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Abstract: The impact of using motion estimates as covariates of no interest was examined in general linear
modeling (GLM) of both block design and rapid event-related functional magnetic resonance imaging
(fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task-
correlated motion while maximizing sensitivity to true activations. To optimize this process, a combina-
tion of motion correction approaches was applied to data from 33 subjects performing both a block-design
and an event-related fMRI experiment, including analysis: (1) without motion correction; (2) with motion
correction alone; (3) with motion-corrected data and motion covariates included in the GLM; and (4) with
non–motion-corrected data and motion covariates included in the GLM. Inclusion of covariates was found
to be generally useful for increasing the sensitivity of GLM results in the analysis of event-related data.
When motion parameters were included in the GLM for event-related data, it made little difference if
motion correction was actually applied to the data. For the block design, inclusion of motion covariates
had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and
the experimental design. Based on these results, we present a general strategy for block designs,
event-related designs, and hybrid designs to identify and eliminate probable motion artifacts while
maximizing sensitivity to true activations. Hum Brain Mapp 27:779–788, 2006. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

Motion correction is a common step in preprocessing
functional magnetic resonance imaging (fMRI) data in
which small (�1 mm) frame-to-frame head movement is
estimated and removed. The term “motion correction” is
used commonly to mean both the estimation of the rigid
body movement parameters and the subsequent application
of the estimated motion transforms to realign the time series
of brain images. It has been shown that even small head
motion can create artifacts in activation maps when analyz-
ing fMRI data, particularly when the motion is correlated
with the activation paradigm [Field et al., 2000; Hajnal et al.,
1994]. The overall goal of motion correction in fMRI data
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analysis is to maximize sensitivity to true activations in the
ensuing statistical parametric map while minimizing false
activations related to motion.

Jiang et al. [1995] adapted the automated image registra-
tion [AIR; Woods et al., 1992] methods of image registration
for motion correction of an fMRI time series by comparing
each image in the time series to the first (reference image)
and minimizing the variance of the ratio of the voxels of the
two images. This approach, still commonly used today,
gives a set of 6 parameters (x, y, and z translations and
rotations) with which to realign each image of the time
series. Images are then resliced and voxel intensities are
determined from an interpolation scheme using neighboring
voxel values.

Current methods have refined earlier approaches by iter-
atively maximizing a similarity measure between each time
point and a reference image, which is typically either the
first, middle, or last in the series, or else to a template image
that is representative of all images in the series. Tradition-
ally, the last step in motion correction is to reslice each image
to match the reference image using the estimated parame-
ters. Commonly used motion correction tools include AIR
[Woods et al., 1992, 1998a,b], AFNI 3dvolreg [Cox, 1996], FSL
mcflirt [Jenkinson et al., 2002], and statistical parametric
mapping (SPM) realign tools [Friston et al., 1995].

Current approaches to motion correction are imperfect,
however, in part because a change in head position can
cause changes in the magnetic field, leading to nonlinear,
time-varying distortion of the brain image [Friston et al.,
1996]. In addition, motion occurring within the time that it
takes to acquire a brain volume (e.g., the repetition time
[TR], commonly on the order of 2–3 s) cannot be detected
properly and characterized by the realignment methods, as
they assume each scan is a single time point. It thus cannot
be assumed that all motion has been removed by application
of current motion-correction algorithms [Friston et al., 1996].
Uncorrected motion will tend to cause signal changes in the
time series of particular voxels (most commonly those close
to tissue boundaries) that depending on the relative timing
of motion and the experimental paradigm might lead to
artifactual activations. Residual image motion will also have
an impact on the sensitivity of analysis to detect true acti-
vations by adding to the unmodeled error variance. The
extent to which motion produces artifactual activations and
decreases statistical sensitivity in regions of true activation
depends on the experimental design and the nature of the
experimental task. For interactive tasks (e.g., those requiring
a button press response), it is common that some head
motion will correlate with the presentation of task stimuli.
Even in passive tasks, subjects have a greater tendency to
move their head when viewing stimuli, as opposed to rest or
intertrial periods. For block designs, sustained periods of
head displacement may correspond highly with expected
sustained hemodynamic responses during stimulus blocks.
It is this correlation between head displacement and the
experimental task that can lead to artifactual activations,
particularly in areas of the brain with spatially heteroge-

