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Abstract: This study aimed to demonstrate how a regional variant of principal component analysis
(PCA) can be used to delineate the known functional subdivisions of the human visual system. Unlike
conventional eigenimage analysis, PCA was carried out as a second-level analysis subsequent to
model-based General Linear Model (GLM)-type functional activation mapping. Functional homogeneity
of the functional magnetic resonance imaging (fMRI) time series within and between clusters was
examined on several levels of the visual network, starting from the level of individual clusters up to
the network level comprising two or more distinct visual regions. On each level, the number of signifi-
cant components was identified and compared with the number of clusters in the data set. Eigeni-
mages were used to examine the regional distribution of the extracted components. It was shown that
voxels within individual clusters and voxels located in bilateral homologue visual regions can be repre-
sented by a single component, constituting the characteristic functional specialization of the cluster(s).
If, however, PCA was applied to time series of voxels located in functionally distinct visual regions,
more than one component was observed with each component being dominated by voxels in one of
the investigated regions. The model of functional connections derived by PCA was in accordance with
the well-known functional anatomy and anatomical connectivity of the visual system. PCA in combina-
tion with conventional activation mapping might therefore be used to identify the number of function-
ally distinct nodes in an fMRI data set in order to generate a model of functional connectivity within a
neuroanatomical network. Hum Brain Mapp 28:817–834, 2007. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

Conventional activation mapping in functional magnetic
resonance imaging (fMRI) involves the reduction of the
complex pattern of brain activation (i.e., fMRI time series)
to a single test parameter (e.g., F-, t-statistic, Fundamental
Power Quotient (FPQ) [Friston et al., 1995; Bullmore et al.,
1996a; Cox, 1996]). This test parameter indicates the good-
ness of fit between the observed fMRI time series and the
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response predicted on the basis of the experimental para-
digm at each intracerebral voxel. Following the statistical
inference of the parameter, an activation map identifying
voxels whose goodness of fit exceeds a chosen threshold
(e.g., P < 0.001) is computed.
The reduction of the time series to a single parameter

limits the extent to which significantly activated voxels can
be interpreted in terms of their specific functional involve-
ment. The identification or classification of voxels with the
same functional role can only be achieved if the statistical
parameter uniquely identifies the set of parameters charac-
terizing each time series (e.g., amplitude, onset, width).
This implies that voxels with the same statistical parame-
ters also exhibit undistinguishable time series and are thus
functionally homogeneous.
Parameters that are most commonly used in conven-

tional activation mapping, however, do not offer a unique
representation of the set of parameters characterizing the
fMRI time series at each cerebral voxel. Instead, different
combinations of the temporal characteristics of the fMRI
time series in combination with signal intensity differences
can result in the same goodness of fit. For instance, in a
periodic response paradigm, voxel i whose response is
shifted in time by þDt relative to the stimulation paradigm
will exhibit the same test parameter as voxel j, whose
response is shifted by �Dt. Despite the fact that both vox-
els are ‘‘somehow’’ related to the stimulation paradigm,
the phase difference suggests a different functional in-
volvement. The inference of the functional specialization of
voxels or brain regions on the basis of a single test para-
meter can thus be compared to solving an inverse prob-
lem. Although voxels in several cortical regions might
appear activated in response to a stimulation paradigm,
not all voxels are inevitably functionally homogeneous.
The question of time series representation by a single or

a set of few parameters is naturally closely related to the
parameters of the employed model. One possible solution
for finding a more unique representation in General Linear
Model (GLM)-type analysis is thus the use of more flexible
time series models. Additional regressors might, for
instance, be included to account for delays in signal onset,
or variations in signal widths [e.g., Woolrich et al., 2004].
Ultimately, however, the characterization of the observed
time series is only as good as the a priori specified model,
and parameters not accounted for by the model will not
affect the goodness of fit.
In this study, we used a novel approach to investigating

functional connectivity among voxels in response to a
visual stimulation paradigm. This approach combines the
strengths of a model-driven analysis with the advantages
of a model-free technique. Initially, conventional activation
mapping was used to identify voxels with activation
somehow related to the stimulation paradigm. Principal
component analysis (PCA) was then employed as a sec-
ond-level analysis in order to subdivide further the
detected voxels into functionally specialized units (i.e.,
functional nodes).

PCA has previously been applied to a wide range of
problems in the analysis of fMRI data such as the identifi-
cation of an average pattern of response in regions of in-
terest [Buchel and Friston, 1997; Fletcher et al., 1999] and
the reduction of noise in the fMRI time series [Thomas
et al., 2002]. Variants of PCA such as the closely related
eigenimage analysis have also been used to investigate
functional connectivity in spatially distributed neural sys-
tems [Friston et al., 1993; Bullmore et al., 1996b]. The math-
ematical rationale behind PCA has been described in detail
elsewhere [Andersen et al., 1999]. In brief, PCA aims to
describe coherent signal variations in a multivariate data
set in terms of a set of uncorrelated variables, i.e., principal
components (PCs) or eigenvectors. These are particular
linear combinations of the original variables derived in de-
scending order of importance. Unlike most univariate anal-
yses, PCA does not rely on any a priori-defined parame-
ters but detects specific experimental effects on the basis of
a specific criterion (i.e., maximization of variance and
orthogonality of components).
It was the aim of this study to investigate functional ho-

mogeneity of voxels within and between significantly acti-
vated clusters in the human visual system using PCA. The
use of PCA in this investigation differed from conventional
PCA in several aspects. First, the PCA utilized here was
not applied to the entire multivariate fMRI data set but
was employed as a second-level analysis subsequent
to functional activation mapping [Pedersen et al., 1994].
Although this approach limits the exploratory power, it
decreases the probability that some of the maintained
eigenimages reflect structured noise rather than ‘‘real’’
functional connectivity [McKeown et al., 2003]. Second, the
analysis was build up in a hierarchical fashion, starting
from the level of individual visual clusters up to the net-
work level comprising two or more functionally and ana-
tomically distinct visual regions. On each level of the net-
work, the number of significant components was identified
on the basis of the component eigenvalue displays. Finally,
the eigenimages and component loadings matrices were
created in order to assess the spatial distribution of the
components. The model-driven functional classification of
visual voxels resulting from the PCA was then compared
to known functional subdivisions of the system.

MATERIALS AND METHODS

Subjects

Seven female right-handed volunteers between 20 and
30 years of age were recruited from the general popula-
tion. All subjects were in good general health without a
history of neurological or psychiatric disorders and exhib-
ited normal eyesight and color perception. Written consent
was provided by all subjects. All participants were given
full instructions before the scanning session. The study
was approved by the Bethlem Royal and the Maudsley
NHS Trust Ethics (Research) Committee.
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Stimuli

The purpose of the experimental paradigm was to elicit
significant functional activation in at least three anatomi-
cally and functionally distinct visual regions. These were
the color-responsive area V4, the motion-sensitive area
V5/MT, as well as early visual regions such as V1 and
V2/3. These regions were subsequently subject to PCA to
generate a model of functional connectivity in the visual
system. The visual stimuli used to generate BOLD images
in several different regions of the visual cortex were
square wave gratings within an overall circular shape pre-
sented in front of an isoluminant gray background. On the
basis of a factorial experimental design, which consisted of
two factors (movement and color), four different stimuli
were generated: (1) stationary, black and white; (2) mov-
ing, black and white; (3) stationary, red and green; and (4)
moving, red and green.
In order to maximize the contrast sensitivity of the

BOLD response, a spatial frequency of 2.2 cycles/degree in
the no-movement conditions and a temporal frequency of
9 Hz/degree in the movement conditions were used in
this investigation. These parameters have previously been
shown to elicit maximal BOLD responses in the primary
visual system [Singh et al., 2000]. Movement was induced
by moving the bars of the grid downward within the over-
all circular shape. As baseline condition, a white fixation
cross in front of the same isoluminant background was
presented. During the task, subjects were instructed to
focus their eye gaze on the center of the screen at the same
position at which the fixation cross was presented. The
stimuli were generated using Microsoft Visual Basic
(Microsoft, Redmond, WA) with the OpenGL graphics
library. A computer-controlled projector system was used
to display the images onto a screen placed across the bore
of the magnet 3.4 m from the subjects’ eyes and viewed
through a prismatic mirror. The diameter of each circle
was 0.297 m. This value was chosen to adjust the visual
angle to 58. The background luminance was held at a con-
stant value during the length of the experiment and
equaled the ambient darkness inside the bore of the MR
scanner with the room light extinguished.

