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Abstract: We propose a novel cerebral source extraction method (functional source separation, FSS) starting from
extra-cephalic magnetoencephalographic (MEG) signals in humans. It is obtained by adding a functional constraint
to the cost function of a basic independent component analysis (ICA) model, defined according to the specific
experiment under study, and removing the orthogonality constraint, (i.e., in a single-unit approach, skipping
decorrelation of each new component from the subspace generated by the components already found). Source
activity was obtained all along processing of a simple separate sensory stimulation of thumb, little finger, and
median nerve. Being the sources obtained one by one in each stage applying different criteria, the a posteriori
“interesting sources selection” step is avoided. The obtained solutions were in agreement with the homuncular
organization in all subjects, neurophysiologically reacting properly and with negligible residual activity. On this
basis, the separated sources were interpreted as satisfactorily describing highly superimposed and interconnected
neural networks devoted to cortical finger representation. The proposed procedure significantly improves the
quality of the extraction with respect to a standard BSS algorithm. Moreover, it is very flexible in including different
functional constraints, providing a promising tool to identify neuronal networks in very general cerebral processing.
Hum Brain Mapp 27:925–934, 2006. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

Physiological activity in the brain can be evaluated by
noninvasive techniques based on measurement of the elec-
tric or magnetic field generated by electrical neuronal cur-
rents (e.g., electroencephalogram [EEG]; magnetoencephalo-
gram [MEG]). Such neurophysiological techniques, by
allowing direct investigation of neuronal pool activity when
at least part of the constituent cells fire synchronously, ob-
tain measures with the same time resolution as the cerebral
processing itself. The crucial problem is to gain access to the
inner neural code starting from the extracranial recorded
EEG and MEG raw signals: recorded cerebral signals related
to significant activity are mixed and embedded in unstruc-
tured noise and in other physiological signals nonrelevant to
the desired observation. The main approach has been, after
applying procedures to enhance signal-to-noise ratio (e.g.,
stimulus-related averaging) to solve the so-called inverse
problem, i.e., to use Maxwell’s equations to calculate spatial
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distribution of the intracerebral currents starting from the
magnetic or electric field detected in a wide enough area of
the scalp surface. This problem does not permit a unique
solution. For this reason, it is necessary to acquire supple-
mentary information [Del Gratta et al., 2001], i.e., to define
the parameters of the forward problem, to obtain position,
intensity, and direction of the modeled cerebral currents
(single and multiple dipoles [Scherg and Berg, 1991], music
[Mosher et al., 1992], RAP music [Mosher and Leahy, 1999],
minimum norm estimates [Hämäläinen and Ilmoniemi,
1994], low-resolution brain electromagnetic tomography
(LORETA) [Pascual-Marqui et al., 1995], and synthetic aper-
ture magnetometry (SAM) [Vrba and Robinson, 2001]. Cur-
rently, no universally accepted criteria exist to define ade-
quate model except in very specific cases.

In the last decade, a different approach has been intro-
duced in the MEG/EEG community, based on exploiting
statistical properties of sources composed in the observed
signals: extraction of information from such signals amounts
to blind separation of sources in presence of noise and
interferences. To tackle such a task, blind source separation
(BSS) and particularly independent component analysis
[ICA; Hyvärinen et al., 2001; Cichocki and Amari, 2002]
were proposed.

ICA assumes that sources are statistically mutually inde-
pendent; to extract them from the recorded mixture a mea-
sure of non-Gaussianity is maximized (e.g., kurtosis) since,
by means of the Central Limit Theorem, it has been shown
that a linear transformation of the data that maximizes non-
Gaussianity leads to independence as well.

Several studies have proved its effectiveness in removing
artifacts and extracting relevant activations from MEG and
EEG signals [Barbati et al., 2004; Ikeda and Toyama, 2000;
Makeig et al., 1996; Vigario et al., 2000; for up-to-date re-
views see Cichocki, 2004; Choi and Cichocki, 2005; James
and Hesse, 2005]. BSS and ICA algorithms do not solve the
inverse problem but they estimate complete source time
courses for task-related features description and provide
information that could be used to estimate the source posi-
tion in a successive step.

A first challenging issue in BSS neurophysiologic applica-
tions is the choice of the contrast function used to extract
sources: the non-Gaussianity assumption in the ICA model
and the imposition of an orthogonality constraint between
extracted components (ICs) produce source estimates that
are active during short time intervals with minimal overlap.
The ICA technique therefore seems to be effective for sepa-
rating neuronal signals corresponding to sources that exhibit
burst behavior, coming from spatially distinct compact
sources. The magnetic field patterns of these ICs are close to
those produced by isolated current dipoles [Makeig et al.,
2004; Moran et al., 2004]. In this way, ICA achieves both
temporal and spatial separation of source activity and can
significantly enhance imaging accuracy [Moran et al., 2004;
Zhukov et al., 2000]. ICA, however, is insensitive to the time
ordering of the data points; other BSS algorithms have been
claimed recently as more suitable for cerebral source sepa-

ration by exploiting second-order statistics of the source
signals to decompose the recorded mixture, e.g., minimizing
a set of time-lagged cross-correlations [Tang et al., 2004]. At
present, many different BSS packages are available, imple-
menting both high-order ICA algorithms and second-order
BSS techniques; validation of obtained results have to be
investigated case by case.