neous signal intensity (e.g., tissue boundaries). In this case, it
may be difficult to detect if activations are true or artifactual
[Field et al., 2000]. Event-related experimental designs can
aid in reducing the problem of motion artifacts [Birn et al.,
1999; Josephs et al., 1997; Zarahn et al., 1997]. If the task is a
brief response to a randomly spaced stimulus as opposed to
a prolonged block of stimuli, motion induced by responding
to the task will have a different temporal shape than the
lagged, smooth hemodynamic response of the blood oxy-
genation level-dependent (BOLD) signal. Signal change due
to motion therefore will not be as highly correlated with the
general linear model (GLM) regressors used to model task-
related signal changes, reducing the risk of false activations
due to motion. Even when motion is uncorrelated with the
predicted hemodynamic response, however, the problem
remains that residual motion-induced fluctuations in the
magnetic resonance (MR) signal will decrease the reliability
of the GLM parameter estimates and therefore decrease
statistical sensitivity.

One solution to this is to include vectors of motion esti-
mates as “nuisance variables” (covariates of no interest) in
the single-subject single-run GLM to account for the vari-
ance due to motion. In simple terms, the GLM for analysis of
a single subject’s data can be specified for each voxel as y
� �X � �M � �, where y is the vector of measured signal
samples, X is the design matrix, which incorporates the time
series representing each modeled experimental effect, M is a
matrix incorporating one or more time series of estimated
motions, � is a residual, or unexplained signal vector, and �
and � are the parameter vectors to be estimated. The matrix
M could either incorporate multiple estimates of motion
(e.g., three translations and/or three rotations), or might
more simply consist of a single global estimate of absolute
estimated motion (e.g., the root mean square value of sepa-
rate motion estimates). Using this general technique, Friston
et al. [1996] found that if activations are detected before
correcting for movement then they are likely to be real
(assuming that they are orthogonal to movement effects).
For these types of activations, including motion parameters
as covariates of no interest should increase the statistical
sensitivity; however, the assumption that motion is orthog-
onal to a task does not always hold. When estimated motion
is correlated with the task design, inclusion of motion esti-
mates as covariates of no interest can reduce the significance
of real clusters of activation, because the motion estimator
can “steal” variance from the regressor(s) modeling the real
hemodynamic response. It is unclear what the magnitude of
correlation between motion and task design must be for this
to have a noticeable impact on statistical significance. Field
et al. [2000] have shown in a phantom study that motion
parameters with a correlation coefficient to the paradigm of
approximately 0.5 can cause spurious activations.

In this study, we compared the effects of different motion
correction strategies on multiple-subject t-statistic images
for both a rapid event-related design and a block design.
Many studies on motion correction in the past have used a
first-level analysis of individual subject data to investigate
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the validity of motion correction procedures. [Birn et al.,
1999; Field et al., 2000; Friston et al., 1996; Grootoonk et al.,
2000; Jiang et al., 1995; Morgan et al., 2001]. Ultimately,
however, the effect of motion correction and analysis tech-
niques on group data analysis is of more relevance to most
researchers. Given the large between-subject variability in
brain anatomy and function, it is not obvious to what extent
results measured at the individual subject level will gener-
alize to group data. This study adds to existing research by
examining the downstream effects of individual-subject mo-
tion correction and covariate analysis on activation clusters
at the multiple-subject statistical level.

Results from three different motion correction processing
pathways were compared to statistical images derived from
non–motion-corrected images. These pathways included: (1)
standard motion correction, consisting of estimation fol-
lowed by realignment of data (MC); (2) motion estimation
and realignment of the images, then including the motion
estimates as covariates of no interest in the individual sub-
ject GLM (MC�COV); and (3) motion estimation without
realigning the images, but including the motion parameters
as covariates of no interest in the GLM (NONMC�COV).
We demonstrate that a combination of these methods can
effectively remove apparent activation likely due to motion
artifact at the multiple-subject level of fMRI data analysis
while maintaining good sensitivity to activations likely to be
true activations, particularly for block-design paradigms.