Experimental Paradigm

Event-related fMRI with constant stimulus duration
(SD ¼ 2 s) and randomized interstimulus interval (ISI) was
used in this investigation. The randomization of the ISIs
was based on a Poisson distribution with a mean of 9 s.
The shortest ISI was 4 s and the maximal ISI was 14 s. The
average ISI of 9 s is close to the empirically optimal ISI at
a constant SD of 2 s [Bandettini and Cox, 2000]. All trials
were presented in fully randomized order with the aim of
avoiding habituation and expectancy effects. Stimuli were
presented in a single run lasting 8 min and 36 s. During
this run, 14 trials per condition were presented in random

order (total number of trials per run ¼ 56). In half of the
trials, stimuli were presented in a jittered fashion at a stim-
ulus onset asynchrony (SOA) of 1 s in order to achieve a
better characterization of the hemodynamic response (i.e.,
increased sampling frequency).

Data Acquisition

Whole brain gradient echo planar MR images were
acquired using a 1.5 Tesla GE Signa Neuro-optimized Sys-
tem (General Electric, Milwaukee, WI) fitted with 40 mT/m
high-speed gradients at the Maudsley Hospital in London.
Foam padding and a forehead strap were used to limit
head motion. Daily quality assurance was carried out to
ensure high signal-to-ghost ratio, high signal-to-noise ratio,
and excellent temporal stability using an automated qua-
lity control procedure [Simmons et al., 1999]. A quadrature
birdcage head coil was used for radiofrequency transmis-
sion and reception.
At the beginning of each session, an inversion recovery

EPI data set was acquired at 43 near-axial 3 mm thick
planes parallel to the AC-PC line: TE ¼ 73 ms, TI (inver-
sion time) ¼ 180 ms, TR ¼ 16 s, in-plane resolution ¼
1.72 mm, interslice gap ¼ 0.3 mm. This higher-resolution
EPI data set provided whole brain coverage and was later
used to register the fMRI data sets acquired from each in-
dividual subject in standard stereotaxic space. During the
functional scan, 258 T2*-weighted images depicting BOLD
contrast [Ogawa et al., 1990; Kwong et al., 1992] were
acquired over 8.44 min at each of 25 near-axial noncontig-
uous 5 mm thick planes parallel to the intercommissural
(AC-PC) line: TE ¼ 40 ms, TR ¼ 2,000 ms, theta ¼ 808,
in-plane resolution ¼ 3.75 mm, interslice gap ¼ 0.5 mm.

Data Analysis

Brain activation mapping

Image processing and statistical analysis were carried
out using the in-house analytical package XBAM, devel-
oped at the Institute of Psychiatry. Prior to the time series
analysis, the data were processed to remove low-frequency
signal changes and motion-related artifacts. This was done
by realignment using tricubic spline interpolation followed
by regression of each realigned fMRI time series on a sec-
ond-order polynomial function of lagged and concomitant
positional displacements of the subject’s head [Bullmore
et al., 1996b; Brammer et al., 1997].
Responses to the experimental paradigms were then

detected by time series analysis using gamma variate func-
tions (peak responses weighted between 4 and 8 s) con-
volved with the experimental design to model the blood
oxygen level-dependent response. This time series analysis
involved regressing the motion-corrected fMRI time series
on the predicted time series at each voxel i, where the pre-
diction was made on the basis of a linear model (i.e., mod-
eled time series is a linear combination of the convolved

r PCA of Human Visual System r

r 819 r



contrast vector). For a single experimental condition, the
regression equation can thus be formalized as

yi ¼ mi þ aix4 sec þ bix8 sec þ ei ð1Þ

where yi denotes the observed intensity value at voxel
i, mi is the mean of the time series, ai equals the ampli-
tude of the first convolution with a peak response at
4 s, and ei indicates the error term (i.e., ei ¼ yi � ŷi with
ŷi denoting the predicted signal intensity value).
Following least squares fitting of this model, a good-

ness-of-fit statistic [the sum of squares (SSQ) ratio] and a
measure of the mean power of neural response (effect size
or ES) was computed at each voxel i. This was the ratio of
the sum of squares of deviations from the mean intensity
value due to the model (fitted time series) divided by the
sum of squares due to the residuals (original time series
minus model time series). Assuming that n equals the
number of data points in the whole fMRI time series, the
SSQ index for each voxel i can be formalized as

SSQi ¼

Pn
k¼1

ŷ2i

Pn
k¼1

ðyi � ŷiÞ2
¼

Pn
k¼1

ŷ2i

Pn
k¼1

e2i

ð2Þ

To ascertain the distribution of SSQ under the null
hypothesis of no experimental effect, the observed time
series were then randomly permutated using a waveled-
based resampling method [Bullmore et al., 2001], and the
models were refitted to the resampled data. This process
was repeated 20 times at each voxel to derive the distri-
bution of SSQ ratios under the null hypothesis. The
observed and the randomized SSQ maps for each subject
were then registered in the standard space of Talairach
and Tournoux [1988]. If the observed SSQ ratio at a voxel
exceeded the 95th percentile of the distribution of the 20
randomized maps, then the null hypothesis was refuted
by a one-tailed test at the voxel with probability of type I
error ¼ 0.05. This method has been shown to give excel-
lent control of nominal type I error rates in fMRI data
from a variety of scanners. Activations for any contrast at
any required P value can then be determined by obtain-
ing the appropriate critical values from the null distribu-
tion [Bullmore et al., 1996b]. The statistical maps display-
ing the two main effects (color/motion) were used to
identify regions of interest in the visual system. These
ROIs were then subject to PCA.

General model assumptions and hypotheses

In this study, PCA was employed as a meta-analysis of
the time series extracted from voxels displaying significant
functional activation in the primary visual system. It was
the aim of the analysis to generate a model of functional

connections within the visual network by clustering voxels
with the same functional specialization into functional
nodes and by comparing the number of functional nodes k
with the number of anatomically defined clusters v. The
number of clusters v was thus not necessarily assumed to
be equal to the number of functional nodes k. Three possi-
ble scenarios might thus be subject to interpretation.
First, the number of clusters equals the number of func-

tional nodes (v ¼ k). In this case, all clusters are function-
ally distinct and exhibit their own functional specializa-
tion. On the other hand, if voxels within an individual
cluster are examined, a single significant component indi-
cates that all voxels within the cluster are functionally ho-
mogeneous. The second possible outcome is that the num-
ber of clusters exceeds the number of functional nodes
(v > k). Here, (v � k) clusters are not functionally distinct
but share variance with the k functional nodes. The last
possibility is that the number of nodes could exceed the
number of clusters (k > v). This result indicates that not
all anatomically different clusters in the data set are func-
tionally homogeneous, but that at least one cluster should
be subdivided into separate functional nodes.
The number of clusters was simply inferred from the

functional activation maps for each individual subject, and
the number of functional nodes was assumed to equal the
number of significant principal components in the data set.
The number of significant components was identified on
the basis of the Eigenspectra of the data covariance matrix
assuming a minimal required signal-to-noise ratio (SNR).
To test these basic assumptions empirically, PCA was

carried out on different levels of the visual network, start-
ing from the level of individual clusters up to the network
level comprising two or more functionally and anatomi-
cally distinct regions. Functional connectivity was therefore
examined in a hierarchical fashion by applying singular
value decomposition (SVD) to a different covariance matrix
in each analysis run. On each network level, the number of
significant components as well as their regional distribu-
tion was examined.
In the first analysis run, PCA was carried out across the

motion-corrected fMRI time series extracted from voxels
located within a single significantly activated cluster. If all
voxels within the cluster are indeed functionally homogene-
ous, as would be expected from the known functional and
anatomical organization of the visual system, a single signifi-
cant component should be observed. In the second analysis
run, PCA was applied to voxels located in bilateral homo-
logue visual regions. Bilateral homologue visual regions are
known to exhibit the same functional specialization despite
being spatially separated and should therefore be presented
by a single component. In the third run, PCA was carried
out across voxels located in two anatomically distinct visual
regions within one hemisphere. If these regions are also
functionally distinct, more than one significant component
should be observed and each component should be domi-
nated (i.e., high factor loadings) by voxels within each
region. The following regional combinations were analyzed
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simultaneously: V1 in combination with V2/3, V1 in combi-
nation with V5/MT, and V2/3 in combination with V5/MT.
In addition, each visual region was analyzed in combination
with voxels in a control area located in the region of the
temporal pole of the ipsilateral hemisphere. This control
region was chosen because it is anatomically connected with
the visual system but did not exhibit significant functional
activation during the paradigm. Finally, PCA was carried
out across voxels in three different visual regions (e.g., V1,
V2/3, V5/MT) located within the same slice.
In order to minimize the effects of data preprocessing

(e.g., interslice interpolation, rendering of images to tem-
plate), PCA was applied to voxel time series within indi-
vidual slices and subjects.