A second key point in applications is how to assign the
neurophysiological and neuroanatomical meaning and in-
terpretation to the extracted sources, because often “inter-
esting” characteristics are not separated effectively in a sin-
gle component but can remain partially mixed or split into
more than one component. Usually, a post-extraction anal-
ysis of spectral and spatial IC properties is applied to select
the relevant ones, leading to the definition of clusters of
“similar” components with respect to some criteria [Him-
berg et al., 2004; Barbati et al., 2005; Makeig et al., 2004]. The
necessity of this post-processing is the consequence of the
blindness of the approach, because BSS/ICA does not take
information into account other than the statistics of the data.
The advantage is the generality of the assumptions that
make these techniques powerful and flexible tools with re-
spect to hypothesis-driven procedures, which are highly
dependent on the accuracy of a predefined model/template.

Sometimes, however, quite accurate information on some
parameters of the signals that we want to separate is known:
for this reason semi-blind ICA algorithms have been devel-
oped recently. In Papathanassiou and Petrou [2002], the
prior knowledge of the autocorrelation function of a source
is used to extract it first, using a gradient optimization
scheme. In Lu and Rajapakse [2005], the authors proposed a
constrained optimization by means of Lagrange multipliers;
this algorithm (cICA) allowed accounting for rough knowl-
edge of the time-course of a functional magnetic resonance
imaging (fMRI) source to extract it first. Similar results were
obtained in Calhoun et al. [2005] where a semi-blind ICA
approach, derived from the INFOMAX algorithm [Bell and
Sejnowski, 1995], was developed.

The Bayesian approach has been presented as a compre-
hensive theoretical framework for including prior knowl-
edge about sources [Knuth, 1999]; a family of denoising
source separation algorithms (DSS) has been introduced
recently, ranging from almost blind to highly specialized
source extraction, employing additional information [Särelä
and Valpola, 2005].

On this route, some of the authors have developed a
semi-blind ICA algorithm that makes it possible to introduce
different functions as constraint, allowing also nondifferen-
tiable ones. This procedure has been demonstrated effective
on artificial and real fMRI data [Valente et al., 2005].

In the present work, the procedure developed by Valente
et al. [2005] is exploited to extract cerebral sources including
directly in the separating algorithm information about neu-
ronal activation properties. To assess the efficiency of the
approach, a very simple experiment was considered: MEG
cerebral activity was recorded during separate little finger,
thumb, and median nerve galvanic stimulation. To extract
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sources corresponding to single finger cortical representa-
tion during different activation states, a proper functional
constraint was introduced within the separating algorithm
and applied to data recorded during the alternated stimu-
lation of thumb, little finger, and median nerve. A further
step was then made, removing the orthogonality constraint.
In fact, in the specific and restricted cortical region of inter-
est, neural networks are highly spatially interconnected and
superimposed and temporal overlap of finger sources acti-
vation could be reasonably hypothesized, particularly dur-
ing nerve stimulation.

Both the proposed separating algorithm versions, defined
respectively as functional component analysis (FCA, the
orthogonal one) and functional source separation (FSS, the
non-orthogonal) were compared to a standard ICA algo-
rithm [fastICA; Hyvärinen et al., 2001]. Performances were
judged based on the extracted sources spatial positions and
functional activation properties during the three different
stimuli.

MATERIALS AND METHODS

Experimental Setup

Fifteen healthy volunteers (mean age, 31 � 2 years, seven
females and eight males) were enrolled for the study.

Somatosensory evoked fields (SEFs) were carried out in
analogy with standard and widely accepted procedures
[Hari et al., 1984]. In brief, measurements were performed
inside a magnetically shielded room (Vacuumschmeltze
GmBH), using a 28-channel system [Foglietti et al., 1991;
Tecchio et al., 1997], the active channels being distributed
regularly on a spherical surface (13.5 cm of curvature radius;
out of 28 channels, three channels were balancing magne-
tometers devoted to noise reduction) and covering a total
area of about 180 cm2. The noise spectral density of each
magnetic sensor was 5–7 fT�Hz at 1 Hz.

