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Abstract: Depression has been associated with dysfunctional executive functions and abnormal activity within
the anterior cingulate cortex (ACC), a region critically involved in action regulation. Prior research invites the
possibility that executive deficits in depression may arise from abnormal responses to negative feedback or
errors, but the underlying neural substrates remain unknown. We hypothesized that abnormal reactions to
error would be associated with dysfunctional rostral ACC activity, a region previously implicated in error
detection and evaluation of the emotional significance of events. To test this hypothesis, subjects with low and
high Beck Depression Inventory (BDI) scores performed an Eriksen Flanker task. To assess whether tonic
activity within the rostral ACC predicted post-error adjustments, 128-channel resting EEG data were collected
before the task and analyzed with low-resolution electromagnetic tomography (LORETA) using a region-of-
interest approach. High BDI subjects were uniquely characterized by significantly lower accuracy after
incorrect than correct trials. Mirroring the behavioral findings, high BDI subjects had significantly reduced
pretask gamma (36.5-44 Hz) current density within the affective (rostral; BA24, BA25, BA32) but not cognitive
(dorsal; BA24’, BA32") ACC subdivision. For low, but not high, BDI subjects pretask gamma within the
affective ACC subdivision predicted post-error adjustments even after controlling for activity within the
cognitive ACC subdivision. Abnormal responses to errors may thus arise due to lower activity within regions
subserving affective and/or motivational responses to salient cues. Because rostral ACC regions have been
implicated in treatment response in depression, our findings provide initial insight into putative mechanisms
fostering treatment response. Hum Brain Mapp 27:185-201, 2006.  © 2005 Wiley-Liss, Inc.
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INTRODUCTION

In the past decade there has been a surge of interest
toward attaining a better understanding of the neural un-
derpinnings and neuropsychological deficits of depression.
Emerging from this research is a link between depression
and wide-ranging neuropsychological deficits, particularly
in attention, memory, and problem-solving tasks. Impair-
ment in executive functions, which are critically needed for
flexible problem solving, action monitoring, and adaptive
behavioral modification, may be one of the core issues un-
derlying cognitive deficits in depression [Austin et al., 2001;
Veiel, 1997]. In line with this assumption, executive dysfunc-
tions 1) have been reported in a wide range of patients,
including depressed outpatients [Porter et al., 2003] and
young patients with dysphoria [Channon and Green, 1999];
2) predicted poor response to pharmacological treatment
[Dunkin et al., 2000]; and 3) were still observed after symp-
tom recovery [Beats et al., 1996; Paradiso et al., 1997].

Substantial progress in cognitive neuroscience has delin-
eated an executive control system centered on the anterior
cingulate cortex (ACC) and prefrontal cortex (PFC) critically
implicated in governing information processing and re-
sponse selection in situations requiring adaptive and flexible
task performance, such as planning, error monitoring and
correction, and response inhibition [Miller and Cohen, 2001;
Posner and Dehaene, 1994]. In depression, abnormalities in
this distributed network have been described [Davidson et
al., 2002], highlighting candidate neural markers of execu-
tive dysfunctions that could lead to impaired problem solv-
ing, maladaptive behavioral regulation, and abnormal error
monitoring. With respect to the ACC, structural [Ballmaier
et al., 2004], neurochemical [Auer et al., 2000; Mirza et al.,
2004], and functional [Beauregard et al., 1998; Bremner et al.,
2004; George et al., 1997; Kumari et al., 2003; Mitterschiff-
thaler et al., 2003; Okada et al., 2003] abnormalities have
been reported in depression.

In order to understand the potential role of ACC dysfunc-
tion in depression, it is important to stress that this region is
anatomically and functionally heterogeneous, and that “af-
fective” and “cognitive” subdivisions have been described
[Bush et al., 2000; Devinsky et al., 1995; Vogt et al., 1995].
Accordingly, the affective subdivision 1) encompasses ros-
tral and ventral areas of the ACC (areas 25, 32, 33, and
rostral area 24); 2) has extensive connections with limbic and
paralimbic structures; and 3) has been implicated in regu-
lating visceral, autonomic, and emotional responses to
stressful behavioral and emotional events. Conversely, the
dorsal cognitive subdivision of the ACC (1) includes caudal
area 24', 32’ and the cingulate motor area; (2) has reciprocal
connections with the dorsolateral PFC, parietal cortex, and
supplementary motor areas; and (3) is involved in detection
of response conflict and processing of cognitively demand-
ing information. Echoing this anatomical data, recent neu-
roimaging studies of executive functions have uncovered
important functional specialization within the ACC (Fig.
1A). Specifically, increased activation within dorsal ACC
regions extending to the pre-SMA has been observed during

conflict monitoring, which can be conceptualized as the
online monitoring of conflict between concurrent processes
or response competition [Botvinick et al., 2001; Bunge et al.,
2002; Bush et al., 2003; Carter et al., 1998; Casey et al., 2000;
Fassbender et al., 2004; Hazeltine et al., 2003; Kerns et al.,
2004; MacDonald et al., 2000; Ruff et al., 2001]. In contrast,
activation in more rostral and inferior regions of the ACC
has been observed after error commission [Braver et al.,
2001; Garavan et al., 2003; Kiehl et al., 2000; Laurens et al.,
2003; Menon et al., 2001; Rubia et al., 2003; Ullsperger and
von Cramon, 2001]. Data from recent event-related poten-
tials (ERP) studies lends further support to the notion that
dorsal ACC activity may index conflict monitoring that is
dissociable from error detection and emotional evaluation of
errors mediated by the rostral ACC [Luu et al., 2003; van
Veen and Carter, 2002]. Collectively, these data suggest that,
in depression, dysfunction in specific regions of the ACC
could be associated with distinct functional impairments.

Interestingly, recent neuropsychological studies suggest
that executive deficits in depression may be partially due to
abnormal responses to negative feedback or oversensitivity
to errors and perceived failure [Beats et al., 1996; Elliott et al.,
1996, 1997b; Murphy et al., 2003; Steffens et al., 2001; but see
Purcell et al., 1997 and Shah et al., 1999]. In one of these first
studies, Beats et al. [1996] found that elderly depressed
patients solved the same amount of problems as controls
during a planning task, but once a mistake was committed a
rapid deterioration of performance was observed [see also
Steffens et al., 2001]. Elliott et al. [1996, 1997b] replicated and
extended these findings by showing that abnormal response
to negative feedback was (1) correlated with depression
severity, (2) specific to depression, and (3) still present after
clinical recovery, suggesting that it may be a trait-like
marker of depression. Finally, Murphy et al. [2003]] found
that misleading negative feedback disrupted patients’ per-
formance in visual discrimination and reversal tasks.

Although these findings invite the possibility that deficits
in performance monitoring and abnormal responses to er-
rors may represent a critical link between cognitive deficits
and negative affect in depression, little is known about the
underlying mechanisms and brain substrates. Thus, abnor-
mal response to errors and negative feedback may arise due
to dysfunctional performance monitoring and controlled re-
sponse strategies for improving performance. Based on the
neuroimaging literature reviewed above, these impairments
could be linked to dysfunctions in the cognitive (dorsal)
subdivision of the ACC. Alternatively, disrupted perfor-
mance after errors may reflect abnormal affective reactions
to internal or external cues signaling that one’s own behav-
ior was inappropriate; in this case, dysfunction in affective
(rostral) ACC subdivision could be expected.