Mathematical framework

The mathematical model was build on the mathematical
framework of general factor analytical models, where a data
matrix X is reconstructed by a linear combination of a set of
underlying factors (i.e., principal components). Suppose that
n denotes the number of data points in the fMRI time series
(n ¼ 258), and P the number of voxels included into the
analysis, the mathematical model can be formalized as

Xðn�pÞ ¼ Fðn�kÞAT
ðk�pÞ þ Eðn�pÞ ð3Þ

where X is a matrix of signal intensity values, F denotes
the factor scores, A is a matrix of factor loadings (i.e., con-
tribution of a factor to the time series at a particular voxel
location), and E is a matrix of residuals. k is a scalar
denoting the number of significant components. In the
context of this study, the term component is used in the
sense of a ‘‘latent’’ factor, which is the overall functional
specialization of a particular brain region. Hence, the
matrix of factor scores F contains the region-specific char-
acteristic time series, which more or less resembles the
observed time series of all voxels within a specific region.
To accommodate the number of anatomically distinct

brain regions v (i.e., clusters), the model was extended by
an indicator function Ivoxel i: cluster v{1, 0} denoting the
presence of a voxel in a particular cluster so that

Xðn�pÞ ¼ Fðn�kÞAT
ðk�pÞIðv�pÞ þ Eðn�pÞ ð4Þ

with

Ivoxel iðcluster vÞ ¼ 1 voxel i 2 cluster v
0 voxel i =2 cluster v

�
ðÞ

The time series of voxel i may therefore be general-
ized to the form

xi ¼
Xv
u¼1

ai1f1iui þ ai2f2iui þ � � � þ aikfkiui þ ei ð5Þ

with ai1f1ivi þ ai2f2ivi þ � � � þ aikfkivi being the common
part of xi, which is shared with all other voxels within
cluster v.

Singular value decomposition

The matrix of factor scores F and of factor loadings A
were obtained with singular value decomposition (SVD),
which was used to find r orthogonal principal eigenvectors
with r ¼ min(n, p), ranked in descending order of impor-
tance. SVD of an arbitrary (n � p) data matrix X is based
on the following theorem of linear algebra:

Xðn�pÞ ¼ Uðn�rÞ�ðr�rÞWT
ðr�pÞ ð6Þ

where U(n�r) is an orthogonal matrix, L(r�r) is a diago-
nal matrix with positive or zero elements lr (singular
values or eigenvalues), and WT

ðr�pÞ containing the ei-
genvectors of X in its rows.
SVD can be carried out in the spatial as well as in the

temporal domain. In the spatial domain, voxels represent
variables and volumes constitute observations. The spatial
covariance structure Svox is thus a square matrix with the
dimension (p � p), with Svox ! XTX. On the basis of
Eq. (6), it can be shown that

XT
ðp�pÞXðp�pÞ ¼ Wðp�rÞ�2

ðr�rÞW
T
ðr�pÞ ð7Þ

To obtain the factor loadings matrix A, indicating the
correlation between a voxel with the factor, the column
vectors of W containing the principal eigenvectors were
multiplied by the associated singular values lr. Thus,

Aðp�rÞ ¼ Wðp�rÞ�ðr�rÞ ð8Þ

The principal factors with unit variance were derived
from the principal components as follows:

Bðp�rÞ ¼ Wðp�rÞ��1
ðr�rÞ ð9Þ

where B denotes the matrix of factor score coefficients.
Finally, the factor scores (i.e., eigentime series) were
computed by

Fðn�rÞ ¼ Zðn�rÞBðp�rÞ ð10Þ

where Z denotes X converted to standard score form.

Identification of number of significant components

As pointed out above, SVD of an arbitrary data matrix X
leads to r orthogonal PCs, ranked in descending order of
importance, with r ¼ min(n, p). Therefore, if all PCs are
extracted, r equals the number of voxels in the analysis
and no clustering occurs. To identify the number of signifi-
cant components k only, which indicated the number of
functional nodes, at least the first two of the following cri-
teria had to be fulfilled.
One, only components with eigenvalues greater than or

equal to 1 (l2 > 1.00) were retained for further analysis,
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thus explaining more variance than a single voxel (consid-
ering that the variance of standardized variables or voxels
equals 1.00). This criterion is conventionally used for deter-
mining the number of factors to be extracted in factor anal-
ysis and is also known as Kaiser’s rule [Kaiser, 1958].
Two, only those components whose eigenvalues fell

before the last large drop on the so-called SCREE diagram
or eigenvalue spectrum were included. This criterion is
also known as the elbow criterion [Cattell, 1966]. The
eigenvalue spectra were derived by plotting the squared
diagonal elements l2 of L against their rank order in terms
of size. Each eigenvalue is equal to the variance of the cor-
responding principal component, and the sum of eigenval-
ues is equal to the total variance of X. Therefore, a plot of

Pk
i¼1

k2i

Pr
j¼1

k2j

ð11Þ

against k can be used to show the cumulative percent-
age of total variance in X accounted for by the first k
PCs [Bullmore et al., 1996b].
Three, if SCREE plots indicated a single underlying PC,

then the ratio of the difference in explained variance
between the first PC pair (D1 ¼ %expl, 1st PC � %expl, 2nd PC)
and the second PC pair (D2 ¼ %expl, 2nd PC � %expl, 3rd PC)
must exceed a factor of 3.00 (D1/D2 � 3.00). Using the
squared diagonal elements l2 of L, this criterion can also
be formalized as

�1

�2
¼ k21 � k22

k22 � k23
� 3:00 ð12Þ

where l1
2 equals the percentage of explained variance

by the first PC, l2
2 equals the percentage of explained

variance by the second PC, and so forth. If SCREE plots
indicated two underlying PCs, then the ratio of the dif-
ference in explained variance between the second PC
pair and the third PC pair had to exceed a factor of
3.00. In parallel to Eq. (10), this can be expressed as

k22 � k23
k23 � k24

� 3:00 ð13Þ

If more than two PCs were significant, the criterion
was analogous. This criterion was chosen to quantify
further the size of the last drop on the SCREE plot. The
value of 3.0 was chosen arbitrarily, indicating the
required SNR expected in the visual system. It is, how-
ever, important to point out that this ratio might
change depending on the cortical system under investi-
gation as well as the field strength of the scanner.
In order to enable a better interpretability of the ex-

tracted PCs, the factor loadings matrix A was subject to an
orthogonal factor rotation using the VARIMAX criterion. A

detailed description of the mathematical algorithms
involved in this rotation is provided by Kaiser [1958].
VARIMAX rotation has been used in PCA of fMRI data
before [Andersen et al., 1999; Thomas et al., 2002]. Pearson
correlation coefficients between the voxel factor loadings
on the first PC and the level of functional significance indi-
cated by the SSQ values described in Eq. (2) were calcu-
lated. This was done with the aim of showing that the first
PC represents signal due to the experimental stimulation
and not due to structured noise.