The right little finger, thumb, and median nerve at wrist
were separately stimulated for three minutes by 0.2-msec
electric pulses, with an interstimulus interval of 631 msec.
Intensities were set at about twice the subjective threshold of
perception for fingers (via ring electrodes) and just above
motor threshold, i.e., thumb twitch, for the nerve at the wrist
(via surface disks). Brain magnetic fields were recorded via
a single positioning on the hemisphere contralateral to the
stimulated side, by centering the recording apparatus over
the C3 site of the International 10–20 electroencephalo-
graphic system.

The entire MEG procedure (preparation and recording)
lasted about 30 min; subjects had signed an informed con-
sent and the experimental protocol followed the standard
ethical directives of the declaration of Helsinki.

Data were filtered through a 0.16–250-Hz bandpass and
gathered at 1,000-Hz sampling rate for offline processing,
resulting for each subject in a data matrix of size 25
� 540,000 points.

ICA with Prior Information

ICA applies to blind decomposition of a set of signals X
that is assumed to be obtained as a linear combination
(through an unknown mixing matrix A) of statistically in-
dependent non-Gaussian sources S:

X � AS (1)

Sources S are estimated (up to arbitrary scaling and per-
mutation) by independent components Y as:

Y � WX (2)

where the unmixing matrix W is to be estimated along with
the ICs.

Of course, the decomposition problem (equation 2) has
more unknowns that equations, so that the estimation relies
on additional information, namely the statistical indepen-
dence of sources. ICA can therefore be viewed as an opti-
mization process that maximizes independence as described
indirectly by a suitable contrast function.

Biomedical signals can often be assumed as generated
through a linear mixing process as equation (1), where in-
dependent sources are supposed to model activities (of the
brain in this case) that originate from separate causes. In fact,
strict independence of such sources is probably in many
cases unrealistic, but using such hypothesis has proved very
effective in many contexts, even if a posteriori we may
observe that perfect independence is never achieved.

In Valente et al. [2005], a modified ICA procedure has
been proposed that explicitly uses additional information to
bias the decomposition algorithm towards solutions that
satisfy physiological assumptions, instead of extracting
sources only based on their signal’s statistical independence.
The method is based on optimizing a modified contrast
function:

F � J � �H (3)

where J can be any function normally used for ICA (in our
case kurtosis), whereas H accounts for the prior information
we have on sources. Parameter � is used to weigh the two
parts of the contrast function. If � is set to zero, maximiza-
tion of F leads to pure independence. The optimization is
performed by simulated annealing [Kirkpatrick et al., 1983]
so that function H can have any form (e.g., it does not need
to be differentiable). Performance of the algorithm can be in
general quite sensitive to the choice of �, as the optimization
is driven by different criteria and one of the two might
prevail excessively (multiobjective optimization). For this
reason, it is often useful to choose a saturating H function
that is active only in an appropriate vicinity of good solu-
tions. Such strategy actually amounts to performing con-
strained optimization, where H imposes a restriction to a
region of search space where J is optimized freely. Further
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details on the implemented version of the simulated anneal-
ing optimization are given in Appendix A.

Functional Constraints

To identify neural networks devoted to individual finger
central representation, the reactivity to the stimuli was taken
into account. It was defined as follows: the evoked activity
(EA) was computed separately for the three sensorial stim-
ulations by averaging signal epochs centered on the corre-
sponding stimulus (EAL, little finger; EAT, thumb; EAM,
median nerve).

The reactivity coefficient (Rstim) was then computed as:

Rstim � �
20

40

�EAstim�t��dt � �
�30

�10

�EAstim�t��dt (4)

with stim � T, L, M and t � 0 corresponding to the stimulus
arrival. The time interval ranging from 20 to 40 msec in-
cludes the maximum activation [Allison et al., 1980; Tecchio
et al., 1997] and the baseline (no response) was computed in
the prestimulus time interval (�30 to �10 msec). The con-
straint function Hstim is then chosen as:

Hstim � 	�Rstim,k� (5)

where

	�Rstim� � � Rstim/k when Rstim � k
1 else (6)

and k is a suitable parameter measuring the required mini-
mum response. In the present application we chose k and �
heuristically, based respectively on subject data characteris-
tics and a preliminary study on a test case. Parameter set-
tings depend on the specific experimental set up; however,
the procedure can be made automatic, as discussed in Ap-
pendix B. The shape of function 
 is such that the constraint
is inactive when response is greater than k, so as to define an
admissible region where the optimization is only driven by
J. Where response is smaller, if � is large enough, H stim

dominates the search. A constrained optimization procedure
therefore is obtained. To estimate the time behavior of the
neural networks devoted to the two finger cortical represen-
tations during different activation states, each functional
source was extracted using data along the entire recording
period, alternating the two fingers and median nerve sepa-
rate stimulation. Details on the parameter settings and algo-
rithm performance are given in Appendix B.