As an initial attempt to better characterize abnormal reac-
tions to errors in depression, a modified version of the
Eriksen Flanker task [Eriksen and Eriksen, 1974] was used in
the present study to assess conflict monitoring and post-
error behavioral adjustments in subjects with elevated levels
of depressive symptoms. The rationale for using the Eriksen
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Figure 1.

A: Summary of neuroimaging studies highlighting functional spe-
cialization within the ACC. Green and red circles denote locations
of increased activation during increased conflict monitoring and
interference effects [Braver et al., 2001; Bush et al., 2003; Carter
etal., 1998, 2000; Fassbender et al., 2004; Kerns et al., 2004; Kiehl
etal., 2000; Laurens et al., 2003; MacDonald et al., 2000; Menon et
al., 2001; Ruff et al, 2001]. The red circles denote activations
associated with the compatibility (Eriksen) or conflict-adaptation
(Gratton) effects in studies using the Eriksen task [Botvinick et al.,
2001; Bunge et al., 2002; Casey et al., 2000; Hazeltine et al., 2003;
van Veen et al., 2001]. Orange triangles denote activations during
error commission, predominantly during go/nogo tasks [Braver et
al., 2001; Fassbender et al., 2004; Garavan et al., 2003; Kiehl et al.,
2000; Laurens et al., 2003; Menon et al., 2001; Rubia et al., 2003;
Ullsperger and von Cramon, 2001]. Yellow diamonds denote the

task was twofold. First, prior studies using this or similar
speeded-response tasks have shown that performance can be
dissected into different subcomponents, including behavioral
adjustments during or after high-conflict (incompatible) trials,
as well as after errors. For example, subjects typically slow
down their reaction time (RT) and improve their accuracy on
trials following errors, suggesting that they utilize errors to
monitor and improve their performance [Laming, 1968; Rab-

locations of rostral ACC regions that have been linked to treat-
ment response in depression [Buchsbaum et al., 1997; Davidson et
al., 2003; Mayberg et al., 1997; Pizzagalli et al,, 2001; Saxena et al.,
2003; Smith et al., 1999; Wu et al.,, 1999]. Note that this region is
pregenual, i.e,, slightly more inferior and anterior than the one impli-
cated in error processing. B: Location and extent of various ACC
subdivisions as defined by the Structure-Probability Maps [Lancaster
etal., 1997] and displayed on the LORETA template. Coordinates in
mm (MNI space); origin at anterior commissure; (X) = left(-) to
right(+); (Y) = posterior(-) to anterior(+); (Z) = inferior(-) to
superior(+). €: Mean (and SD) gamma current density within five
general ACC regions for low (n = 16) and high (n = 17) BDI subjects.
D: Mean (and SD) gamma current density within the affective and
cognitive ACC subdivisions for low (n = 16) and high (n = 17) BDI
subjects. *Group differences (P < 0.05).

bitt, 1966b]. Second, and more importantly, neuroimaging
studies have shown that dorsal and rostral ACC regions are
primarily recruited during conflict monitoring and error detec-
tion, respectively, elicited by the Eriksen or similar speeded
tasks [Botvinick et al., 1999; Casey et al., 2000; Hazeltine et al.,
2003; Kerns et al., 2004] (Fig. 1A).

In addition to testing whether elevated levels of depres-
sive symptoms in a nonclinical sample would modulate
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conflict monitoring and post-error behavioral adjustments,
the second aim of this study was to investigate whether
resting electroencephalographic (EEG) activity within spe-
cific territories of the ACC assessed before the Eriksen task
predicted behavioral performance, and whether specific
dysfunction in such ACC regions would explain perfor-
mance abnormalities in subjects with elevated depressive
symptoms. Due to our a priori hypotheses regarding the
ACC, EEG analyses were restricted to the theta (6.5-8 Hz)
and gamma (36.5-40 Hz) band. This choice was justified by
animal and human findings showing that: (1) the ACC is
critically implicated in the generation and/or modulation of
theta activity [Asada et al., 1999; Gevins et al., 1997; Ishii et
al., 1999]; and (2) theta and gamma activity are functionally
coupled [Bragin et al., 1995; Burgess and Ali, 2002; Duzel et
al., 2003; Penttonen et al., 1998; Hajos et al., 2003; Fell et al.,
2003; Schack et al., 2002] such as gamma bursts occur within
periods of the theta phase [Buzsaki, 1996, for review]. Since
both animal and human studies have also demonstrated
links between ACC function and theta oscillations [Feenstra
and Holsheimer, 1979; Nishida et al., 2004; Pizzagalli et al.,
2003; Talairach et al., 1973] as well as between theta and
gamma rhythms [Cape and Jones, 2000; Chrobak and
Buzsaki, 1998; Mann and Paulsen, 2005] during task-free,
resting periods, the focus on these EEG bands was war-
ranted.

SUBJECTS AND METHODS
Participants

Forty-eight female subjects were recruited from the Intro-
ductory Psychology pool at the University of Wisconsin—
Madison. Subjects were selected based on their score on the
Beck Depression Inventory (BDI) [Beck et al., 1961], which
was administered to 1,495 students. Control subjects were
required to have a BDI score of six or less (low BDI group; n
= 22), whereas subjects with elevated depressive symptoms
were required to have a BDI of 18 or above' (high BDI
group; n = 26). On the day of the experiment (on average,
30.35+19.42 days postscreening), high and low BDI subjects
were required to have a BDI score of =12 and =4, respec-
tively. Among the 48 subjects identified at the prescreening,
11 failed to meet the BDI criteria at the day of the experi-
ment, and three had data loss for the Eriksen task due to
equipment malfunctions. This resulted in a final sample of
17 subjects with high BDI scores (19.94 *+ 6.75, range: 12-38)
and 17 subjects with low BDI scores (1.53 * 1.23, range:
0-4). For one low BDI subject, EEG data were lost due to
technical problems. Participants were right-handed [Chap-
man and Chapman, 1987] and between the ages of 18 and 22.

A BDI score of 12 is the cutoff point for mild depression [Kendall
et al.,, 1987]. For the initial screening, a more stringent cutoff of 18
was used in order to increase the likelihood that the subjects in the
high BDI group would still report elevated depressed symptoms at
the experimental session.

Subjects provided written informed consent to a protocol
approved by the Human Subjects Committee of the Univer-
sity of Wisconsin, and received course credit for their par-
ticipation.

Procedure

After obtaining written informed consent, the state forms
of the Positive and Negative Affect Schedule [PANAS;
Watson et al., 1988] and State Trait Anxiety Inventory [STAIL
Spielberger et al., 1970] were administered to assess pre-task
levels of affect. Next, preparations for the EEG recording
were made. Following standard procedures, EEG recording
consisted of eight contiguous 1-min trials (four with eyes
open and four with eyes closed), alternating according to an
order counterbalanced across subjects. After the EEG record-
ing, instructions for the Eriksen task and a practice block
were provided and subjects subsequently performed 10
blocks of the Eriksen task (without EEG recording).> After
the task, subjects filled out the BDI, the state forms of the
PANAS and STAI, the trait form of the PANAS, the Mood
and Anxiety Symptom Questionnaire [MASQ; Watson et al.,
1995], and a post-task questionnaire assessing subjects’ ex-
perience with the task. Subjects were then debriefed and
compensated.