Spatial distribution of components

To examine the spatial distribution of the components,
eigenimages and component displays were created. The
first two eigenimages were displayed for each of the
extracted components. The orthogonal axes of each eigen-
image encoded the anatomical {x, y} coordinates of each
voxel. The color of each voxel in the ROIs encoded the size
of the factor loadings on the first two components. The
color maps of voxels in ROIs were superimposed onto the
average intensity image. Two different color palettes were
used for displaying the size and the prefix of the factor
loadings. An orange-to-yellow color palette displayed the
size of positive factor loadings, whereas a blue-to-tur-
quoise color palette represented the size of negative factor
loadings. In addition, the matrix of factor loadings was
displayed using two-dimensional component plot. In con-
trast to the eigenimages, the orthogonal axis of a compo-
nent plot encoded the size of a voxel’s factor loading on
each of the two extracted components. The color of indi-
vidual voxels encoded the regional origin of the voxel.
Finally, in order to assess whether spatial proximity of

investigated clusters could be a contributing factor to estab-
lishing significant components, the Euclidean distances
between the centers of mass of each cluster were calculated.
The center of mass for each individual cluster was calculated
as the average {x} and {y} column vector containing coordi-
nates of each voxel within a particular cluster. The distance d
between points x and y in a Euclidean space <n is given by

d ¼ jx� yj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

jxi � yij2
s

ð14Þ

Thus, in the plane, the distance between the center of
mass with the coordinates (x1, y1) and (x2, y2) was calcu-
lated as

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2

q
ð15Þ

The squared Euclidean distance d2(x, y) between clusters
was taken as a measure of spatial distance between the
ROIs. In order to test whether there is a statisti-
cally significant difference in squared Euclidean distance
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between voxels in ROIs with a one- or two-component
solution, a Wilcoxon signed-rank test for dependent
samples was carried out considering the small sample
size.

RESULTS

Functional Connectivity on Cluster Level

Number of principal components

The foci of significant functional brain activation in the
visual system, from which the motion-corrected time series
were extracted, are summarized for individual subjects in
Table I.
In all 10 investigated clusters, factor eigenvalue plots

(SCREE plots) suggested a prominent one-factor solution
when PCA was carried out across voxels within a signifi-
cantly activated visual cluster. According to the postulated
criteria that had to be satisfied in order to establish the sig-
nificance of a component in relation to those resulting
from random variations in the data set, the SCREE plots
for individual clusters revealed only one component
whose eigenvalue fell before the last large drop of eigen-
values. Furthermore, this component exhibited an eigen-
value larger than 1.0, thus accounting for more variance in
the data set than introduced by a single voxel time series.
While the eigenvalues of the components falling below the
last large drop decreased linearly with the component
number, the first PC explained at least five times more
variance than the second PC. The results of all selected
clusters are summarized in Table II.
On average, the first PC explained 28.84% 6 3.56% of

the total variance in the data set, the second principal com-
ponent explained a mean percentage of 12.38% 6 2.52%,
and the third principal component explained 10.82% 6
2.19% of the total variance. The ratio of explained variance
between the first and the second component was at least
5.26 times larger than between the explained variance of
the second PC pair. Figure 1B shows the component eigen-
value displays and the eigentime series (Fig. 1C) of a rep-
resentative cluster located in visual area V5/MT. The exis-
tence of a single significant component for voxels within
visual clusters indicates that all voxels within the cluster
are functionally homogeneous and thus represent a single
functional unit. The hemodynamic responses in all voxels
within the cluster can be reduced to a single time series,
the first eigentime series, representing the overall func-
tional activation within the cluster. This finding offers
direct empirical evidence for an often-made hypothetical
assumption in conventional activation mapping, namely,
that voxels within a cluster are functionally homogeneous
and thus representing a single functional unit or cluster.

Correlations between SSQ values and factor loadings

One of the main problems of PCA is the separation of
signal related to the stimulation paradigm from signal
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components reflecting noise. PCs are derived from a data
set in descending order of importance, each component
accounting for as much partial variance as possible. Any
signal variations, which are in some way correlated across
voxels or volumes, could thus be represented by a PC.
Due to the existence of colored noise components in the
fMRI time series [Bullmore et al., 2001], it is possible that
several of the retained eigenimages reveal brain regions with
similar noise properties rather than areas with a similar
functional specialization [Pedersen et al., 1994]. However,
components reflecting noise cannot be separated from com-
ponents representing functional connectivity since PCA does
not utilize information concerning the stimulation paradigm.
To address this issue, the results of the model-free PCA

were compared with the model-dependent functional activa-
tion mapping using bivariate correlation analysis.
In all 10 investigated clusters, the voxel factor loadings on

the first principal component were significantly positively
correlated with their statistical test parameter (SSQ ratio)
extracted from the individual brain activation maps. Thus,
higher factor loadings of individual voxel on the first princi-
pal component were accompanied by high levels of signifi-
cance. The highest correlation coefficient was observed in
visual area V5/MT (r ¼ 0.942; P < 0.01). The correlation
coefficient was also highly significant when the analysis was
carried out across all 10 investigated clusters (r ¼ 0.79; P <
0.01). The relationship between SSQ values and the factor
loadings across all investigated clusters is displayed in

TABLE II. Summary results of the PCAcarried out across voxels within significantly activated visual clusters

Cluster
ID

Region
definition

Number of
voxels within

cluster
% variance
first PC

% variance
second PC

% variance
third PC Ratio*

Correlations
factor

loading/SSQ**

1a V1 9 31.38 15.79 13.67 7.35 0.834
2a V1 11 30.93 12.79 11.90 20.38 0.882
3a V1 15 26.35 11.40 11.03 40.41 0.759
4a V2/3 9 33.01 14.81 12.46 7.74 0.828
5a V2/3 13 31.98 14.10 10.70 5.26 0.833
6a V4 31 23.21 7.33 6.80 29.96 0.778
7a V4 21 32.21 9.72 7.62 10.71 0.869
8a V5/MT 17 24.551 11.34 10.00 9.86 0.747
9a V5/MT 14 25.92 12.81 11.26 8.46 0.942
10a V5/MT 11 28.85 13.73 12.85 17.18 0.746

* Ratio difference in explained variance between the first PC and the second PC pair.
**P < 0.01, two-tailed.
aOne-component solution.

Figure 1.

A: Results of the PCA carried out across voxels

within a significantly activated cluster in V5 for a

representative subject. B: The SCREE plot indi-

cated that only one component fell above the last

large drop on the display and exhibited an eigen-

value larger than 1.0. C: The first eigentime se-

ries is very similar to the average observed time

series within the cluster. D: There was a signifi-

cant positive correlation between the voxel fac-

tor loadings on the first component and the level

of significance (SSQ index) indicated by the func-

tional activation map. [Color figure can be viewed

in the online issue, which is available at www.

interscience.wiley.com.]
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Figure 2. See Figure 1D for scatter plots of the representative
cluster located in visual area V5/MT. Because the SSQ ratio
indicates the standardized level of response to the stimula-
tion paradigm, it can be concluded that the retained PCs do
indeed reflect the degree of functional homogeneity between
voxels rather than correlated noise.

Functional Connectivity Between Voxels in

Bilateral Homologue Visual Areas

In the next analysis step, PCA was applied to voxels
located in bilateral homologue visual regions. These regions
are known to exhibit the same functional specialization and
are spatially far apart. As would be expected on the basis of
the outlined rationale, applying PCA to a set of motion-cor-
rected time series extracted from voxels in bilateral homo-
logue visual regions led to very similar results as the ones
reported for voxels within significantly activated clusters.

Number of components

Summary results of the PCA for bilateral homologue vis-
ual regions are shown in Table III. In eight out of nine
investigated cluster pairs, SCREE plots revealed only one
component whose eigenvalue fell before the last large drop
on the display. All cluster pairs with a clear one-compo-
nent solution also exhibited a ratio of explained variance
between the first two component pairs of a value larger
than 3.00. A minimum ratio difference of 5.93 was
observed in visual area V2/3, and a maximum ratio differ-
ence of 25.45 was observed in visual area V1. On average,
the first principal component explained 23.71% 6 4.82% of
the total variance in the data set, the second principal com-
ponent explained a mean percentage of 9.63% 6 2.04%,
and the third principal component explained 7.99% 6
1.98% of the total variance. SCREE plots of two representa-
tive homologue clusters in V2/3 and V5/MT within the
same subject are shown in Figure 3.
In one out of the nine investigated cluster pairs (cluster

ID 2 in Table III), the SCREE plot revealed more than one
significant underlying component. This cluster contained
voxel time series extracted from visual area V1 in both
hemispheres. Here, the percentage of explained variance
decreased from 17.09% to 10.58% between the first and the
second PC, and from 10.58% to 4.71% between the second
and the third PC. The ratio difference of explained var-
iance between component one and two was thus very low
at 1.11, and fell below the set criterion of a value of 3.00.
These findings are in accordance with the assumption

that the number of significant PCs indicates the number of
functionally specialized units in the data set. Although
both clusters were spatially far apart, both homologue vis-
ual clusters were classified as one functional unit.