Orthogonal (FCA) and Non-Orthogonal (FSS)
Source Extraction

To separate contributions representing individual fingers,
the proposed FCA procedure was applied as follows: first, a
single component was extracted using the constraint HL and

obtaining the functional component describing the time evo-
lution of the little finger cortical representation: FCL. After
projecting residuals on the orthogonal space with respect to
the extracted component, the procedure was repeated using
HT to obtain FCT, the functional component describing the
thumb source, as independent as possible with respect to the
little finger source. This constraint sequence was motivated
by the fact that thumb representation is physiologically
larger than is the little finger one. By operating in this way,
we therefore meant to favor extraction of the naturally
weaker component first. Operating in reverse order, the little
finger component could not be extracted satisfactorily, be-
cause the orthogonalization almost cancelled it.

Based on this experience, which shows that relevant com-
ponents are not independent (and in particular not uncor-
related) in the second version of the proposed algorithm
FSS, the procedure was repeated identically but the orthogo-
nalization step was skipped, producing a non-orthogonal
functional source estimate for the thumb identification (FST).
The little finger source FSL is virtually identical to FCL. In
this case, the order of extraction is not significant because the
procedure is applied each time to the original data. The
non-orthogonal approach has already been introduced in
the BSS literature [Inki and Hyvärinen, 2002; Yeredor, 2002;
Ziehe et al., 2004], both from a theoretical point of view to
generalize joint diagonalization procedures to the case of a
non-orthogonal diagonalization matrix, and in applications,
particularly in image modeling, to estimate overcomplete
ICA bases (i.e., when the number of sources is greater than
number of mixtures); in a deflationary extraction scheme,
after the estimation of a component, the successive IC is
searched in a space that is “quasi-orthogonal” to the initial
one. In the present work, the non-orthogonal version of the
procedure has been implemented according to consider-
ations about the nature of the neural network under study;
it is well known that finger sources are highly intercon-
nected spatially and superimposed.

Results obtained by FCA and FSS were compared
with ICs estimated by a widely used separating ICA
algorithm (fastICA, freely available at http://www.
cis.hut.fi/projects/ica/fastica/).

Source Localization and Activity
Extraction Comparisons

As a main criterion to evaluate the goodness of extracted
components in representing individual fingers, we observed
their spatial position. To this aim, sources representing little
finger (FCL; FSL) and thumb (FCT; FST) were separately
retroprojected, so as to obtain their field distribution, as
follows:

MEG_recs�asys (7)

where as is the estimated mixing vector (column of matrix A)
for the functional source ys (y � FS, FC, IC; s � T, L) and
MEG_recs are the retro-projection on the sensor channels of
the estimated ys source.
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A moving equivalent current dipole (ECD) model inside a
homogeneous best-fitted sphere was used. ECD coordinates
were expressed in a right-handed Cartesian coordinate sys-
tem defined based on three anatomical landmarks (x-axis
passing through the two preauricolar points directed right-
ward, the positive y-axis passing through the nasion, the
positive z-axis is consequently defined). Only sources with a
goodness-of-fit exceeding 80% were accepted. The field dis-
tribution obtained by retro-projecting only one component is
time invariant up to a scale factor; consequently, the sub-
tending current distribution (ECD position in our case) is
time-independent. The same retro-projection was performed
also for all the fastICA estimated components. To have a
benchmark for finger somatosensory source position, known
markers of signal arrival in the primary sensory cortex,
occurring at around 20 and 30 msec from the stimulus (M20,
M30 [Allison et al., 1991; Hari and Kaukoranta, 1985; Tecchio
et al., 1997]), were calculated by standard procedure of
averaging original MEG channel signals and computing cor-
responding ECDs.

General linear models (GLM) for repeated measures were
estimated to test for differences in source localization and
source reactivity across subjects: as dependent variables re-
spectively, the 3-D coordinates vectors (x, y, z) and 3-D
reactivity vectors (RT, RL, RM) were used, with the two levels
Finger (thumb, little finger) as within-subjects factor. Be-
cause FSL and FCL are practically identical, only FSL has
been considered in the statistical analysis.

To check for the level of residual response to the stimu-
lation after sources extraction, we defined a “discrepancy
response” index as follows:

discr_Rstim �

�
i

�Rstim
MEG � Rstim

MEG_recs�2

�
i

�Rstim
MEG�2 (8)

where, as defined in equation (4), Rstim
MEG is the reactivity index

computed on MEG data during finger stimulation (stim � L,
T) and Rstim

MEG_recs is the reactivity index of reconstructed MEG
data with the s finger source (s � L, T) during its corre-
sponding stimulation; the index i runs upon the four chan-
nels of minimal and maximal amplitude at M20 and M30
latencies. In fact, the dipolar field distribution generated at
these peak latencies are well described by their minimum/
maximum values [Tecchio et al., 2005]. Obtained indices for
little finger and thumb (discr_RL; discr_RT) were computed
and compared between the proposed FCA/FSS procedures
and fastICA.