SUBJECTS AND METHODS

Forty healthy human subjects were recruited through the
local newspaper and chosen by phone screening with an
MRI compatibility form and the Edinburgh Handedness
Survey. The goal was to obtain a sample representative of
the “normal” types of subjects recruited as controls from the
population at large. Subjects ranged in age from 18–50 years,
with number and sex balanced within each decade: 18–29
years, 8 males and 6 females; 30–39 years, 6 males and 6
females; and 40–50 years, 8 males and 6 females. Before
participating, each subject gave informed consent. UW-
Madison’s Human Subjects Committee approved the study
paradigm. These data are part of the Wisconsin Neuroim-
aging Tool Evaluation Resource (WINTER) dataset used to
explore fMRI methodology and data analysis issues.

Functional and anatomic MRI data were acquired. The
functional tasks included a multi-condition block design
task, the N-back task [Casey et al., 1998; Cohen et al., 1997;
Smith et al., 1996] (consisting of 0-, 1- and 2-back trials, 51 s
per block with 10 s of rest between each block and three
blocks of each condition) and a rapid event-related task, the
Go/NoGo task [Garavan et al., 1999; Liddle et al., 2001],
consisting of random intertrial interval (ITI) between 1.5 and
3.5 s, 120 Go trials, and 30 NoGo trials. Functional images
were acquired using a GE/Signa 3T MRI scanner (General
Electric Medical Systems, Waukesha, WI) with a gradient
echo echo planar imaging (EPI) sequence (64 � 64 in-plane
resolution, 240 mm filed of view [FOV], repetition time
[TR]/echo time [TE]/flip angle � 2,000 ms/30 ms/90 de-

grees, 30 � 4 mm interleaved sagittal slices with a 1-mm
interslice gap; 252 whole brain images per scan run for the
N-back task, 203 whole brain images per scan run for the
Go/NoGo task). The signal-to-noise ratio (SNR) of the func-
tional image data averaged over all subjects and over the
entire brain volume was 130 � 50, with a range of 80–250.
This value includes regions of the brain with substantial
inhomogeneity (dropout) artifact so there is substantial spa-
tial variation. Anatomical scans consisted of a high resolu-
tion 3D T1-weighted inversion recovery fast gradient echo
image (inversion time � 600 ms, 256 � 256 in-plane resolu-
tion, 240 mm FOV, 124 � 1.1-mm axial slices), a T1-weighted
spin echo coplanar image with the same slice position and
orientation as the functional images, used for coregistration
of functional data (256 � 256 in-plane resolution, 240 mm
FOV, 30 � 4-mm sagittal slices with a 1-mm gap), and a
T2-weighted fast spin echo image, used for stripping the
skull off the T1-weighted images before coregistration (256
� 256 in-plane resolution, 240 mm FOV, 81 � 2-mm sagittal
slices).