Component Structure of an fMRI Data Set

Containing Time Series From Two or More

Anatomically Distinct Visual Regions

So far, the reported subspace of significant components
was one-dimensional. In order to show that PCA is sensi-

TABLE III. Results of the PCA carried out across voxels in bilateral homologue areas of the visual system

Cluster ID
Region

definition
Total number of

voxels
% variance
first PC

% variance
second PC

% variance
third PC Ratio*

1a V1 31 20.38 6.89 6.36 25.45
2b V1 102 17.09 10.583 4.716 1.11
3a V2/3 18 26.87 10.07 8.38 9.94
4a V2/3 18 25.63 11.63 9.27 5.93
5a V2/3 17 26.40 10.57 9.84 21.68
6a V4 32 19.06 6.79 5.87 13.34
8a V5/MT 22 22.55 8.41 7.75 21.42
9a V5/MT 15 31.72 12.11 10.17 10.11

*Ratio difference in explained variance between the first PC pair and the second PC pair.
aOne-component solution.
b Two-component solution.

Figure 2.

Correlation between voxel factor loadings on the first principal

component and the level of significance (SSQ index) in the func-

tional activation maps across all investigated clusters.

r PCA of Human Visual System r

r 825 r



tive enough to detect functional differences between voxels
subsequent to brain activation mapping, PCA was carried
out across two different regions of the visual system
within the same hemisphere. Three possible combinations
of visual regions were subject to PCA: V1 in combination
with V5/MT, V2/3 in combination with V5/MT, and V1
in combination with V2/3. A summary of the results can
be found in Table IV.

Number of components

As can be inferred from Table IV, the number of PCs
was highly dependent on the specific ROIs included in the
analysis. In all five investigated regional combinations in
which visual area V2/3 was analyzed in combination with
V1 (n ¼ 2) or V5/MT (n ¼ 3), SCREE plots revealed that
only one component explained nonrandom variance. On
average, the first PC explained 25.06% 6 4.21% of the total
variance in the data set, the second PC explained a mean
percentage of 10.57% 6 1.09%, and the third PC explained
8.91% 6 1.23% of the total variance. The ratio of explained
variance between the first and the second component was
at least 6.8 times larger than between the percentage of
explained variance between the second component pair. A
maximal increase in explained variance by a factor of 13.14
was observed in cluster 7, which analyzed V2/3 in combi-
nation with V5/MT.
More than one significant PC were found when PCA

was applied to voxels located in two functionally distinct
visual areas such as V1 in combination with the motion-
sensitive area V5/MT. In all four investigated cluster pairs,
SCREE plots suggested two significant components falling
below the last large drop. Overall, the first component
explained a mean percentage 23.34% 6 3.36% of the total
variance in the data set. On average, the second compo-
nent explained additional variance of 13.91% 6 2.67%.
Thus, about 27% of the total variance could be explained
by the first two PCs. On the whole, the third princi-
pal component explained additional variance of 8.33% 6
1.77%. Furthermore, the ratio difference of explained var-
iance between the second and third component was at
least 5.22 times larger than the ratio difference of
explained variance between the third and fourth compo-
nents. Summary results of the analysis of voxels in V1 in
combination with V5/MT are displayed in Figure 4.
Figure 4 further indicates that when additional compo-

nents are recruited despite not meeting the outlined criteria,
the functional classification of voxels is still meaningful.

Figure 3.

Results of the PCA carried out across voxels located in bilateral

homologue visual regions in V2/3 (top) and V5/MT (bottom) for

a representative subject. In both cases, only one significant com-

ponent was observed on the basis of the SCREE plots (right).

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

TABLE IV. Results of the PCA carried out across voxels located in two different areas of the visual system

Cluster
ID

Regions
included

Total number
of voxels

% variance
first PC

% variance
second PC

% variance
third PC

% variance
fourth PC Ratio 1* Ratio 2**

1a V1, V5/MT 20 26.75 11.68 7.15 6.31 3.33 5.39
2a V1, V5/MT 24 21.01 13.06 7.79 6.78 1.51 5.22
3a V1, V5/MT 10 25.65 17.78 10.97 9.81 1.16 5.87
4a V1, V5/MT 22 19.95 13.11 7.42 6.93 1.20 11.61
5b V2/3, V5/MT 20 29.00 10.34 8.83 6.56 12.36
6b V2/3, V5/MT 24 19.49 9.09 7.73 7.55 7.65
7b V2/3, V5/MT 17 22.91 11.35 10.47 9.05 13.14
8b V1, V2/3 16 24.42 11.89 9.83 8.16 6.08
9b V1, V2/3 18 29.47 10.20 7.73 6.84 7.80

*Ratio difference in explained variance between the first PC pair and the second PC pair.
** Ratio difference in explained variance between the second PC pair and the third PC pair.
a Two-component solution.
bOne-component solution.
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Figure 4E displays the factor loadings profiles of voxels in
V1 and V5/MT on the first four components, while only the
first two met the outlined criteria. The graph shows that,
overall, voxels in V1 display high loadings on PC 1 and 4,
but exhibit low factor loadings on PC 2 and 3. Voxels in
V5/MT, on the other hand, have low loadings on PC 1 and
4 while displaying high loadings on PC 2 and 3. This sug-
gests that PCA is potentially quite sensitive to differences in

the temporal characteristics of the fMRI time series. It is,
however, an entirely different question whether this differ-
ence is significant (i.e., should voxels in V1 and V5/MT be
further subdivided into functionally distinct units?).
When PCA was carried out across one of the visual ROIs

(i.e., V1, V2/3, and V5/MT) in combination with the control
region located in the region of the temporal pole, two signif-
icant components were observed. SCREE plots resulting
from the PCA across voxels in V2/3 in combination with
V5/MT as well as in combination with the control region
are shown in Figure 5 for a representative subject.
To simplify the regional interpretation of the two

extracted components, VARIMAX rotation was carried out
and component plots as well as eigenimages were dis-

Figure 4.

A: Results of the PCA carried out across voxels in V1 in combi-

nation with voxels in V5 for a representative subject. B: The

SCREE plot indicated two significant components falling above

the last large drop of eigenvalues and exhibiting an eigenvalue

larger than 1.0. C: Display of the first and second eigentime se-

ries. D: Factor loading display following orgothonal component

rotation using the VARIMAX criterion. Voxels in V1 exhibit high

loadings on the first PC but low correlation with the second

PC, whereas voxels in V5/MT exhibit high loadings on the sec-

ond and low loadings on the first PC (i.e., simple structure).

First eigentime series therefore represents an average pattern of

functional activation in V1, and the second eigentime series repre-

sents activation in V5. E: Factor loadings display on the extracted

first four components, while only the first two components met

the outlined criteria. Voxels in area V1 are indicated by the blue

bar, voxels in V5/MT are indicated by the red bar. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 5.

Results of the PCA carried out across V2/3 in combination with

V5 and the control regions for a representative subject. A:

SCREE plot following the analysis of voxels in V2/3 in combina-

tion with V5/MT revealed only one significant component. B and

C: Two significant components were observed when V2/3 or

V5/MT was analyzed in combination with the control region.

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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played. The rotated factor loading display (Fig. 4D) indi-
cated that the two components are determined by regional
signal variations. All voxels extracted from visual area V1
exhibited high factor loadings on the first component
exclusively, while all voxels extracted from V5/MT exhib-
ited high factor loadings on the second component. There-
fore, a simple structure of the factor loadings matrix was
achieved. The first and second eigentime series are dis-
played in Figure 4C. Because voxels in V1 exhibited high
factor loadings on the first PC, the first eigentime series
represents functional activation in V1, and the second
eigentime series represents activation in V5/MT.