Basic ICA Model Features Comparison: Non-
Gaussianity and Basis Vectors Angles

As the proposed procedures include in the cost function
physiological constraints, it is interesting to evaluate the
trade-off between non-Gaussianity maximization and the
introduced constrained optimization. For this reason, kurto-

sis values of the FCA, FSS sources, and the corresponding
fastICA components across subjects were compared.

In this way, we could also evaluate how the functional
characteristics of the estimated sources, summarized by the
constraints, go with the non-Gaussianity assumption of the
basic ICA model.

Moreover, as FSS leaves out the basis vector orthogonal-
ity, the angles between FSL and FST basis vectors were
evaluated as an additional indication that the algorithm did
not estimate several times the same components.

RESULTS AND DISCUSSION

Source Localization

Dipole coordinates (x, y, z) were computed from the retro-
projected FCA and FSS components in our 15-subject group.
We have to note that in four subjects localization of the
retro-projected FCT was not possible (variance explained
�0.8, dipole not accepted); instead, localization of the retro-
projected FST was acceptable for all examined subjects (Ta-
ble I).

Factor Finger resulted significant in FSL versus FCT and
versus FST (Table II), corresponding in both cases to the
estimated thumb source significantly lateral, anterior, and
lower with respect to the little finger source, in agreement
with the well-known homuncular finger somatotopy. The
same relative positions were found with M20 and M30 ECD
when stimulating thumb and little finger, respectively (Ta-
bles I, II).

Components obtained by fastICA failed in more than half
of cases (9 of 15) to separate thumb (ICT) and little finger
(ICL) response: in those cases a unique IC was selected that
responded best to both stimulations and localized with more
than 80% of variance explained (ICT;L , Table I). Testing the
6 subjects for whom thumb and little finger response was
separated by fastICA, factor Finger was not significant at the
standard threshold P value of 0.05. Moreover, dipole coor-
dinates of the retro-projected mixed source corresponding to
ICT;L with respect to ICL and ICT were not significantly
different (using Bonferroni post-hoc comparisons, all P val-
ues were greater than 0.05, Table II).

Due to a very poor signal to noise ratio in 3 cases, where
a noise reduction preprocessing algorithm should have been
applied in addition to standard average in the localization
procedure, localization of M20 component was unsuccess-
ful. On the other hand, FSS algorithm source positions were
successfully determined for all 15 examined subjects, even in
the cases of very noisy data. Moreover, it could be noted that
FSL and FST lie in-between their respective M20 and M30
positions (Table I, Fig. 1), in agreement with the constraint
time window definition (see equation 4), which includes
both M20 and M30 latencies.
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Activity Extraction Comparisons

Source reactivity

The activity of the source representing a finger is com-
pared when stimulating the finger itself with respect to
when the other finger or the median nerve is stimulated. To
do this, the above-defined indexes RL, RT and RM describing,
respectively, the responsiveness to little finger, thumb and
median nerve stimulation, were all considered for each of
the three estimated functional components (FSL, FCT, and
FST) and for the selected fastICA ones (ICL, ICT, and ICT;L,
Table I).

Factor Finger resulted significant in FCL versus FCT in the
corresponding stimulation periods, indicating a lower re-
sponse of the FCL with respect to FCT during thumb stim-
ulation and a higher response of the FCL with respect to FCT

during little finger stimulation. The same behavior was ob-
served in comparing FSL versus FST (Table II, Fig. 2), as

expected. A significant difference between the two methods
emerged when considering the contrasts between reactivity
levels in RM versus RT respectively for FCT and FST: only in
this latter a higher evoked activity to the median nerve
stimulation with respect to the thumb stimulation itself was
present, in agreement with the physiology of the hand in-
nervation (paired t test, for FST P � 0.04; for FCT P � 0.68).
In fact, it is well known that stimulating directly a nerve, all
the proprioceptive and the superficial perception fibers of
innervated districts are recruited; therefore, the cerebral
source representing the thumb, innervated by the median
nerve, is expected to be more reactive to the stimulation of
this nerve with respect to the cutaneous stimulation ob-
tained by ring electrodes. Moreover, median nerve stimula-
tion over the motor threshold induces a partial stimulation
of the ulnar nerve (innervating the little finger) and conse-
quently of the little finger proprioceptive and superficial
perception fibers. For this reason, it is not surprising that a