MRI EPI-BOLD data were reconstructed using epirecon, a
program made available by GE Medical Systems to certain
research facilities using its MRI scanners. Reconstructed
functional data were converted to AFNI format and then
slice-time corrected to remove differences in the acquisition
time of different slices. Ideally, slice-time correction and
motion correction should be carried out in combination,
because motion can occur during acquisition of a single
brain volume, thus causing a shift in the position of some
acquired slices but not in others. Currently there are no
widely available techniques that combine the two prepro-
cessing steps. By performing slice-timing correction before
motion correction it is thus possible that interpolation arti-
facts might be introduced into voxel time series that will
effect subsequent GLM analyses. Such a correction is war-
ranted, however, given the relatively large difference in
acquisition time between adjacent slices for an interleaved
acquisition such as that used here (approximately 650 ms),
particularly for the event-related design, in which fairly
rapid changes to the BOLD signal are expected. (With a
more sophisticated, slice-dependent analysis of rapid, event-
related data, inclusion of covariates might be expected to
have a somewhat greater impact.) Previous work [Oakes et
al., 2005] has demonstrated that AFNI yields equivalent
group-wise results to several other leading motion-correc-
tion packages but is faster to execute. Furthermore, the
sinc-like interpolation algorithm used by AFNI introduces
substantially less spatial smoothing than does other compa-
rable software packages. Motion parameters were estimated
and each time series underwent realignment using AFNI’s
3dvolreg command. After the estimated motion parameters
were visually inspected, subjects with extreme motion (	4
mm translation, 	5 degrees rotation) were eliminated. These
values were based on their match with the voxel size with
consideration also for expectations of the spatial resolution
of BOLD responses and the inherent variability between
subjects in brain anatomy. With smaller voxel sizes and
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better (e.g., nonlinear) coregistration techniques, it is possi-
ble that smaller motions would have a more noticeable
impact and thus a lower threshold would be warranted.
Thirty-three subjects deemed to have tolerable motion were
retained. Data were then converted to ANALYZE format
before using fmristat [Worsley, 2002] for the GLM analysis
(although currently fmristat is able to use AFNI-formatted
data directly with a recently added MATLAB toolbox).

In the first-level analysis, each condition of the task was
modeled as a regressor for the GLM formed by convolving
a boxcar (for block design) or delta function (for event-
related design) with an ideal hemodynamic response func-
tion. This first-level analysis was run for four different pro-
cessing pathways using fmristat: (1) as a baseline for
comparison, no motion correction was carried out
(NONMC); (2) the realigned images were analyzed but no
covariates of no interest were included (MC); (3) the re-
aligned images were analyzed and the motion parameters
were included in the GLM as covariates of no interest
(MC�COV); and (4) the non-realigned images were ana-
lyzed and the motion parameters were included as covari-
ates of no interest (NONMC�COV)

Additionally, several alternative covariates of no interest
derived from the estimated motion parameters were tested.
They included: a weighted sum of squares; linearly de-
trended motion parameters; orthogonalized motion param-
eters; derivatives of the motion parameters; and both the
derivatives and the motion parameters themselves. These
options lent no additional insight or sensitivity to the result-
ing statistical images and were not pursued further, al-
though it is possible that with other experimental designs or
with different subject populations, such estimates might
yield additional improvements.

From the first-level analysis, contrast maps were gener-
ated for parameter estimates between pairs of conditions.
These maps were then registered to an Montreal Neurolog-
ical Institute (MNI) template via a coplanar high-resolution
T1 intermediary image using FLIRT software [Jenkinson et
al., 2002]. To define clusters of interest, a group analysis was
run on the non–motion-corrected images from all 33 sub-
jects. Clusters of activation were selected from these images
by thresholding the t-maps at t � 2.0 (P 
 0.054 uncor-
rected). A liberal threshold was chosen deliberately to allow
for measurement of the degree to which voxels that were
only marginally significant before motion correction became
more significant after motion correction (in the case of true
activations) or less significant (in the case of artifacts). Given
that activated voxels might change position slightly with
motion correction, identifying initial regions of interest
(ROIs) with a liberal threshold of P 
 0.05 allowed us to be
overly inclusive for voxels of marginal significance around
the edges of the cluster. This ensured that for the subsequent
analyses using a threshold of P 
 0.01, small shifts in the
cluster location would not cause parts of the cluster to move
outside of the originally defined ROI. Six clusters from the
event-related task and five from the block design task were
chosen to include a variety of shapes, sizes, locations, and

maximal t-values (see Fig. 1 and Table I). Based upon exist-
ing literature on the two tasks, all clusters (except one; see
Fig. 2) were chosen to be physiologically plausible activa-
tions. For the event-related task (Go/NoGo), activation clus-
ters were identified bilaterally in temporoparietal cortex,
inferior frontal gyrus, anterior cingulate, and left motor
cortex. These brain regions have been found to make up part
of a network involved in manual response selection and
inhibition [e.g., Liddle et al., 2001]. For the block-design task
(N-back), clusters were identified bilaterally in the middle
and inferior frontal gyri, as well as bilateral middle and
superior temporal gyri, consistent with previous research on
working memory tasks similar to this one [Cohen et al.,
1997]. In addition, a cluster was identified as a probable
motion artifact, running in a narrow strip around the left
anterior cortical surface (Fig. 2). A binary mask was then
created for each cluster and used to extract results for each
subsequent analysis.