Task

A modified version of the Eriksen Flanker task was used
[Eriksen and Eriksen, 1974]. Each trial started with the pre-
sentation of a warning cue (a line) for 1,000 ms in the center
of the screen, directly above where a target letter was to be
presented. Immediately thereafter, one of four equiprobable
letter strings (HHHHH, SSSSS, SSHSS, and HHSHH) was
presented. The participants’ task was to decide via button
press whether the center letter in the string (the target letter)
was an “H” or “S.” The target-key press assignment was
counterbalanced across subjects. In so-called compatible tri-
als, the target letter was the same as the distracter letters (i.e.,
SSSSS, HHHHH), whereas in incompatible trials, the target
and distracter letters were different (i.e., SSHSS, HHSHH).
Trials were separated by 1,000 ms (ITI), and each participant
completed 10 blocks (50 trials/block), separated by a short
break, in which subjects received feedback about their per-
formance (the number of correct responses in a particular
block and the cumulative correct responses). The task lasted
about 25 min.

Unlike the original Eriksen task, our task included a stim-
ulus degradation function to increase task difficulty and
thus elicit more errors. Task parameters (e.g., level of deg-
radation) were first piloted on 18 independent subjects. The

*No EEG was recorded during the Eriksen Flanker task because the
present study was designed to investigate (1) behavioral differences
in conflict monitoring and error processing in subjects differing in
depressive symptoms; and (2) relations between tonic, task-free
ACC activity and individual differences in conflict monitoring and
error processing.
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center letter (target) degraded after each trial depending on
the subject’s performance according to the formula: [(Block
Score + 1)/(Trial in Block + 15)], where Block Score is the
running total correct score in a given block, and Trial in Block
is the trial number in the block (range: 1-50). Therefore, if a
participant maintained a high accuracy on the task (high
Block Score), the stimulus was degraded more than if the
participant maintained a lower accuracy.

Apparatus

The Eriksen task was run on a PowerMac 6214CD using
PsyScope software [Cohen et al., 1993]. A 128-channel EEG
was recorded using the Geodesic Sensor Net system (Elec-
trical Geodesic, Eugene, OR). The sampling rate was 250 Hz
(16 bit precision; bandwidth: 0.01-100 Hz), and the vertex
electrode (Cz) served as recording reference. Amplifier gains
and zeros were measured prior to each recording session.
Following standard procedures [e.g., Luu et al., 2003; Tucker
et al., 2003], impedances were kept below 50 K().

Data Reduction and Analyses
Behavioral data

In addition to analyzing overall RT and accuracy, com-
patibility (Eriksen), post-error adjustment (Laming/Rabbit),
and conflict-adaptation (Gratton) effects were computed,
since these variables have been previously associated with
conflict monitoring and post-error behavioral adjustments
as well as ACC activation. Specifically, neuroimaging stud-
ies have shown that the compatibility [Botvinick et al., 1999;
Bunge et al., 2002; Hazeltine et al., 2003; van Veen et al.,
2001] and conflict-adaptation [Botvinick et al., 1999; Kerns et
al., 2004] effects recruit the dorsal ACC, whereas error of
commissions are typically associated with rostral ACC acti-
vation [e.g., Kiehl et al., 2000; Menon et al., 2001; Ullsperger
and von Cramon, 2001] (Fig. 1A).

The Compatibility (Eriksen) effect refers to longer RTs and
lower accuracies for incompatible than compatible trials [Erik-
sen and Eriksen, 1974] due to high response competition be-
tween the distracters and the center stimulus in an incompat-
ible trial. Accordingly, this effect was computed as:

[RT RTCompatible trials] and [Accuracy(:ompatible trials —

Incompatible trials

Accuracy i compatible trialsl- 1he post-error adjustment (Laming) ef-
fect reflects longer RT but higher accuracy on trials following
incorrect than correct responses [Laming, 1968], suggesting
that subjects utilize errors to monitor and adjust their perfor-
mance. Thus, this effect was computed as: [RT s g incorrect trials
- RTAfter correct trials] and [AccuraCYAfter incorrect trials — Ac-
CUraCY agrer correct trials)- FiNally, the Conflict-adaptation (Gratton)
effect reflects shorter RT and higher accuracy for incom-
patible trials following incompatible trials than incompat-
ible trials following compatible trials [Gratton et al., 1992],
likely due to increased recruitment of cognitive control
during the preceding incompatible trial. Thus, this effect
was computed as: [RT
- RT

Incompatible trials following compatible trials

and [Ac-

Incompatible trials following incompatible trials]

Curachncompatible trials following incompatible trials — Accu-

raCyIncompatible trials following compatible trials]'

Finally, to exclude the possibility that the post-error ad-
justment and conflict adaptation effects affected each other,
control analyses, deconfounding the putative overlap be-
tween these effects, were performed. To this end, for the
post-error adjustment effect, analyses were restricted to tri-
als subsequent to incompatible trials; for the conflict adap-
tation effect, analyses of preceding compatibility were re-
stricted to post-correct trials.

Baseline EEG data

After gain and zero calibration to microvolts, data were
converted to Matlab-compatible format (MathWorks,
Natick, MA). Using in-house software, EEG channels were
first automatically checked for values greater than =200 uV
dynamic range and time frames exceeding this threshold
were marked as artifact. Second, a zero-phase 60 Hz notch
filter was used to remove power noise. Third, the 128-chan-
nel EEG data were manually scored for eye movement,
blink, muscle, and other artifacts. Channels with artifacts
exceeding more than 50% of the 1-min recording were
marked as corrupted (3.30% of the channels) and were later
interpolated using a spline interpolation method [Perrin et
al., 1989]. Low and high BDI subjects did not differ in the
number of sensors requiring interpolation (4.44 * 3.52 vs.
353 *+ 2.68, t(31) = 0.84, P > 0.40). Next, all available
artifact-free 2048-ms EEG epochs from the eyes-closed trials
were extracted (high BDI: 33.29 * 23.47 vs. low BDI: 31.31
+ 22.00; £(31) = 0.25, P > 0.80), and subjected to standard
spectral analyses via Discrete Fourier Transform (DFT) us-
ing a boxcar window [Brillinger, 1981]. As in our prior
studies in clinical depression [e.g. Pizzagalli et al., 2001],
only EEG data extracted from the eyes-closed trials were
used for the analyses to (1) avoid potential artifacts deriving
from eye movements, blinks, etc.; and (2) increase compara-
bility across studies.