Euclidean distance between ROIs

In order to test whether spatial proximity between investi-
gated cluster pairs could be a contributing factor in ascer-
taining differences in the number of components, the
squared Euclidean distances between the centers of mass of
each cluster were statistically compared. The results indi-
cated that the number of significant components does not
seem to be directly related to the spatial distance between
the clusters. Although the squared Euclidean distance
between the center of mass in V2/3 clusters as compared to
V1 or V5/MT (median distance ¼ 22.72 mm) was smaller
than between the center of mass in V1 as compared to V5/
MT (median distance ¼ 34.54 mm), the Wilcoxon signed-
rank test across all nine investigated cluster pairs showed
that there was no significant difference in the spatial dis-
tance between investigated cluster pairs resulting in a one-
component solution (n ¼ 5) and cluster pairs resulting in a
two-component solution (n ¼ 4; Wilcoxon Z ¼ �1.461; P <

0.15). Taking into account the results of the PCA over bilat-
eral homologue visual areas as well as the results reported
in this section, it seems unlikely that the number of signifi-
cant PCs can be explained by the spatial distance (or prox-
imity) between voxels (or clusters) exclusively.

PCA across voxels in V1, V2/3, and V5/MTwithin

one hemisphere

In the final analysis step, PCA was carried out across
voxels time series extracted from three distinct visual
regions. To avoid possible slice timing issues, the analysis
was restricted to significantly activated voxels within an
individual slice. Significant functional activation in three
distinct visual regions (e.g., V1, V2/3, and V5/MT) within
the same slice was, however, observed in only one out of
the seven subjects. Therefore, the results presented in the
following chapter should be considered as preliminary
needing further validation.
Figure 6 summarizes the results of the PCA across vox-

els in V1, V2/3, and V5/MT in the right hemisphere.
Although three anatomically distinct visual regions were
included, only two components exhibited eigenvalues fall-
ing before the last large drop on the SCREE plot (Fig. 6B)

and exhibiting eigenvalues larger than 1.00; 17% of the
total variance was explained by the first PC, 9.84% by the
second PC, and 7.2% by the third PC. The ratio of
explained variance between the second and the third com-
ponent pair was 2.65, thus being just below the set thresh-
old of 3.00. In order to explore the regional classification of
the components, the factor loadings matrix was rotated. A

Figure 6.

A: Results of the PCA carried out across voxels in V2/3, V1,

and V5/MT for a representative subject. B: The SCREE plot indi-

cated two significant components falling above the last large

drop of eigenvalues and exhibiting an eigenvalue larger than 1.0.

C: The factor loadings display after VARIMAX rotation indicates

that voxels in V5/MT exhibit generally high loadings on the first

PC, and voxels in V1 exhibit high loadings on the second PC.

Voxels in V2/3 show medium loadings on both components. D:

A regional classification of the components can also be observed

in the eigenimages. Positive factor loadings are displayed in or-

ange; negative loadings are displayed in blue. E: Average BOLD

responses for each stimulation condition extracted from the first

(left) and second (right) eigentime series. The responses based

on the first eigentime series, which represents the average pat-

tern of response in V5/MT, clearly highlight the response selec-

tivity for moving stimuli (conditions 2 and 4). The second eigen-

time series representing functional activation in V1 indicates a

characteristic response in all stimulation conditions. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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visual display of the rotated factor loadings matrix is
shown in Figure 6C. After orthogonal rotation, voxels
located in area V5/MT exhibited generally high positive
factor loadings on the first PC, and low negative factor
loadings on the second PC. Voxels located in area V1
exhibited predominantly high positive factor loadings on
the second PC, and low negative loadings on the first PC.
A large percentage of voxels in area V2/3 displayed low
or medium factor loadings on both PCs. The regional sepa-
ration of the components can also be seen in the eigeni-
mages (Fig. 6D), which incorporated all significantly acti-
vated visual voxels in the right hemisphere. The BOLD
response functions for each of the four stimulation condi-
tions were extracted from the first and second eigentime
series and displayed in Figure 6E. Because the first PC was
dominated by voxels in V5/MT, the first eigentime series
represented mainly functional activation in V5/MT, and
the second eigentime series indicated the pattern of re-
sponse in V1. The response functions on the basis of the
first eigentime series clearly highlighted the selective
responsiveness for moving stimuli (condition 2 and 4) in
visual area V5/MT (i.e., presence of a characteristic BOLD
response following visual motion exclusively). In V1, a
characteristic response was present in all conditions.
Very similar results were observed in the right hemi-

sphere. Here, two components fell before the last large
drop on the SCREE plot whose eigenvalues were above
1.00; 23.78% of the total variance in the data set was
explained by the first PC, 9.2% were explained by the sec-
ond PC, and 6.8% by the third PC. The ratio of explained
variance between the first and the second component pair
was 6.32. The ratio of explained variance between the sec-
ond and the third component pair was 2.4, thus being
slightly below the set threshold. Following orthogonal
rotation of the loadings matrix, a similar pattern of func-
tional connectivity emerged as described in the right
hemisphere. Voxels in area V5/MT are predominantly
correlated with the first PC, whereas voxels in V1 are pre-
dominantly correlated with the second PC. Voxels in V2/3
displayed medium correlations with both components.
These findings indicate that significantly activated visual

voxels identified by conventional activation mapping are
not functionally homogeneous, but can further be classified
according to their functional specialization by PCA. As
expected, voxels in V1 and V5/MT were classified into
two different functional units. Voxels in V2/3, however,
did not reveal an additional component and were associ-
ated with both the PC for V1 and the PC for V5/MT.

DISCUSSION

This study aimed to demonstrate how a regional variant
of principal component analysis can be used to delineate
the known functional subdivisions of the human visual
system. Unlike conventional PCA [e.g., Hansen et al., 1999;
Viviani et al., 2005], PCA was not applied to the entire

fMRI data set but was carried out on several levels of a
cortical network. On each level, the number of significant
components was first identified by means of several crite-
ria. Voxels were then allocated to clusters on the basis of a
common functional involvement. The model of functional
connectivity in the visual system derived by PCA was in
agreement with its well-known functional specialization
and anatomical connectivity.

Methodological Considerations

The regional variant of PCA used in this investigation
should be distinguished from local PCA (LPCA) originally
described by Lai and Fang [1999]. These authors used the
term ‘‘local’’ to describe a PCA carried out across a single
voxel time series in combination with the signal obtained
in the neighborhood of each voxel [Lai and Fang, 1999].
Furthermore, it should be distinguished from hierarchical
regional PCA (HRPCA), which has been used to model
object shape deformations in medical images [e.g., Ham-
arneh et al., 2004]. The use of the terms ‘‘hierarchical’’ and
‘‘regional’’ in this context, however, differs from their use
in the present study. In HRPCA, the overall model of an
anatomical structure is broken down into a set of subpro-
files, which are described by a set of shape measures
(length, orientation, thickness). Structure deformations are
implemented as deformation operators and act on the
shape profiles. PCA is then performed on a set of shape
profiles in order to detect the main modes of variation of
landmark positions as well as the amount of variation. The
term ‘‘hierarchical’’ is used to highlight that each subpro-
file displays a different length (multiscale) and position
(multilocation), hence the term ‘‘regional.’’ In the present
study, the term ‘‘region’’ was chosen to point out that PCA
was applied to ROIs, which were previously selected on
the basis of the activation maps. The term ‘‘hierarchical’’
was used to highlight that PCA was carried out on differ-
ent levels of the visual system (i.e., cluster level, network
level). Therefore, although the overall use of HPCA and
the here-used PCA is similar in that both achieve data
reduction, their terminology is not compatible and the type
of data to which PCA is applied is different (i.e., spatial
coordinates vs. time series).
In the presented study, PCA was carried out as a sec-