To examine the effects that motion correction and includ-
ing motion covariates in the GLM had on final analysis
results, we focused on both individual contrast estimates as
well as overall group statistics. The individual contrast es-
timates are affected most directly by the different motion
correction procedures, because ideally both motion correc-
tion and inclusion of motion covariates should decrease
noise, thus making contrast estimates more reliable. The
contrast estimates are also what is input to higher-level
group analysis and are thus most relevant to the ultimate
group-level results. Mean contrast values were extracted for
each cluster of interest for each type of motion-correction
pathway, and then entered into a mixed-effects GLM with
subject as a random factor and motion correction and inclu-
sion of covariates as fixed factors. Because motion correction
shifts the position of voxels, comparison of mean contrast
values for a given ROI involves comparison of slightly dif-
ferent sets of voxels, although this difference will be small
relative to the size of the ROIs.

To compare the processing pathways at the multiple-
subject level, a group analysis with all 33 subjects was run to
produce one statistical image for each processing pathway
for each design type. Using the binary mask created with the
non–motion-corrected images (NONMC pathway), clusters
were extracted from each of the other multiple subject sta-
tistical images (MC, MC�COV, and NONMC�COV). Two
groupwise summary statistics were used in evaluating each
motion correction pathway: (1) the maximum t-value of the
cluster; and (2) the cluster volume after thresholding at P

 0.01. This threshold value was chosen because it is com-
monly used as a voxelwise threshold for cluster-based cor-
rection for multiple comparisons, using Monte Carlo simu-
lations, permutation techniques [Hayasaka and Nichols,
2003; Holmes et al., 1996], or random field theory (Worsley
et al., 1996) to determine the minimum number of contigu-
ous voxels that exceed a given (uncorrected) voxelwise
threshold, such that the cluster of active voxels meets a
given corrected � level (these techniques take into account
the spatial correlation within datasets and so result in a more
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accurate corrected threshold than do Bonferroni correc-
tions). These indices were then compared using a mixed-
model GLM with cluster as a random factor, and motion
correction and inclusion of covariates as fixed factors.

RESULTS

Figure 2 shows histograms of the correlation magnitude
between the estimated motion and the model of the task
time course (maximum of the correlations with the three
condition regressors for the block design and correlation
with the Go condition for the event-related design) for each
subject, averaged over the six motion parameters. As ex-
pected, the block design motion parameters had much
higher correlations with the task (mean correlation � 0.22,
standard deviation [SD] � 0.06, maximum � 0.36) than did
the event-related design (mean correlation � 0.09, SD
� 0.02, maximum � 0.13). In fact, the correlations were
universally higher for the block design than for the event-
related design, which supports previous studies showing
that event-related designs decrease temporal correlations
with subject movement [Birn et al., 1999].

Figure 1.
Clusters that were identified and included in the motion correc-
tion analysis for the event-related design (left) and the block design
(right). For the event-related design, these were clusters in the left
prefrontal (dark blue), right prefrontal (yellow), left parietal (red),
right parietal (pink), left motor (green), and anterior cingulate
(light blue) regions. For the block design, clusters were identified

in the right prefrontal (dark blue), left prefrontal (green), left
temporal (pink), and right temporal (yellow) regions. In addition, a
cluster in left prefrontal cortex was attributed to a motion artifact
(red). All images are in radiological convention (i.e., right side of
image � left side of brain).