Subsequently, Low-Resolution Electromagnetic Tomogra-
phy [LORETA; Pascual-Marqui et al., 1994, 1999] was used
to estimate the three-dimensional intracerebral current den-
sity distribution of the theta (6.5-8 Hz) and gamma (36.5-44
Hz) EEG band. For the theta band, the 6.5-8 Hz frequency
range was selected based on prior factor analysis EEG stud-
ies of resting EEG data [Kubicki et al., 1979]. This distributed
source localization technique has recently received impor-
tant cross-modal validation from studies combining
LORETA with functional MRI (fMRI) [Mulert et al., 2004;
Vitacco et al., 2002], structural MRI [Worrell et al., 2000], and
PET [Pizzagalli et al., 2004; but see Gamma et al., 2004].
LORETA estimates location(s) of electrical source activity by
assuming similar activation among neighboring neuronal
sources (i.e., no assumption is made about the number of
generating sources). This core assumption is implemented
by computing the “smoothest” of all possible activity distri-
butions. In the present study, a three-shell spherical head
model [Ary et al., 1981] and EEG electrode coordinates
derived from cross-registrations between spherical and re-
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alistic head geometry [Towle et al., 1993] were utilized,
which were both registered to the digitized MRI available
from the Brain Imaging Centre, Montreal Neurologic Insti-
tute [MNI305; Evans et al., 1993; Collins et al., 1994].3 Ac-
cording to the digitized MNI probability atlases, the solution
space was restricted to cortical gray matter and hippocampi
and included 2,394 voxels (voxel dimension: 7 mm?). After
conversion from MNI to Talairach coordinates [Brett et al.,
2002], the Structure-Probability Maps atlas [Lancaster et al.,
1997] was used to identify voxels belonging to distinct ACC
subdivisions. Based on prior functional and anatomical data
[Bush et al., 2000; Devinsky et al., 1995; Paus, 2001; Vogt et
al., 1995], voxels belonging to the affective (BA25: 17 voxels,
5.83 cm® BA24: 12 voxels, 4.12 cm®, BA32: 25 voxels, 8.58
cm®) and cognitive (BA32': 20 voxels, 6.86 cm®; BA24': 48
voxels, 16.46 cm®) ACC subdivision were identified (Fig. 1B).
To test the regional specificity of putative differences, pos-
terior cingulate regions were also investigated (BA23: 12
voxels, 4.12 cm?; BA31: 45 voxels, 15.44 cm?).

LORETA computes current density as the linear, weighted
sum of the scalp electrical potentials and then squares this
value for each voxel to yield power of current density (unit:
amperes per square meter, A/m?). Before statistical analy-
ses, for every subject and every band, the LORETA solution
was normalized to a total power of 1 and log-transformed
for normalization purposes. For each cluster, activity was
finally averaged across the voxels.

Statistical Analyses

Self-report measures

For the state PANAS scale, a mixed analysis of variance
(ANOVA) was run with Time (pre-, post-task), PANAS Scale
(positive, negative) as repeated measures, and Group (low
vs. high BDI subjects) as the between-subject factor. For the
trait PANAS scale, a 2 (PANAS Scale) X 2 (Group) ANOVA
was performed. For the STAI, a 2 (Time) X 2 (Group)
ANOVA was run. For the MASQ, a 4 (MASQ subscales) X 2
(Group) ANOVA was performed. For the sake of brevity,
only effects involving Group are reported.

Behavioral data

Mixed ANOVAs were run separately for RT and accuracy
variables with Condition and Group as factors. To assess
compatibility effects, the performance for compatible vs.
incompatible trials was entered as the repeated measure. To

3Although the LORETA version used in the present study received
important cross-modal validation through fMRI and PET [e.g., Mu-
lert et al., 2004; Pizzagalli et al.,, 2004; Vitacco et al., 2002], it is
important to stress that a number of factors likely weaken the spatial
resolution of this approach. In future studies, the use of (1) a more
complex head model (rather than a three-shell spherical head mod-
el); (2) individual anatomical scans (rather than a general brain
template); and (3) individual digitization of electrode positions
(rather than general positions), is expected to improve the spatial
resolution of LORETA.

investigate post-error adjustments, the performance follow-
ing a correct or incorrect response was analyzed. Finally, to
test conflict-adaptation effects, the performance for incom-
patible trials following a compatible vs. incompatible trials
was considered.

To test whether group differences were further modulated
by self-report measures of mood, Pearson correlation and
hierarchical regression analyses between the MASQ scores
and behavioral performance (compatibility, post-error ad-
justment, and conflict-adaptation effects) were performed.
To limit the number of tests performed in these analyses
only the MASQ scores were used as predictors. The MASQ
was selected because it allows for an independent assess-
ment of depressive and anxious symptoms, thus providing a
test of the specificity of putative findings

Baseline EEG data

For the LORETA data, a mixed ANOVA analyses with
Brodmann Area (BA; BA25, BA24S, BA32S, BA23, BA31) as
repeated measure and Group as the between-subject factor
was performed for each band separately. Note that “BA 245"
(= BA24+BA24’) and “BA32S” (= BA32 + BA32') refer to
the sums of the respective affective and cognitive subdivi-
sions. To directly test putative group differences in cognitive
vs. affective ACC subdivisions, a 3-way ANOVA with BA
(BA24, BA32), ACC subdivision (affective, cognitive), and
Group as factors was run. Finally, hierarchical regression
analyses were run separately for low and high BDI subjects
to test whether 1) resting activity in the affective ACC sub-
division predicted individual differences in post-error ad-
justments after controlling for the activity in the cognitive
ACC subdivision; and 2) activity in the cognitive ACC sub-
division predicted compatibility or conflict-adaptation ef-
fects after controlling for the affective ACC subdivision.

RESULTS
Self-Report of Mood and Affect

For both the state and trait form of the PANAS, the Group
X PANAS scale interaction was significant (both F(1,32)
> 13.40, P < 0.001), reflecting significantly higher negative
affect but significantly lower positive affect in high BDI
subjects (Table I) at both the pre- and post-task assessment.
Similarly, for the STAI only the Group main effect was sig-
nificant (F(1,32) = 13.62, P < 0.001), due to higher state
anxiety in high BDI subjects at both assessments. For the
MASQ, higher scores in high BDI subjects, particularly in the
two depression subscales, resulted in both the Group and the
Group X MASQ subscale effects reaching significance (both
F(1,32) > 23.50, P < 0.001).

Behavioral Data
Overall performance

As shown in Table I, no differences emerged in overall RT
(t(32) = -0.29, P > 0.70) or accuracy (#(32) = 0.48, P > 0.60)
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TABLE I. Self-report measures and behavioral performance in the Eriksen Task for
low (N = 17) and high (N = 17) BDI subjects

Low BDI* High BDI* t P
Self-report measures
BDI 1.53 £ 1.23 19.94 + 6.75 11.06 0.001
PANAS-trait
PA 34.47 = 4.99 26.06 * 4.96 —4.93 0.001
NA 16.24 + 2.33 24.94 + 6.53 5.17 0.001
PANAS-state®
PA 28.03 = 5.25 2321 £ 525 —2.68 0.015
NA 13.91 = 0.92 16.09 = 2.53 3.33 0.005
STAI state® 28.82 + 4.76 36.96 * 7.74 3.69 0.001
MASQ
GDA 14.24 + 3.25 2418 £ 8.71 441 0.001
AA 19.35 + 3.46 31.88 £ 11.91 417 0.001
GDD 17.12 + 4.00 34.82 + 8.29 7.93 0.001
AD 43.82 = 5.84 75.00 £ 11.76 9.79 0.001

Eriksen task
Overall performance®

RT (ms) 508.32 + 52.88 502.68 * 59.65 -0.29 0.77

Accuracy 0.84 + 0.046 0.85 + 0.039 0.48 0.64
Compeatibility (Eriksen) effect®

RT (ms) 6.06 * 20.04 9.41 + 2449 0.44 0.66

Accuracy —0.12 £ 0.11 —0.09 £0.11 1.04 0.31
Post-error (Laming) adjustment?

RT (ms) 20.76 = 19.10 26.59 = 17.56 0.93 0.36

Accuracy 0.01 + 0.052 —0.02 = 0.030 —2.05 0.048
Conflict-adaptation (Gratton) effect®

RT (ms) 0.59 = 8.02 2,62 + 16.00 047 0.64

Accuracy —0.00 £ 0.03 0.01 = 0.05 1.09 0.28

*Values are expressed as mean = SD.