ond-level analysis subsequent to functional activation
mapping. The selection of ROIs prior to PCA (hence the
term ‘‘regional’’) has been previously suggested [Pedersen
et al., 1994; Backfrieder et al., 1996]. There are several
advantages of following an ROI approach. Although PCA
can be used to overcome some of the limitations of an ROI
approach, a trade-off exists between its exploratory power
and the interpretability of the results. The number of sig-
nificant components (i.e., PCs explaining above-random
variance) as well as their functional identity are not known
a priori and require posthoc interpretation [Hansen et al.,
1999; McKeown et al., 2003]. Due to the model-free charac-
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ter, however, PCA is unable to distinguish PCs represent-
ing correlated noise from PCs representing stimulus-
related functional connectivity. Furthermore, maximal ex-
ploratory power can only be achieved when no data
reduction occurs and all possible eigenimages are main-
tained. The number of possible eigenimages equals the
number of voxels in the data set if PCA is carried out in
the spatial domain and equals the number of volumes if
PCA is applied in the temporal domain. If no restrictions
limiting the model-free and data-driven character of PCA
are introduced, the interpretability of the eigenimages is
thus virtually impossible.
Using PCA as an ROI analysis enhanced the interpret-

ability of the eigenimages in the following aspects. Ini-
tially, the dimensionality of the data set was reduced by
including only those voxels whose goodness of fit
exceeded the set threshold. Furthermore, significantly acti-
vated voxels generally exhibit a high signal-to-noise ratio.
This not only increased the statistical power of the analysis
but also decreased the probability that the most dominant
PCs reflected structured noise. This assumption was sup-
ported by the observation that within significantly acti-
vated clusters, the voxel factor loadings on the first PC
were positively correlated with the test parameter indicat-
ing the level of response associated with the stimulation
paradigm in the functional activation maps (i.e., SSQ
ratios). On the basis of this finding, it was concluded that
the PCs detected by PCA do indeed reflect real functional
connectivity rather than correlated noise.
The space of possible PCs was then further reduced to a

subspace of significant components by applying various
criteria to the component eigenvalue displays. Two main
criteria had to be satisfied for a component to be signifi-
cant: the Kaiser criterion [Kaiser, 1958] and the ‘‘elbow’’
criterion [Cattell, 1966]. Although both criteria are well
established in the literature, the interpretation of eigen-
value displays is not straightforward and likely to be sub-
jective. The reasons why a combination of these criteria
was chosen over other alternative techniques were the fol-
lowing. Despite being very reliable and objective (i.e., PCs
with an eigenvalue larger than 1.0 are significant), Kaiser’s
rule is very rigid and tends to overestimate the number of
components. Only by combining Kaiser’s rule with more
informal criteria (e.g., the elbow criterion) can an accurate
identification of the number of components be achieved.
Secondly, formal statistical tests for determining the com-
ponent number can only be employed under certain condi-
tions. Most of these formal tests (e.g., chi-square test) are
based on the analysis of the residuals. The chi-square test
is available if maximum-likelihood (ML) or generalized
least-squares (GLS) methods are chosen for factor extrac-
tion. It follows a confirmatory rather than exploratory
approach as the number of factors has to be specified a
priori, after which these components are fitted to the
observed data. If the residuals between the hypothesized
and the observed factor structure are too large, the chi-
square test becomes significant and the testing procedure

needs to be repeated. There are, however, two important
disadvantages of this technique. The chi-square test statis-
tic is calculated under the assumption of joint multivariate
normal distribution. It is, however, still highly discussed
whether the fMRI time series is normally distributed. Sec-
ond, the chi-square test statistic is very sensitive to sam-
ple size, i.e., a large sample size might result in a statisti-
cal significance. Thus, if the chi-square test is used exclu-
sively, the number of components will be overestimated
by far. The question of how many PCs should be retained
has been raised previously by Hansen et al. [1999]. The
authors identified the number of PCs by minimizing the
generalization error. This procedure is computationally
very demanding. It would, however, be interesting to
compare the number of significant PCs found in this
investigation with the technique outlined by Hansen et al.
[1999].
For display purposes and to achieve a better regional

interpretability of the derived components, the factor load-
ings matrix underwent rotation using the VARIMAX crite-
rion. Orthogonal factor rotation does not alter the overall
structure of a solution (i.e., number of significant compo-
nents) and leads to an identical prediction for the covari-
ance matrix of the observed variables as the unrotated so-
lution. By redistributing the factor loadings, voxels are
classified in mutually exclusive brain regions, which can
then easily be interpreted. Due to reasons of simplicity
and generalizability, orthogonal factor rotation (uncorre-
lated components) was preferred to oblique rotation (corre-
lated components). Alternatively, oblique factor rotation
might be used in prospective research to provide a model
that best fits the data as well as to enhance the biological
plausibility of PCA.
Here the more traditional PCA was preferred to the

more recent independent component analysis (ICA) [Mc-
Keown et al., 1998; Calhoun et al., 2001; Thomas et al.,
2002; Beckmann et al., 2005]. Although both of these data-
driven methods aim to decompose a set of signals into a
set of underlying sources, the criterion used for the decom-
position is very different. Whereas PCA identifies underly-
ing variables uncorrelated with each other, ICA assumes
that source signals are also statistically independent (i.e.,
signal in ROI 1 does not contain any information about the
signal in ROI 2). One of the key issues addressed in the
present study was the identification of the number of sig-
nificant components. As with PCA, the number of sources
in ICA is unknown and needs to be estimated. The most
widely used techniques for estimating the number of inde-
pendent components (ICs), however, namely, the Akaike’s
information criterion (AIC) and the minimum description
length criterion (MDL), are based on PCA [McKeown
et al., 1998; Calhoun et al., 2001]. Both criteria make a deci-
sion by trading off the error in the model (i.e., residual
variance) with the complexity of the model (i.e., degrees of
freedom, dfs). The basic principle for deriving significant
components in ICA and in this investigation is thus very
similar (i.e., maintaining components that explain maximal
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variance by disregarding eigenvectors with the smallest
eigenvalues). Contrary to the criteria in the present study,
however, AIC and MDL assume that signals have a Gaus-
sian distribution, an assumption that might not be met
using fMRI data. Furthermore, PCs can be rotated in order
to find a more interpretable set of factors without affecting
the zero correlations between the factors, whereas ICs are
uniquely identified and cannot be rotated. Despite the fact
that PCA seems more suitable for identifying the number
of significant components, to what extent ICA might lead
to a better spatial or temporal separation of the compo-
nents ought to be addressed by future research.

Functional Classification of Voxels in Human

Visual System by PCA

This investigation was motivated by the notion that not
all significantly activated voxels in conventional activation
maps have to be functionally homogeneous and can be
further classified into functional units by PCA. The num-
ber of functionally specialized units in a data set was
assumed to equal the number of significant components.
The data provided good evidence for this assumption.
It was first shown that the subspace of significant PCs

was one-dimensional if PCA was applied to a data set
comprising voxels located in the same visual cluster. This
finding offers direct empirical evidence for a frequently
made hypothetical assumption in conventional univariate
activation mapping, namely, that voxels within a cluster
are functionally homogeneous and thus representing a sin-
gle functional unit or cluster. The high degree of local con-
nectivity further indicates that the univariate analysis of
voxels within clusters is redundant, but that the time series
of voxels within the cluster can be reduced to a single time
series (i.e., the first eigentime series), which represents the
overall functional activation in the cluster.
Second, a single underlying PC was also observed when