TABLE 1. Details of the six ROIs examined in the
event-related (Go/NoGo) and block design (N-back)

datasets

ROI location Design
Volume
(mm3) Maximum T

Anterior cingulate Event 21,700 5.28
Left parietal Event 12,300 4.81
Right temporoparietal Event 16,300 4.41
Left inferior frontal Event 7,800 5.06
Right inferior frontal Event 11,400 6.06
Motor Cortex Event 12,000 4.56
Left middle frontal Block 8,900 4.91
Left temporal Block 9,700 4.85
Right temporal Block 5,500 5.28
Right inferior frontal Block 700 3.78
Left frontal (motion artifact) Block 22,600 5.66

All event-related clusters were based on the go vs. no-go contrast.
For the block design, all clusters were based on the 2-back vs. 1-back
contrast, except for the right inferior frontal cluster and left frontal
(motion) cluster, which were based on the 2-back vs. 0-back con-
trast.
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Individual Subject Analyses

For the event-related design, there was no significant
main effect of applying motion correction (F[1,32] � 1.79, P
� 0.19), nor an effect of including motion estimates as co-
variates (F[1,32] 
 1). Linear regression was then used to
assess the degree to which the correlation between motion
estimates and task model for a given subject predicted the
impact on that subject’s contrast estimates of including mo-
tion covariates. The magnitude of correlation between esti-
mated motion and the task model did not relate significantly
to the change in contrast estimates with inclusion of motion
covariates (r � 0.17, P � 0.35).

For the block design, there was no significant effect of
applying motion correction (F[1,32] 
 1), but including mo-
tion estimates as covariates significantly reduced the mean
contrast estimates (F[1,32] � 23.6, P 
 0.0001), indicating a
generally deleterious effect of including motion covariates.
As with the event-related design, the magnitude of correla-
tion between estimated motion and the task model did not
relate significantly to the change in contrast estimates with
inclusion of motion covariates (r � 0.08, P � 0.65). Although
including motion estimates as covariates had a consistent
(negative) impact on contrast estimates, the magnitude of
correlation between estimated motion and the task model
thus did not relate to the amount by which contrast esti-
mates were affected.

Group Analyses

Figure 3 shows both the cluster size and the maximum
t-value of each cluster, for both the event-related and block
designs in the group analyses. For the event related design
(upper graphs in Fig. 3) there was a significant increase in
maximum t-values when including motion covariates as
opposed to not including them (F[1,5] � 30.1, P � 0.003), but
no overall difference when motion correcting versus not
motion correcting (F[1,5] � 1.03, P � 0.35). Cluster size
increased significantly when using motion covariates (F[1,5]

� 39.9, P � 0.001) and increased when applying motion
correction (F[1,5] � 12.3, P � 0.017), although the impact of
covariates was greater than that using motion correction.

The block design task (lower graphs in Fig. 3) shows a
distinctly different pattern. Inclusion of motion covariates
decreased both the maximum t-statistic (F[1,3] � 8.19, P
� 0.064) and cluster volume (F[1,3] � 8.17, P � 0.065; we
report results of marginal significance here, because there is
little risk in falsely rejecting the null hypothesis that all
motion correction techniques are equivalent, but potentially
much to be lost from falsely accepting the null). Motion
correction increased cluster size (F[1,3] � 6.7, P � 0.081)
with the best results, both in terms of maximum t-statistic
and cluster volume, obtained by using motion correction
with no covariate (as evidenced Fig. 4 and by the covariate
by motion correction interaction F[1,3] � 6.87, P � 0.074 for
maximum t; F[1,3] � 8.46, P � 0.056 for cluster volume). The
fact that motion correction alone produced an increase in
t-statistics and cluster volume (compared to no motion cor-
rection) is evidence that these clusters were indeed real
activations rather than motion-related artifacts, because cor-
recting for motion would decrease the significance of arti-
factual clusters. The reduction of activation when including
motion covariates is evidence that the detected motion was
correlated with real activation in these brain regions, and
thus the motion covariates were collinear with the model
task regressors.