# For the state PANAS and STAI scales, values are averaged between the pre- and post-task assess-
ment because no significant effects involving Time (pre- vs. post-task) emerged.

P Mean RT and accuracy (averaged across trial types).

c Thils . — . p—

Compatibility effect: [RT}ncompatibie triats — R Compatible triats]; [ACCUTACY compatible triats — ACCUTACY [ncompatible trials)-
9 Post-error adjustment effect (including both compatible and incompatible trials): [RT s ger incorrect trials
- RTAfter correct trials]; [AccuraCyAfter incorrect trials AccuraCYAfter correct trials]'
¢ Conflict-adaptation effect (including both post-correct and post-error trials): [RT ncompatible trials
following compatible trials — RTTnCompatible trials following incompatible tria]s]; [Accuracymcompatible trials following

incompatible trials AccuraCYIr\compafible trials following compatible trials]'

Note: BDI: Beck Depression Inventory [Beck et al., 1961]; PANAS: Positive and Negative Affect
Schedule [PA: positive affect, NA: negative affect; Watson et al., 1988]; STAI: State Trait Anxiety
Inventory [State form; Spielberger et al., 1970]; MASQ: Mood and Anxiety Symptom Questionnaire
[Watson et al., 1995; GDA: General Anxiety; AA: Anxious Arousal; GDD: General Depression; AD:

Anhedonic Depression].

scores, suggesting no general dysfunctions (e.g., attention,
motivation) in high BDI subjects. In line with these findings,
low and high BDI subjects did not differ in the amount
(mean: 0.51 *= 0.02 vs. 0.51 *= 0.02) or variance (standard
deviation (SD): 0.16 = 0.01 vs. 0.16 = 0.01) of stimulus
degradation, which was contingent upon global perfor-
mance in the task (#(32) < 0.04, P > 0.90).

Compatibility effect: Performance for compatible vs.
incompatible trials

For RT, the ANOVA revealed a nearly significant effect of
Condition (F(1,32) = 4.06, P = 0.052). As expected from prior
studies [Eriksen and Eriksen, 1974], RT was longer for in-
compatible (508.85 * 49.02 ms) than compatible (501.12

*+ 66.18 ms) trials. The main effect of Group and the Group
X Condition interaction were not significant (F < 0.19). Thus,
high and low BDI subjects did not differ in their relative RT
slowing during incompatible trials (compatibility effect:
£(32) = 0.44, P > 0.60; Table I).

For accuracy, the ANOVA showed a significant effect of
Condition (F(1,32) = 32.15, P < 0.01), which resulted from
unexpectedly higher accuracy for incompatible (0.90
*+ 0.060) than compatible (0.80 = 0.076) trials. As above,
the main effect of Group and the interaction were not
significant (F < 1.1). Thus, high and low BDI subjects did
not differ in their relative accuracy adjustments during
incompatible trials (compatibility effect: t(32) = 1.04, P
> 0.30; Table I).
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Post-error adjustment effect: Performance following
correct vs. incorrect responses

For RT, only the main effect of Condition (F(1,32) = 56.65,
P < 0.001) was significant (all F < 0.90). As in prior studies
[Laming, 1968; Rabbit, 1966a], this effect was due to signif-
icantly longer RT for trials following incorrect (524.79
*+ 64.13 ms) than correct (501.12 = 55.24 ms) responses.
Thus, the two groups did not differ in RT slowing after
errors (post-error adjustment: #(32) = 0.44; Table I).

For accuracy, the only significant effect emerging was the
Group X Condition interaction (F(1,32) = 4.22, P < 0.05; all
other F < 0.80), suggesting that high and low BDI subjects
differed in their post-error adjustment effect (Table I). Crit-
ically, the Group X Condition interaction was confirmed also
in the control analyses in which the post-error adjustment
effect was restricted to trials subsequent to incompatible
trials (F(1,32) = 7.66, P < 0.009; all other F < 0.95). As shown
in Figure 2A, high BDI subjects had significantly lower
accuracy after incorrect than correct trials (£#(16) = 2.41, P
< 0.03), an effect that was not present in low BDI subjects
(t(16) = —1.43, P > 0.15). Moreover, high BDI subjects had
significantly lower accuracy after incorrect trials than low
BDI subjects (#(32) = -2.22, P < 0.04), whereas the two
groups did not differ in their accuracy after correct trials
(t(32) = 0.55, P > 0.50). On an individual level (Fig. 2B), 12
of the 17 high BDI subjects [binomial probability P(12/17)
< 0.05] but only 5 of the 17 low BDI subjects [P(5/17) < 0.05]
showed a negative post-error adjustment effect (= Accura-
- Accuracy;\ﬂer correct trials)/ X = 577/ p

CYafter incorrect trial

< 0.05.

Conflict-adaptation effect: Performance for
incompatible trials following compatible vs.
incompatible trials

For both RT and accuracy, no significant results emerged
(all F < 1.19, all P > 0.25). Additionally, no significant effects
emerged when the control analyses of preceding compati-
bility were restricted to post-correct trials (all F(1,32) < 1.77,
all P > 0.19). Thus, high and low BDI subjects did not differ
in their behavioral adjustment following incompatible trials
(conflict-adaptation effect: £(32) < 1.10, P > 0.30; Table I).

Correlations Between Behavioral Measures and
the Self-Report Measures of Mood

For high BDI subjects, Pearson correlations were run be-
tween behavioral measures (compatibility, post-error adjust-
ment, and conflict-adaptation effects) and self-report mea-
sures of mood (MASQ subscales). (For low BDI subjects, the
restricted range on the self-report measures prevented these
analyses.) When considering RT, no significant correlations
emerged (all P > 0.12). When considering accuracy, the
post-error adjustment effect was negatively correlated with
the Anhedonic Depression score (r = —0.58, P < 0.015; Fig.
3A) and with the General Depression score (r = —-0.50, P
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Figure 2.

A: Mean accuracy (and SE) after incorrect and correct trials for
high BDI (n = 17) and low BDI (n = 17) subjects. B: Individual
scores for the post-error adjustment (Laming) effect [Accu-
FaCy after incorrect trial — Accurac)’Afcer correct crials] for low (gray
triangles) and high (dark circles) BDI subjects. To eliminate
potential overlap between the post-error adjustment and con-
flict adaptation effects, values were derived from trials subse-
quent to incompatible trials.

< 0.05; Fig. 3B), whereas no reliable correlations emerged
when considering the Anxious Arousal (r = —0.16, ns) or
General Anxiety Scores (r = —0.27, ns). No significant cor-
relations emerged between the MASQ scores and the com-
patibility (all [r| < 0.34, all P > 0.17) or the conflict-adapta-
tion (all || < 0.32, all P > 0.21) effect.

Because the post-error adjustment effect is computed as [Ac-
CUraCYafter incorrect trial — Accur ACY after correct t-rials]l these correla-
tions suggest that the higher the depressive symptoms, the
lower the accuracy after incorrect trials compared to correct
trials. Consistent with this interpretation, for high BDI subjects
a negative correlation was observed between the Anhedonic
Depression score and the accuracy after incorrect (r = —0.61, P
< 0.01; Fig. 3C) but not correct (r = —0.31, P > 0.20) trials. The
correlations involving incorrect and correct trials were signifi-
cantly different (Z = -1.94, P < 0.05) [Meng et al., 1992].
Similarly, for high BDI subjects a significant negative correla-
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Scatterplot and Pearson’s correlation between (A) the post-error
adjustment (Laming) effect and the MASQ Anhedonic Depression
scores; (B) the post-error adjustment (Laming) effect and the
MASQ General Depression scores; (C) the mean accuracy after

tion emerged between the General Depression score and accu-
racy after incorrect (r = —0.50, P < 0.05; Fig. 3D) but not correct
(r = -0.24, P > 0.30) trials. Yet these correlations were not
significantly different (Z = —-1.60, ns).

