iR* � �� � 0 	

�Meshes equations� (I4b)

The solution of the Eq. system I4 for the effective current
i is:

i �

�� ¥k �R*k � Ri
k � Re

k� � �1�R*2
� Ri

2 � Re
2) � �2�R*1 � Ri

1 � Re
1�

Rm ¥k �R*k � Ri
k � Re

k� � �
k

�R*k � Ri
k � Re

k�
(I5)

Therefore, by plugging Eq. I5 into Eq. I2, and after other
mathematical manipulations, the generalized equations for
the membrane potential at the soma of the layer V PC can be
obtained:

�m

dVPC

dt
� ��0 � �

k

1
	k�VPC �




�
k

	k

� RmIPC
Soma

� �
k
� Rm�k

�Ri
k � Re

k�
�

��

	k� (I6a)

�m

d


dt
� 
 � Rm �

k

	k�VPC � �k�

�Ri
k � Re

k�
� �VPC � ��� (I6b)

The voltage sources (i.e., �1, �2 and ��) for each branch
will satisfy Eq. I1 with regard to the particular current inputs
and resistance (i.e., Ik

�, Rm
k @k�{1,2} and IPC

Soma � I� � Ii, Rm) for
each case, respectively. The coefficients 	k � (Ri

k � Re
k)/Rm

k

play the role of equivalent voltage divisors for each path in
the circuit. The coefficient �0 � 1 � Rm ¥k (Ri

k � Re
k)�1 mixes

the contributions coming from both basal and apical paths.
Note that for the particular case of isolated compartments

(for each k, (Ri
k � Re

k) �� Rm
k f 	k � � and ¥k (Ri

k � Re
k)�1 ��

Rm f �0 � 1), Eq. I6 simplifies to the classical equation for
one-compartmental neurons �m(dVPC/dt) � VPC � RmIPC

Soma � 0.

APPENDIX B
Extracellular Electric Currents along the Layer V

PC Apical Trunk
From the Kirchoff equations (Appendix A, Eq. I4), it can be

proven that the effective currents i1 and i2 satisfy the following
equations:

i1 �
�R*2 � Ri

2 � Re
2���� � �1� � Rm��1 � �2�

Rm�
k

�R*k � Ri
k � Re

k� � �
k

�R*k � Ri
k � Re

k�
(IIa)

i2 �
�R*1 � Ri

1 � Re
1���� � �2� � Rm��2 � �1�

Rm �
k

�R*k � Ri
k � Re

k� � �
k

�R*k � Ri
k � Re

k�
(IIb)

Regarding i2 � �/Re
2, the final equations (4a and 4b) for

the electric potential � and the implicit electrical state � can
be obtained from (IIb) after some simple calculations.

Figure A3.
The schematic representations of the conversion to the frequency do-
main and of the Norton-Thévenin theorem for a one-port network.

Figure A4.
The equivalent circuits for both the layer V PC and the GABAergic
INs.
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APPENDIX C

Model Parameters (Dimensions and
Physiological Ranges)

The whole membrane area of a compartment is taken
into consideration when calculating its effective

membrane resistance Rm � (rm/A) and capacitance
Cm � (cmA). For the particular case of the layer V PC,
the effective intra/extracellular resistance along the den-
drites stem (basal and apical) is calculated from Ri �
(ril/S) and Re � 1.2Ri [Kleber and Riegger, 1987], respec-
tively.

APPENDIX C TABLE I.

Symbol Physiological parameters Dimension Value

Geometrical
(Mason and Larkman, 1990; Kawaguchi, 1993; Mainen et al., 1995; Larkman and Mason,

1990; Wong et al., 2000)
AIN Area of Soma (GABAergic IN) cm2 �0.908 � 10�5

APC Area of Soma (layer V PC) cm2 1.393 � 10�5

APC
B Area of Basal (layer V PC) cm2 �18 � 10�5

APC
A Area of Apical Tuft (layer V PC) cm2 �6 � 10�5

lBS Basal Stem Length “Maximal Number of
Intersections”

cm 0.6 � 10�2

lAS Apical Stem Length cm �6 � 10�2

SPC Mean Dendrite Transversal Area cm2 �0.44 � 10�8

Electrophysiological
(Major et al., 1994; Spruston et al., 1994; Kleber and Riegger, 1987)

cm Membrane Capacitance �F/cm2 0.75
rm Membrane Resistance 
 cm2 40000
�m � cmrm Membrane Time Constant ms 30
ri Intra-cellular Axial Resistance 
 cm 166
�PC Layer V PC Synaptic Factor pA (0 � 1.5) 0.4
�IN GABAergic IN Synaptic Factor pA (0 � 1.5) 0.3
re Extra-cellular Resistance 
 cm 63

Vascular
(Friston et al., 2000)

�PC Layer V PC Energetic Factor nM (0 � 1) 1.0
�IN GABAergic IN Energetic Factor nM (0 � 1) 0.8
�s Signal Decay ms 1540
�f Autoregulation ms 2460
�0 Transit Time ms 980
� Stiffness Dimensionless 0.33
E0 Resting Oxygen Extraction Fraction Dimensionless 0.34

APPENDIX C TABLE II.

Neuron Effective membrane resistance Symbol Value

GABAergic IN Soma Compartment Rm
0 4.082

Layer V PC Soma Compartment Rm 2.871
Basal Compartment Rm

1 0.222
Apical Tuft Compartment Rm

2 0.667
Basal Longitudinal (Intracellular) Ri

1 0.226
Basal Longitudinal (Extracellular) Re

1 0.272
Apical Longitudinal (Intracellular) Ri

2 2.264
Apical Longitudinal (Extracellular) Re

2 2.716

The dimensions of the effective resistances are in G
.

APPENDIX C TABLE III.

Basal Voltage Divisor 	1 2.24
Apical Voltage Divisor 	2 7.45
Mixed Coefficient �0 7.32

APPENDIX C TABLE IV. Parameters used to evaluate the
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voltage-ampere relationships

Neuron �k (mV�1) V0
k (mV)

Layer V PC �PC � 6 V0
PC � 0.6

GABAergic IN �IN � 5 V0
IN � 0.7

APPENDIX C TABLE V. Parameters used to evaluate the
nonlinear functions gk�

Neuron �k �k (nA)2

Layer V PC �PC � 1 �PC � 0.1091
GABAergic IN �IN � 1 �IN � 0.0464

APPENDIX C TABLE VI. Parameters of the low-pass filter �(s)

Gain A 1.0 nM�1

Damping factor � 0.8
Angular high cut frequency �0 2� (8 Hz)
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