Figure 4 shows the effects of applying motion correction
and of including motion estimates as GLM covariates on the
maximum t-value and cluster size of the cluster identified to
be a motion artifact (see Fig. 1) in the block-design study.
Applying motion correction, including motion estimates as
covariates, or a combination of both had a similar effect in
reducing both cluster size and the maximum t-value. Of
particular relevance to devising a general strategy for deal-
ing with motion in fMRI data is how the effect on this
artifactual cluster of applying motion correction alone dif-
fers from the effect on real activation clusters. In this case

Figure 2.
Histograms of correlations be-
tween estimated motion and the
experimental task model for the
block design (left) and the event-
related design (right).
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cluster activation was reduced, whereas with the real clus-
ters activation was increased.

DISCUSSION

A significant effect on group analysis t-values and cluster
sizes was realized depending on whether or not covariates

of no interest were included in the GLM design; however,
this effect depended on the experimental design. In our
study, we used archetypes of both a rapid event-related
study and a three-condition block design (a further investi-
gation could include a well-spaced event-related design, or
a hybrid event-related/block design). As shown in Figure 3,
including confounds increased the sensitivity (as measured
by the maximum t-value in group analysis) compared to
motion correction alone only for the event-related design.
Notably, the event-related design exhibits a low correlation
between the movement parameters and the design model.
Individual subject analyses of event-related data showed no
consistent effect of including covariates. With uniformly low
correlation between estimated motion and the task, the de-
gree to which including motion estimates as covariates im-
proves GLM sensitivity presumably has more to do with
individual differences such as image signal gradients in or
near regions of activation. A given amount of motion in a
subject with large signal gradients thus might have a greater
impact than would the same motion in subjects with rela-
tively uniform image signal intensity. From these analyses it
would seem that small, inconsistent improvements in indi-
vidual subject contrast estimates with the use of motion

Figure 4.
Group analysis cluster volume (left) and maximum t-statistic (right)
for the left frontal motion artifact cluster, as a function of applying
motion correction and including motion estimates as general linear
model (GLM) covariates.

Figure 3.
Thresholded cluster volumes (left) and maximum t-statistics (right)
for the event-related design (top) and the block design (bottom).
Gray bars represent results for non–motion-corrected images
(NONMC), black bars represent motion-corrected images (MC);

cross-hatched bars represent no use of motion covariates (NO-
COV), solid bars denote use of motion covariates (COV). Bars
show results for individual clusters, as well as means across clus-
ters (left-most columns in each graph).
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covariates can nevertheless lead to significantly more sensi-
tive group-level analyses.

Conversely, including the covariates in the analysis of
block-design data reduced the sensitivity of the group t-
statistic results, consistent with the effect of including co-
variates for individual subject contrast estimates. These re-
sults highlight what has been identified as a particular
weakness of block designs [Birn et al., 1999], namely that
subject motion is often correlated with the experimental
paradigm. Including motion estimates as covariates of no
interest in such cases has the effect of stealing much of the
variance that may be due to actual activations, leaving little
extra variance to be assigned to the model and consequently
limiting the magnitude of the final t-statistic parameter.
Field et al. [2000] found correlations of approximately 0.5
can have a deleterious effect when including motion esti-
mates as covariates. In this study, however, the mean cor-
relation between estimated motion and the block-task de-
sign, although higher than for the event-related design, was
only 0.2. For this specific block design there was only 10 s of
rest between consecutive “on” periods; with longer rest
periods one might expect greater correlation between mo-
tion covariates and the task design. This work thus demon-
strates that such paradigm-correlated motion can have an
appreciable effect, even when the correlation is relatively
low (i.e., in the range of r � 0.2). Interestingly however, the
magnitude of correlation between the estimated motion and
the experimental task did not predict the impact of including
covariates on individual subject contrast estimates. For
group analysis involving a moderate degree of task-corre-
lated motion, including covariates thus will have a detri-
mental effect on group analysis results, but it is not possible
to use the degree of correlation for any one subject to deter-
mine whether inclusion of covariates would be advanta-
geous. In this case, applying motion correction but not in-
cluding motion covariates in the statistical model is the safer
way to optimize the sensitivity to true activations.