To assess the specificity of the link between depressive
symptoms and diminished post-error adjustment effect, hier-
archical regression analyses predicting the post-error adjust-
ment effect (calculated with accuracy scores) were performed.
In the first, trait negative affect (NA) score was entered in a first
step followed by the Anhedonic Depression score. In the sec-
ond analysis, the MASQ General Anxiety scores were entered
first, Anxious Arousal scores entered second, and Anhedonic
Depression scores were entered last. The third analyses tested
whether the Anhedonic Depression scores predicted the post-
error adjustment effect after controlling for General Anxiety,
Anxious Arousal, and trait NA scores. Results showed that the
Anhedonic Depression scores continued to explain unique
variance in the post-error adjustment effect when controlling
for trait NA scores, AR? = 0.27, AF(1,14) = 6.72, P < 0.025, both
MASQ anxiety scales, AR? = 0.27, AF(1,13) = 5.59, P < 0.035, or
all three measures of anxiety/negative affect, AR? = 0.25,
AF(1,12) = 5.08, P < 0.045.

incorrect trials and the Anhedonic Depression scores; and (D) the
mean accuracy after incorrect trials and the General Depression
scores. High BDI subjects only (n = 17).

Baseline EEG Data
ANOVA analyses

Contrary to our prediction, the ANOVA conducted on
theta current density with Brodmann Area (BA25, BA24S,
BA32S, BA23, BA31) and Group as factors revealed no
significant effects involving Group (all F < 2.69, all P
> 0.10). For gamma, the main effect of Brodmann Area
(F(4,124) = 194.81, P < 0.001), and most importantly, the
Group X Brodmann Area interaction (F(4,124) = 6,21,
Greenhouse-Geisser € = 0.35, P < 0.01) were significant.
Post-hoc t-tests (Fig. 1C) revealed that, compared to low
BDI subjects, high BDI subjects had higher gamma current
density in the posterior cingulate cortex (BA23: t(31)
= 2.20, P < 0.035; BA31: £(31) = 2.66, P < 0.015) but lower
gamma current density in BA25 (#(31) = -2.50, P < 0.020);
groups did not differ in BA24S (¢(31) = -1.46, P > 0.15) or
BA32S (t(31) = -1.63, P > 0.10). Highlighting the fre-
quency specificity of the results, identical 2 X 2 X 2
ANOVAs performed on delta (1.5-6 Hz), alphal (8.5-10
Hz), alpha2 (10.5-12 Hz), betal (12.5-18 Hz), beta2
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(18.5-21 Hz), and beta3 (21.5-30 Hz) revealed no reliable
effects involving Group (all F < 2.03, all P > 0.15).

To investigate with more precision whether dysfunctional
gamma activity was localized to cognitive or affective sub-
divisions of the ACC, a 3-way ANOVA with BA (BA24,
BA32), ACC subdivision (affective, cognitive), and Group as
factors was run. Apart from the main effects of BA and ACC
subdivision and a significant BA X ACC subdivision interac-
tion (all F(1,31) > 22.53, all P < 0.001), the only other
significant result was the Group X ACC subdivision interac-
tion (F(1,31) = 7.49, P < 0.010). Post-hoc tests (Fig. 1D)
clarified that, compared to low BDI subjects, high BDI sub-
jects had significantly lower gamma activity in the affective
(BA24: #(31) = -2.88, P < 0.007; BA32: #331) = -2.19, P
< 0.040) but not cognitive (BA24': P > 0.15; BA32': P > 0.30)
subdivisions of the ACC. As above, analogous 3-way ANO-
VAs run separately for delta, theta, alphal, alpha2, betal,
beta2, or beta3 current density revealed no reliable effects
involving Group (all F < 2.69, P > 0.10).

Regression analyses

For low BDI subjects, the first analysis predicted the post-
error adjustment effect (calculated with accuracy scores), with
gamma current density in the cognitive ACC subdivisions
(BA24', BA32') entered as the first predictor followed by
gamma current density in the affective ACC subdivisions
(BA24). As expected, the post-error adjustment effect was not
significantly predicted by gamma current density in the cog-
nitive subdivisions (BA24": B = -0.25; BA32": B = 0.07; ns).
However, pre-task gamma activity within the affective subdi-
vision of the ACC (BA24) was a significant predictor of the
post-error adjustment effect even after removing the variance
associated with gamma activity within BA24" and BA32' (3
= 0.68; AR*> = 0.31, AF(1,12) = 5.72, P < 0.035), as shown in
Figure 4. For high BDI subjects, the relation between BA24
gamma activity and the post-error adjustment effect was re-
versed. Thus, gamma within the affective subdivision of the
ACC was a nearly significant negative predictor of this effect (3
= -0.51; AR* = 0.20, AF(1,13) = 3.36, P = 0.090) after removing
the variance associated with gamma activity within BA24'" (8
= 0.20, ns) and BA32' (B = —-0.18, ns).

For both the low and high BDI subjects, regression anal-
yses testing whether activity in the cognitive ACC subdivi-
sion predicted the compatibility or conflict-adaptation ef-
fects (calculated with both RT and accuracy scores) after
controlling for the activity in the affective ACC subdivision
were nonsignificant (all AF(1,13) < 2.17, all P > 0.15).

Theta-gamma functional coupling

Apart from BA25 (r = 0.24, ns), all correlations between
theta and gamma current density within a given cluster
were significant (BA23: r = 0.53; BA24: v = 0.59; BA31: r
= 0.51; BA32: r = 0.51; all P < 0.002; n = 33).
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Figure 4.

Scatterplot and regression slope between the post-error adjust-
ment (Laming) effect and (standardized) residuals of the gamma
current density in the affective ACC subdivision (BA24) after
removing variance associated with the cognitive ACC subdivision
(BA24' and BA32'). The Pearson’s correlation between the post-
error adjustment effect and BA24 gamma residuals is r = 0.81, P
< 0.005. Low BDI subjects only (n = 16).

DISCUSSION

The present study had two related objectives. First, using
an experimental task allowing us to independently assess
conflict monitoring and behavioral adjustments after errors,
we aimed to investigate with more precision putative mech-
anisms underlying executive dysfunctions in subjects with
elevated depressive symptoms. Second, we tested whether
resting EEG activity within specific territories of the ACC
assessed before the task predicted performance on the Erik-
sen task, and more importantly, whether specific dysfunc-
tions in such ACC regions would explain task performance
deficits in subjects with elevated depressive symptoms.