PCA was carried out across time series extracted from
bilateral homologue visual regions. Homologue visual
regions are known to exhibit the same functional speciali-
zation [e.g., Wandell and Wade, 2003] and are spatially
separated. This finding not only offered a direct validation
of the technique but also refuted the argument that the
number of PCs might be influenced by the spatial distance
between selected voxels. On the cluster level, one would
naturally expect a high degree of functional connectivity
because all voxels within a cluster belong to the same ana-
tomical region. However, rather than assuming that these
voxels exhibit the same functional specialization, several
methodological reasons might account for a high local con-
nectivity. Due to technical reasons, the noise components
in proximate voxels are more similar than noise compo-
nents in spatially remote voxels. Furthermore, the intrinsic
noise properties (e.g., signal-to-noise ratio) of anatomically
defined ROIs differ between brain regions, which could

enhance functional connectivity within ROIs. Finally, fMRI
data sets are generally spatially smoothed either involun-
tarily (e.g., spatial blurring induced by realignment of
images to template, or motion correction) or voluntarily
(e.g., by smoothing filter). Despite the fact that the images
were not intentionally smoothed with a smoothing filter in
this investigation, the voxel time series were extracted
from the motion-corrected registered images. Smoothing
induced by the spatial realignment could therefore not be
excluded. However, a single significant PC was also ob-
served in bilateral homologue regions, which are spatially
too far apart to be smoothed in a similar fashion. The effect
of smoothing was therefore considered negligible.
So far, the subspace of significant PCs considered has

been exclusively one-dimensional. Further analysis of two
or more distinct visual areas, however, demonstrated that
the number of PCs did indeed depend on the degree of
functional heterogeneity between clusters. Based on cur-
rent knowledge of the visual system, the strongest degree
of functional heterogeneity was expected between the
striate cortex or V1, which is involved in the initial
encoding of a visual stimulus [e.g., Livingstone and
Hubel, 1988; Sincich and Horton, 2004] and the motion-
sensitive area V5 also known as MT [Zeki, 1974; Watson
et al., 1993; Tootell et al., 1995]. As hypothesized, two sig-
nificant PCs were observed when voxels in V1 were ana-
lyzed in combination with voxels in V5/MT. Mathemati-
cally, PCs explain successive maximal variance in a data
set subject to being uncorrelated or orthogonal. Therefore,
the existence of a second component implies that the per-
centage of uncorrelated variance between V1 and V5/MT
is considerably large (i.e., above random). Since each PCs
was dominated by voxels in either V1 or V5/MT (i.e.,
simple structure), one can conclude that both regions
must be functionally distinct. As can be inferred from the
eigentime series, a likely explanation for the existence of
two separate components for voxels in V1 and V5/MT
could be the selective responsiveness of V5/MT following
the presentation of moving stimuli, whereas voxels in V1
displayed a characteristic response in all conditions. A
second component was, however, absent when voxels in
V2/3 were analyzed simultaneously with voxels in V1 or
V5/MT. Along the same line, one could argue that the
absence of a second component implies that the percent-
age of variance explained by the second PC (and uncorre-
lated with the first PC) was negligible. This suggests that
voxels in V2/3 seem to share variance with both V1 as
well as V5/MT and should be considered to be one func-
tional unit.
The absence of an additional component for V2/3 can-

not be explained by issues surrounding the sensitivity of
PCA. A two-dimensional subspace of PCs was also
observed when voxels in V2/3, as well as in V5/MT and
V1, were analyzed in combination with a control region in
the area of the temporal pole. Although likely to be ana-
tomically connected with visual areas, voxels in this region
did not display significant activation related to the stimu-
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lation paradigm and were therefore not expected to dis-
play a significant degree of functional connectivity.
In the final analysis step, it was demonstrated that the

simultaneous analysis of voxels in V1, V2/3, and V5/MT
revealed two significant components. The two compo-
nents were dominated either by voxels in V1 or V5/MT
exclusively, whereas voxels in V2/3 displayed medium
correlations (i.e., factor loadings) with both PCs. One
could therefore conclude that visual region V2/3 might
represent a mediating area transmitting information
between V1 and V5/MT. This finding is compatible with
current neuroanatomical models of visual motion percep-
tion. These models are based on the magnocellular or M
system. The M pathway assumes that the perception of
moving stimuli originates in the retinal Pa cells, which
project through the two lower layers of the Lateral Genic-
ulate Nucleus (LGN) to neurons in layer 4Ca of the
striate cortex. From there, information is conveyed to
neurons in layer 4B. Neurons in layer 4B in turn project
directly to V5/MT and indirectly via neurons in the thick
cytochrome oxidase stripes of V2 [Maunsell and Van
Essen, 1983]. The model of functional connections
revealed by LPCA seems to be compatible with the indi-
rect pathway involving projection from V1 to V5/MT via
V2/3. It is, however, essential to point out that the pro-
posed model of functional connectivity (i.e., ‘‘temporal
correlations between spatially remote neurophysiological
events’’ [Friston et al., 1993]) among visual areas V1, V2/
3, and V5/MT does not allow conclusions on the effective
connections between these areas (i.e., the influence that
one neural system exerts over another either directly or
indirectly [Friston et al., 1993]. For example, the data do
not allow inference of whether visual information is proc-
essed by virtue of projections from V1 to V5/MT through
V2/3 or vice versa. The direction in which the information
is processed within these network components needs to be
further established by alternative statistical techniques such
as regression models or structural equation modeling
(SEM).
There is evidence that the type of data processing car-

ried out prior to the computation of the covariance matrix
strongly affects the nature of the information and the pat-
terns constituting the individual eigenimages. For instance,
Andersen et al. [1999] pointed out that the potential misre-
gistration of signals along the outer edge of the brain
might introduce a large amount of variance, thereby influ-
encing the direction of the PCs in the data space. In order
to minimize the effects of data preprocessing (e.g., inter-
slice interpolation, rendering of images to template), PCA
was applied to voxel time series within individual slices
and subjects. Simultaneous activation of visual areas V1,
V2/3, and V5/MT within a single slice was, however,
observed in one individual subject only (although in both
hemispheres). Hence, the results of the simultaneous anal-
ysis of V1, V2/3, and V5/MT ought to be regarded as pre-
liminary in nature and need to be replicated in prospective
research.

PCA Applied to ROIs: A Generic Tool for

Inferring Functional Homogeneity?

This study aimed to introduce an alternative approach
to using PCA on fMRI data set in order to assess func-
tional homogeneity within and between clusters of signifi-
cant functional activation. The basic analytical framework
was applied to the human visual system to demonstrate
that the known functional subdivisions can be delineated
by the proposed use of PCA. So far, however, the pre-
sented analytical framework seems more of a case study
(i.e., the application of the employed analysis to a specific
cortical system) rather than a generic analysis approach. In
order to postulate the approach as a generic image analy-
sis tool, future research is needed to address the following
aspects.
To receive a first impression of the validity of the model,

PCA was applied to fMRI data on the human visual sys-
tem, which generally displays a high signal-to-noise ratio
in comparison to other systems (i.e., neurocognitive net-
works). It thus remains to be shown that PCA performs
equally well in other cortical networks with a lower sig-
nal-to-noise ratio, such as fMRI data sets coming from cog-
nitive studies. An issue related to the specificity of the
model is its statistical sensitivity. In the present study, it
was demonstrated that PCA was able to distinguish
between fMRI time series extracted from two functionally
distinct visual regions (e.g., V1 and V5/MT) and that it is
potentially quite sensitive even if components are
extracted, which do not meet the outlined criteria. How-
ever, no formal attempt has yet been made to quantify
numerically how different two time series have to be in
order to be represented by a different component. This
could best be addressed using stimulation studies, where
the correlation coefficients between time series can be
altered arbitrarily to examine the effects of this on the
number and regional distribution of the components.
Finally, the analysis was performed for each subject sepa-
rately and within individual slices. Although this approach
minimizes the as yet unknown effects of data preprocess-
ing (e.g., slice-timing correction, spatial normalization) on
the correlation coefficient between the fMRI time series, it
is unsuitable for inferring long-range connectivity or for
the comparison of different subject groups. More work is
therefore needed in order to investigate the effects of pre-
processing and to specify the outlined analytical frame-
work on the group level.

CONCLUSIONS

To conclude, this study addressed an important problem
of univariate functional activation mapping, which is the
allocation of voxels to clusters on the basis of a common
functional involvement. It was demonstrated that not all
voxels in a conventional activation map are functionally
homogeneous but can be further classified into functional
units by PCA. The model of functional connectivity in the

r Ecker et al. r

r 832 r



visual system derived by PCA was in accordance with its
well-known functional anatomy and anatomical connectiv-
ity, thus offering a direct validation of the technique.
Unlike the cognitive subtraction technique, PCA is sensi-
tive to temporal aspects of the time series (i.e., latency of
the response) and does not rely on a model the hemody-
namic response. This makes PCA particularly suitable for
the investigation of brain regions whose response charac-
teristics are less well established. By applying cognitive
subtraction in a voxel-by-voxel fashion, a functional sepa-
ration rather than classification can be achieved. PCA,
however, allows for both functional separation as well as
functional classification.
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