TABLE I. Spatial and reactivity components characteristics

Sources
Successful

cases Explained variance

Position (mm) Reactivity

x y z RL RT RM

FSS
FSL 15 0.95 � 0.04 �33 � 10 6 � 12 99 � 14 12.7 � 4.9 7.7 � 5.6 18.8 � 12
FST 15 0.97 � 0.03 �38 � 10 10 � 13 90 � 10 6.3 � 5.1 13.4 � 4.8 18.3 � 12.6

FCA
FCL 15 0.95 � 0.04 �33 � 10 5 � 12 99 � 13 12.7 � 4.9 7.7 � 5.5 18.9 � 12
FCT 11 0.95 � 0.05 �41 � 10 11 � 12 87 � 11 1.2 � 0.8 10.7 � 3.1 10.0 � 6.0

fastICA
ICL 6 0.96 � 0.04 �36 � 12 9 � 23 96 � 11 7.5 � 5.9 4.4 � 5.1 11.4 � 11.3
ICT 6 0.95 � 0.03 �41 � 14 16 � 43 79 � 20 2.5 � 3.9 6.3 � 2.7 11.1 � 14.2
ICT;L 9 0.93 � 0.08 �39 � 13 7 � 10 97 � 12 7.9 � 3.7 7.3 � 5.1 16.7 � 16.6

MEG data
M20L 12 0.94 � 0.06 �34 � 9 7 � 14 99 � 9
M20T 15 0.96 � 0.02 �42 � 8 11 � 11 91 � 10
M30L 11 0.97 � 0.02 �31 � 8 4 � 10 97 � 9
M30T 12 0.97 � 0.03 �33 � 8 6 � 13 89 � 12

Values are mean � SD. Successful cases, number of subjects with successful localizations (�80%); Position, coordinates of ECDs; Reactivity,
sources reactivity indexes to the three stimulations RL, RT, RM, pure numbers. M20L, M20T, M30L, M30T positions computed on MEG data
are reported for comparison.

TABLE II. Statistical analysis on source positions and reactivity

Sources Subjects

Position (mm)

P

Reactivity

Px y z RL RT RM

FSL (FCL) FCT 11 6 � 12 �4 � 14 14 � 9 0.002 10.8 � 4.8 �5.1 � 3.9 5.8 � 11.1 �0.0001
FST 15 5 � 13 �4 � 14 9 � 12 0.003 6.3 � 4.1 �5.7 � 3 0.4 � 6.2 �0.0001

ICL ICT 6 5 � 17 �7 � 37 18 � 21 0.2 5 � 4.9 �1.8 � 7 0.3 � 19 �0.5
ICT;L ICT

a 9;6 2 � 7 �9 � 14 18 � 8 �0.1 5.3 � 2.3 1.1 � 2.5 5.6 � 7.7 �0.1
ICL

a 9;6 3 � 7 �2 � 14 0 � 8 �0.1 0.4 � 2.3 2.9 � 2.4 5.3 � 7.7 �0.1
M20L M20T 12 9 � 8 �2 � 13 9 � 8 0.001
M30L M30T 11 3 � 5 0 � 11 10 � 8 0.03

Values are mean � SD differences in sources ECDs coordinates and evoked activity indexes RT, RL and RM. Difference in position for M20L

versus M20T and M30L versus M30T are also reported. Results of GLM models evaluating contrasts between sources in position and
reactivity across subjects are summarized in the corresponding P value columns (Pillai’s trace within-subject effect).
a Indicates different groups of subjects tested in the fastICA case (ANOVA test with Bonferroni correction for multiple comparisons).
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higher reactivity to the median nerve stimulation was also
found for FSL (RM versus RL; paired t test P � 0.02).

Testing the six subjects with finger sources separated by
fastICA, factor Finger resulted globally not significant, with
similar reactivity levels for the two sources across different
stimulations. In addition, testing the mixed source ICT;L

versus ICT and ICL, no significant differences in reactivity
were detected (Table II).

Residual response levels evaluation

The level of residual finger response to the correspond-
ing stimulation after sources extraction (i.e., the discrep-
ancy response indices distribution values across subjects:
discr_RL and discr_RT, see equation [8]) was investigated.
This comparison has been made in terms of relative per-
formance between the three algorithms tested. Discrep-
ancy reactivity was significantly lower for the FSS proce-
dure with respect to both its orthogonal version FCA and
fastICA, indicating the more satisfactory performance of
the FSS procedure in extracting activity of interest; in-
stead, no significant difference in discr_RT mean values
was found between FCA and fastICA (Table III). Low
mean discrepancy reactivity values for FSS (6% of residual
response for the little finger and 3% for the thumb with
respect to the original averaged MEG data) indicate that
the two extracted finger sources described practically all
the evoked response contained in the original data matrix.