The following findings emerged. First, unlike subjects
with low BDI scores, subjects with elevated depressive
symptoms showed lower accuracy in trials following errors
than trials following correct responses (i.e., they had a sig-
nificantly reversed post-error adjustment effect); compared
to low BDI subjects, they also had significantly lower accu-
racy after incorrect, but not correct, trials. Further highlight-
ing the specificity of this finding, high and low BDI subjects
did not differ in their overall RT and accuracy scores, sug-
gesting the absence of general dysfunctions in high BDI
subjects. The two groups also did not differ in their behav-
ioral adjustments during or following high-conflict (incom-
patible) trials (Eriksen and Gratton effects), suggesting that
high BDI subjects had intact conflict monitoring abilities and
were able to recruit cognitive control to overcome high-
conflict situations. Second, among the high BDI subjects the
post-error adjustment effect was negatively correlated with
the Anhedonic Depression and the General Depression
scores of the MASQ. These results suggest that the higher
the depressive symptoms, the lower the accuracy after er-
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rors. Regression analyses further clarified that Anhedonic
Depression scores continued to explain unique variance in
the post-error adjustment effect even after controlling for
various measures of anxious symptoms and distress, sug-
gesting that the findings were specific to depressive symp-
toms and not due to general psychopathology. Third, mir-
roring the behavioral findings of abnormal responses to
errors despite intact conflict monitoring abilities, high BDI
subjects had significantly reduced EEG gamma current den-
sity before the task within affective (rostral; BA24, BA25,
BA32) but not cognitive (dorsal; BA24', BA32') subdivisions
of the ACC. Fourth, for low, but not high, BDI subjects,
pre-task resting gamma activity within the affective ACC
subdivision (BA24) was a significant predictor of the post-
error adjustment effect even after controlling for gamma
activity within the cognitive ACC subdivisions. This latter
finding extends a recent report that gamma band response
over frontocentral regions during an unrelated task pre-
dicted later performance in a variety of neuropsychological
tests probing the frontal lobe, including working memory
and executive functioning (Karakas et al., 2003). Finally,
consistent with animal and human findings of functional
coupling between theta and gamma activity [Bragin et al.,
1995; Burgess and Ali, 2002; Duzel et al., 2003; Fell et al.,
2003; Hajos et al., 2003; Penttonen et al., 1998; Schack et al.,
2002] and reports of concurrent oscillations at theta and
gamma frequencies in various limbic/prelimbic regions
[Chrobak and Buzsaki, 1998; Fellous and Sejnowski, 2000;
Fischer et al., 2002], these two EEG rhythms were positively
and significantly correlated within the ACC.

Physiologically, decreased resting gamma current density
in subjects with elevated depressive symptoms can be inter-
preted as a marker of decreased tonic activity in rostral ACC
regions. This interpretation is based on a broad range of
evidence, including human intracortical EEG findings of: (1)
increased gamma activity during various mental processes
[perception: Rodriguez et al., 1999; learning: Miltner et al.,
1999; motor responses: Crone et al., 1998; memory: Fell et al.,
2001]; (2) dose-dependent decreases of gamma activity dur-
ing anesthesia [Uchida et al., 2000]; and (3) systematic de-
creases in gamma activity throughout the sleep/wake cycle
(highest during wakefulness, intermediate during REM
sleep, and lowest during slow wave sleep [Gross and Got-
man, 1999]). Consistent with the notion that gamma is a
direct indicator of activation, a recent study using concur-
rent EEG and PET measurements found that the gamma
band had the highest number of positive correlations be-
tween current density and glucose metabolism [Oakes et al.,
2004]. From a functional perspective, gamma oscillations are
assumed to reflect large-scale integration of and synchrony
among widely distributed neurons [Konig et al., 1995; Mann
and Paulsen, 2005]. Accordingly, decreased resting gamma
activity may highlight putative dysfunctional coupling and
connectivity of underlying neuronal networks leading to
impaired rostral ACC function, and, ultimately, to post-error
adjustment deficits.

Candidate Mechanisms Underlying Abnormal
Response to Errors in Depression

Behavioral studies have consistently shown that humans
utilize errors and negative feedback to monitor their perfor-
mance and adjust behavior accordingly [Laming, 1968; Rab-
bitt, 1966a,b]. In a seminal study, Rabbitt [1966b] found that
subjects can detect and correct errors without receiving any
external feedback concerning their performance, indicating
that internal monitoring is sufficient to correct behavioral
responses.* Together with prior findings of abnormal re-
sponses to negative feedback and oversensitivity to errors in
clinical depression [Beats et al., 1996; Elliott et al., 1996,
1997b; Murphy et al., 2003; Steffens et al., 2001], the present
findings suggest that such adaptive processes following er-
rors are impaired in depression. Specifically, depressed and
dysphoric subjects appear to be less efficient in utilizing the
information conveyed by errors to monitor and guide sub-
sequent performance. Unlike prior studies, however, the
present findings offer initial insight about putative mecha-
nisms underlying abnormal response to errors. Thus,
whereas prior studies could not disentangle whether abnor-
mal responses to errors was due to inefficiency in monitor-
ing performance vs. abnormal affective reactions to per-
ceived failure, the present behavioral and EEG findings
suggest that the latter mechanism may be responsible. That
is, at least in a nonclinical population of subjects with ele-
vated depressive symptoms, conflict monitoring and dorsal
ACC regions subserving this function were intact, whereas
behavioral adjustments after errors and rostral ACC activity
known to subserve error detection were dysfunctional.

Although the behavioral and EEG data nicely converge
toward this interpretation, it is important to stress that the
present version of the Eriksen task with target degradation
was only partially successful in triggering conflict monitor-
ing. Indeed, with the exception of the classic finding of RT
slowing for incompatible trials, the compatibility (Eriksen)
and conflict-adaptation (Gratton) effects were not signifi-
cant, representing a main limitation of the present study.
One possibility is that the target degradation used in this
task required greater resources for visual perception at the
expense of cognitive control, making the task not sensitive
enough for triggering conflict monitoring. Moreover, the
balanced (50%/50%) proportion of compatible and incom-
patible trials may have also prevented the development of a

“Consistent with this notion, high BDI subjects showed in the
present study a negative correlation between post-error adjustments
(calculated with accuracy scores) and scores on the post-task ques-
tionnaire items, “How well do you think you did on the task” (from
1, “very well” to 5, “very poor”; p = —=0.65, n = 17, P < 0.005) and
“How satisfied are you with your performance” (from 1, “very
satisfied” to 5, “very unsatisfied”; p = —0.68, n = 17, P < 0.005).
Thus, the bigger the dissatisfaction with own performance and the
more negative evaluation of own performance, the lower the post-
error adjustments. These findings suggest that the subjects were
aware of committing errors.
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powerful prepotent responses leading to increased conflict.
These methodological limitations could explain the lack of
correlation between activity in the cognitive ACC subdivi-
sion and the Eriksen/Gratton effects. In sum, whereas the
present behavioral and EEG findings suggest that affective
reactions to errors and their underlying neural correlates
were dysfunctional in subjects with elevated depressive
symptoms, future studies utilizing tasks capable of eliciting
simultaneously strong conflict monitoring and error com-
mission will be required for testing the precise mechanisms
underlying executive dysfunction in depression. More im-
portantly, studies measuring brain activity while partici-
pants are engaged in similar paradigms will be needed for
conclusive interpretations about links between ACC dys-
function and abnormal responses to errors. Specifically, to
more directly assess brain mechanisms underlying behav-
ioral adjustments after errors in depression, it would be
particularly interesting to investigate two event-related po-
tential (ERP) components that have been implicated in ac-
tion monitoring, the error-related negativity (ERN) and
feedback-related negativity (FRN). These negative-going
ERP waveforms occur maximally over frontocentral scalp
regions after error commission and error feedback, respec-
tively. Critically, rostral ACC regions have been implicated
in their generation [e.g., van Veen and Carter, 2002], possi-
bly through oscillatory processes in the theta range [Gehring
and Willoughby, 2004; Luu et al., 2004]. Based on the present
EEG findings as well as prior evidence emphasizing a func-
tional coupling between theta and gamma oscillations (see
above), it would be interesting to assess the putative role of
gamma oscillations in the generation of the ERN and FRN.
Consistent with our findings of abnormal error processing in
high BDI subjects, ERN and FRN have been recently found
to be abnormal in depression [Ruchsow et al., 2004; Tucker
et al., 2003].