Basic ICA Model Features Comparison

Non-Gaussianity

When comparing kurtosis values between FCA and FSS
finger sources with respect to the fastICA ones, we found
that kurtosis was significantly higher for fastICA than for
FCA and FSS, and that these last two were not significantly
different (FCA versus fastICA, P � 0.03; FSS versus fastICA,
P � 0.01; FCA versus FSS, P � 0.8; Bonferroni-corrected
multiple comparisons). This result was not surprising, due
to the introduction of the functional constraint in FCA and
FSS in addition to the kurtosis maximization. An interesting
finding has been obtained when comparing kurtosis values
between finger sources and residual components for FCA
versus fastICA. For FCA, residual components are defined
as all the components extracted orthogonally to the first two,
without activating the functional constraints (� � 0). For
fastICA, they are defined as the remaining ICs, having re-
moved ICL, ICT and ICT;L. From both methods the compo-
nents with abnormal kurtosis values, marked as artefacts,
were removed [Barbati et al., 2004]. In both cases, kurtosis
values were significantly higher for the finger sources than

Figure 1.
Position in one representative subject of thumb (solid circle area)
and little finger (dotted circle area) sources. Positions of M20
(empty circle), M30 (filled circle) and the extracted source with
the FSS procedure (star) are shown. It can be noted the in-
between position of the estimated functional source with respect
to its corresponding M20 and M30 ECDs.

Figure 2.
Temporal evoked activity of the extracted finger sources (little
finger and thumb) by the two proposed procedures (FCA: FCL

� FSL, FCT; FSS: FSL, FST) during the stimulation of thumb (EAT),
little finger (EAL), and median nerve (EAM) for one subject. To be
noted the selective reactivity of each finger source to the respec-
tive finger stimulation; moreover, the FST reaction to the median
nerve stimulation was even higher than to the stimulation of the
thumb itself.
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for the residual components (FCA, P � 0.01; fastICA, P
� 0.0001), indicating that higher kurtosis values are associ-
ated with functional source properties. We could not make
this check between sources and noise for the FSS procedure,
because without imposing the functional constraints and
without the orthogonality condition, no further source ex-
traction was feasible after the first two.

Basis vector angles

As an additional indication that FSS algorithm did not
estimate several times the same components, due to the
absence of the orthogonality constraint, the angles between
basis vectors couples of FSLs and FST were computed across
subjects. The median angle obtained (63 degrees), the inter-
quartile range of this distribution (42–79 degrees), and the
minimum at 25 degrees, indicated that the great majority of
these angles were quite large, i.e., a difference in basis vec-
tors was obtained even in absence of the orthogonality con-
straint.

CONCLUSIONS

In the present work, a functional source separation (FSS)
technique has been introduced in the context of neurophys-
iologic applications using MEG recordings. Adding to a
kurtosis-based cost function physiological constraints de-
fined on the expected temporal behavior of cerebral sources
of interest, we exploited in the proposed extraction proce-
dure information both about the source statistical distribu-
tion (time-independent) and the temporal structure of the
cerebral activity.

It has been demonstrated how addition of appropriate
information to a separating algorithm and the removal of the
orthogonality constraint allow distinguishing more satisfac-
torily activity from neural networks devoted to individual
finger representation with respect to a standard ICA algo-
rithm. In fact, the proposed procedure proved able to extract
in all cases somatotopically consistent sources. Moreover, by
removing the orthogonality constraint, the obtained source
has been proved to express more physiologically plausible
activation properties with respect to their orthogonal ver-
sion and a standard ICA model. The provided sources are
suitable to describe ongoing activity time courses, which
allows for example trial-by-trial analysis, instead of describ-

ing the activations by averaging all sensor channels and only
in specific instances, as usually done in the standard proce-
dures. The obtained activation properties highlight the abil-
ity of the extracted sources in describing complex and inter-
connected cerebral networks. Nonetheless, the FSS
procedure was characterized by minimal residual activity.

The proposed approach, consisting of a sequential estima-
tion, with sources obtained one-by-one in each stage apply-
ing different criteria, is very useful also from another point
of view: extracting different components with defined re-
quired properties leaves out the problematic and subjective
step of a posteriori identification and classification of esti-
mated components.

In summary, the proposed FSS approach, by adding func-
tional constraints to standard ICA and not requiring orthogo-
nality between extracted sources, provided solutions always
correctly positioned, reacting properly neurophysiologically
and with negligible residual activity. This procedure is very
flexible in including different functional constraints, providing
a promising tool to identify neuronal networks in very general
cerebral processing.
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APPENDIX A

Simulated Annealing

Simulated annealing (SA) is a well known global optimi-
zation technique [Kirkpatrick et al., 1983] inspired to statis-
tical mechanics. It simulates the behavior of a liquid that
freezes slowly: if the process is slow enough, it will be
possible to create crystals in the structure (minimum energy
configuration). Starting from these principles, it is possible
to optimize by SA almost any kind of contrast function,
because it does not require the knowledge of its derivatives.
The optimization process is based on the perturbation of a
given solution, according to the concepts of temperature,
statistical equilibrium and probabilistic acceptance.

Consider the problem of maximizing S(w) and choose a
starting solution (state) w1. Let S1 � S(w1). A new state w2 is
generated perturbing w1 by means of a suitable rule and the
value S2 � S(w2) is evaluated. If S2�S1 the new solution w2
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is accepted, while if S1�S2 it is accepted with probability p
� min{1,exp(�(S1 � S2)/T)}, where T is the control pa-
rameter called Temperature (according to the physical for-
mulation). Accepting the new solution means that the sys-
tem moves to the new state w2. At large values of T, the
probability p of accepting less-optimal (lower S) solutions
will be high; as the temperature decreases, the system will
accept fewer such solutions. The optimization is carried out
following this scheme: the system starts at a high tempera-
ture (such that most of the perturbations will be accepted
anyway) and at that temperature, it generates a number of
states such that the statistical equilibrium is reached.

Subsequently, the temperature is decreased according to
an appropriate criterion (cooling schedule), and the proce-
dure continues as before until a suitable stopping criterion
halts the process. If the cooling schedule is slow enough
(logarithmic), the algorithm is statistically guaranteed to
reach a global optimum (with probability 1). Such theoreti-
cally correct cooling schedule is too slow to be applied in
practice, however, so that normally a geometric schedule is
applied.

SA optimization has two advantages over traditional tech-
niques (such as gradient-based): it does not require the use
of derivatives and, if properly set, it reaches the global
maximum. Although it is considerably slower if compared
with those techniques, in the present application this is not
a relevant drawback, because only a limited number of
components have to be extracted. In fact, in this work em-
phasis has been placed on proving effectiveness of the con-
strained optimization approach, and to evaluate different
options we privileged flexibility of the algorithm on the
choice of constraint function over speed.

In the present application, we whitened data and for each
functional constraint we started from an initial random w
unmixing coefficients vector (equation [2]) and the contrast
function in equation (3) was maximized by perturbing w. An
optimal wopt was found at the end of the optimization
process and the corresponding source was recovered from it.
We implemented a decrease rate for the temperature, such
that Tt1 � Tt�, with � � 0.7. The algorithm terminated
when, comparing the optimal solutions at two consecutive
temperatures, the norm of the difference of the unmixing
coefficients w (or of the sum, because both w and �w
correspond to the same source) was under a fixed threshold
(ε � 10�4). We implemented a procedure to automatically
set the initial temperature T0. Starting from a random initial
temperature TR, we kept trace of the number of accepted (A)
and rejected (R) state transitions. The ratio � � A/(A  R)
was computed after the system had reached the equilibrium,

and the following criterion to set up the starting temperature
T0 was used: if � � 0.8, the system was not warm enough
and the optimization could be not reliable, then we set TR

� 1.5TR. If � � 0.9 the system was considered too warm and
the optimization may take more time than needed, then TR

� 0.9TR; if 0.8 � � � 0.9, then T0 � TR. In this way, the
optimization does not need further temperature set up even
when parameters � and k are changed, because the optimal
starting temperature is estimated according to the used data-
set and the specific contrast function.

APPENDIX B

Parameter Settings and Execution Time

In this appendix we specify how the values of parameters
� and k have been determined in the present application.
Information about dimension of the data and the average
execution time are given at the end of this section.

(a1). A preliminary standard ICA extraction is made, set-
ting � � 0; it is equivalent to maximize only the
independence constraint (kurtosis).

(a2). Kurtosis values and Rstim (stim � T,L; as defined in
equation [4]) of all extracted components are evalu-
ated. After applying a switching system to remove
artifacts (resulting for example in very extreme kur-
totic components [Barbati et al., 2004]), the maxi-
mum values of kurtosis and Rstim are selected
among the retained components. To set k values, the
initial steps (a1) and (a2) have been performed for
each subject, and corresponding maximum Rstim val-
ues obtained have been assigned as initial k values in
the FCA and FSS algorithms.

(a3). � is fixed so as to make the functional constraint
(�*Hstim) approximately three orders of magnitude
greater than kurtosis (J).

The result of the � setting procedure has been observed to
be quite general and suitable for all examined subjects,
because the algorithm showed low sensitivity to this param-
eter; therefore, in our experimental setting the same value
was used in all cases: � � 1,000.

The size of the data matrices was 25 rows � 540,000 time
points for each subject; the general calculator characteristics
were a CPU of 3.2 GHz with 1.0 GB RAM. The average
execution time over the extractions for the thumb source
resulted 114 sec. and for the little finger source, 105 sec. The
fastICA average execution time to extract all components
was about 192 sec.
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