Finally, we note that, in the present study, no formal
clinical interviews (e.g., Structured Clinical Interview for the
DSM-1V, SCID) or detailed personality evaluations were
performed to assess current psychopathology, family his-
tory of psychopathology, medication use, and personality
traits. Because family history of psychopathology and per-
sonality traits (e.g., neuroticism) may partially contribute to
individual differences observed between high and low BDI
subjects, future studies should assess these important vari-
ables.

Limitations notwithstanding, the present findings indi-
cate—we believe for the first time—that abnormal reactions
to errors in depression are associated with reduced tonic
activity within the rostral ACC, a brain region known to be
implicated in error processing. More generally, the finding
that post-error adjustments were predicted by resting activ-
ity within the rostral ACC sheds new light on brain sub-
strates underlying individual differences in action monitor-
ing. Collectively, the present and prior findings [Elliott et al.,
1997b; Murphy et al., 2003] suggest that abnormal responses
to perceived failure (errors) may be an important link be-

tween cognition and emotion affecting behavioral perfor-
mance in depression that warrants further empirical inquiry.

Functional Role of the Rostral ACC

Intriguingly, this selective impairment in adjusting behav-
ioral performance immediately after committing an error
was accompanied by decreased baseline (i.e., pre-task) ac-
tivity in ventral and rostral areas of the ACC (BAs 24/25/32)
in the absence of differences in more dorsal regions (BA24'/
BA32'). In light of its role in monitoring conflicting response
demands, detecting errors, and evaluating the emotional
significance of events, the ACC has been considered a site of
convergence and integration between affective and cogni-
tive processes [Bush et al., 2000; Mayberg, 1997; Davidson et
al., 2002]. The rostral ACC, in particular, by acting as an
interface between limbic/prelimbic and frontal regions, is
assumed to integrate salient affective and cognitive informa-
tion, such as that derived from error processing, and mod-
ulate attentional processes within more dorsal (cognitive)
subdivision accordingly. In depression, such convergence of
affective and cognitive processes as well as executive func-
tions governing adaptive task performance may be dysfunc-
tional, since decreased ACC activity has been reported dur-
ing resting periods [Bench et al., 1993; Drevets et al., 1997;
Mayberg et al., 1994], executive tasks [Bremner et al., 2004;
George et al., 1997; Okada et al., 2003], and affective manip-
ulations [Beauregard et al., 1998; Kumari et al., 2003; Mitter-
schiffthaler et al., 2003]. Thus, translating a large neuroim-
aging literature to the present findings, decreased rostral
ACC activity in subjects with elevated depressive symptoms
points to disturbed affective and/or motivational responses
to errors [Bush et al., 2000; Gehring and Willoughby, 2002;
Luu et al., 2003; Tucker et al., 2003; Whalen et al., 1998] and
provides a possible physiological explanation for prior neu-
ropsychological findings of abnormal responses to negative
feedback or oversensitivity to errors and perceived failure
[Beats et al., 1996; Elliott et al., 1996, 1997b; Murphy et al.,
2003; Steffens et al., 2001].

Interestingly, in addition to decreased gamma activity
within the rostral ACC, high BDI subjects had increased
gamma activity within the posterior cingulate cortex (BAs
23/31), a finding, however, that was not hypothesized.
Based on reports of increased posterior cingulate/retrosple-
nial activation during (1) trauma-related experiences [Fi-
scher et al., 1996]; (2) somatic arousal [Critchley et al., 2000b];
and (3) processing of arousing stimuli [Critchley et al.,
2000a], posterior cingulate hyperactivity in high BDI sub-
jects may be associated with increased negative affect and
somatic arousal. Notably, in clinical depression the posterior
cingulate cortex has been found to be hypoactive during
resting periods [e.g., Mayberg et al., 2000; Pizzagalli et al.,
2002] and cognitive challenges [Elliott et al., 1997a], a pattern
that normalized after symptom remission [Martin et al.,
2001; Mayberg et al., 2000]. In light of these findings, poste-
rior cingulate hypoactivity may thus be a state marker of
clinical depression, particularly in patients with deficient
autonomic/somatic arousal; subjects with elevated levels of
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depressive symptoms, on the other hand, may show in-
creased posterior cingulate activity, potentially due to ele-
vated physiological arousal and increased negative affect.
Future studies are needed to test these conjectures.

Potential Relevance to Mechanisms Underlying
Treatment Response in Major Depression

Of note, prior findings in clinically depressed patients
have shown that increased rostral ACC activity before treat-
ment was a predictor of treatment response [Awata et al.,
2002; Davidson et al., 2003; Mayberg, 1997; Pizzagalli et al.,
2001; Saxena et al., 2003; Wu et al., 1999] (Fig. 1). Based on
evidence suggesting that the affective (rostral) ACC subdi-
vision is critical for assessing the presence of possible con-
flicts between the current functional state of the organism
and cues that are motivationally and emotionally salient, we
speculated that rostral ACC hyperactivation in treatment
responders might reflect an increased sensitivity to affective
conflict that may eventually foster treatment response [Da-
vidson et al., 2002; Pizzagalli et al., 2001]. Successful affective
conflict monitoring would in turn lead to a call for further
processing and recruitment of additional cognitive control
(likely provided by dorsolateral PFC regions) to resolve the
conflict. The present finding of a lawful relation between
resting rostral ACC activity and post-error behavioral ad-
justments is not only consistent with this speculation but
provides initial insight into putative mechanisms underlying
treatment response. As a result, we propose that, in eventual
treatment responders, rostral ACC hyperactivity may foster
the individual’s ability to monitor the outcome of actions
and adjust behavior when expected outcomes are violated.
In treatment-nonresponders, adaptive action monitoring re-
lying on the rostral ACC may be dysfunctional, particularly
after negative outcomes. Future studies in clinical samples
are clearly needed to test this hypothesis and the precise
functional significance of rostral ACC hyperactivity, partic-
ularly since the rostral ACC regions associated with treat-
ment response and error detection only partially overlap
(Fig. 1A).

In summary, cognitive theories of depression [Beck et
al., 1979] have suggested that people vulnerable to de-
pression show enduring negative cognitive schemata and
negative processing biases. Depressed and dysphoric sub-
jects, particularly those with dysfunctional attitudes, have
been found to display: amplification of the significance of
failure [Wenzlaff and Grozier, 1988]; difficulty in sup-
pressing thoughts associated with failure [Conway et al.,
1991]; increased self-focus after failure feedback [Green-
berg and Pyzszczynski, 1986]; and increased depressed
mood after occurrence of a negative event [Abela and
D’Alessandro, 2002] or negative social feedback [Hen-
riques and Leitenberg, 2002]. Abnormal affective/motiva-
tional response to errors or perceived failures, as shown
in the present study, is not only consistent with these
findings but deepens our understanding of candidate
mechanisms and brain correlates underlying negative
processing biases in depression.
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