The main problem with such an approach is that the
residual effects of motion that remain even after careful
motion correction has been carried out can give rise to
spurious apparent activations. Although artifactual activa-
tions that commonly appear along brain edges are identified
easily by visual inspection, the risk is that other artifacts
might exist within the brain and be accepted as true activa-
tions. We observed an increase in the magnitude and extent
of activation for real activation clusters for the motion-cor-
rected images as contrasted with non–motion-corrected im-
ages, but a corresponding reduction in activation for artifac-
tual clusters. One way to identify artifactual from real
activations would thus be to carry out analysis both with
motion-corrected and non–motion-corrected images, and
mark those activations that decrease in significance with
motion correction as probable motion artifacts to be ex-
cluded from further analysis. With rapid motion correction
now possible with current computers, such a dual analysis
approach is relatively straightforward and easily automated.

For the rapid event-related design, we observed an in-
crease in activation magnitude and extent with the inclusion
of motion covariates. For similar designs, including motion
covariates would thus seem warranted as part of a standard
analysis path. For slightly different designs, however, the
decision of whether or not to include covariates is not so
clear. Factors such as the nature of the task itself, the relative
randomization of trials or blocks, the velocity of rapid mo-
tion, and the robustness and strength of real activation will
all affect how the inclusion of motion covariates impacts the
statistical results. For example, for slower event-related de-
signs, there is a greater risk that estimates of motion will
correlate more highly with modeled hemodynamic re-
sponses, and thus begin to have a deleterious effect on
statistical sensitivity. Hybrid fMRI designs, in which ran-
domized sequences of single events are presented within
extended blocks of specific task or contextual conditions, are
also likely to demonstrate some degree of correlation be-
tween motion and modeled responses. In such cases, it is
difficult to know a priori whether including motion covari-
ates will increase or decrease sensitivity. Comparison of
analysis results both with and without motion covariates
would be an appropriate way to maximize detection sensi-
tivity, with the experimenter choosing the results with great-
est activation. Care must be made to screen for artifactual
activations as described above, however, because reduced
activation with the inclusion of covariates could indicate
either the deleterious effects of task-correlated motion co-
variates on estimates of true activation or the beneficial
effects of motion covariates in reducing artifactual activa-
tion.

One possibility that has not been addressed in the current
study is that strong task activation in an extended region of
the brain might lead to spurious motion estimates. This is a
possibility with motion-correction algorithms that calculate
a difference measure between different image frames based
upon the image intensity data. Most current motion-correc-
tion algorithms go some way to addressing this problem
with the use of magnitude-invariant difference measures
such as normalized correlation ratio or mutual information.
Should spurious motion estimates still arise from real brain
activation, however, the effect might be that task-correlated
motion is introduced into the data. This could lead to arti-
factual activations if no motion covariates are used, and
reduction of true activations when including motion covari-
ates. One possibility would be to use a thresholded brain
mask to estimate motion, although the problem with such a
technique is that it is extremely sensitive to small signal
changes at the edges of the mask (which might be due to
motion, noise, or brain activation). Another possibility
would be to re-estimate motion after having masked out
areas of possible activation derived from an individual’s
GLM results. Experimenters might choose to try this if their
statistics show large areas of activation in one region of the
brain and they observe strong correlations between esti-
mated motion and the task design (in this study such high
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correlations were not observed), and thus suspect that esti-
mates of motion might themselves be artifacts.

Given these considerations, the following strategy is pro-
posed for a range of task designs, to separately identify
clusters that are likely to be false activations related to a
residual motion artifact while optimizing statistical sensitiv-
ity for real activations:

1. Analyze group data (i.e., second-level analysis) using
the non–motion-corrected images (NONMC) and iden-
tify clusters of activation.

2. Analyze group data a second time, including the mo-
tion parameters as nuisance variables at the first-level
analysis (MC�COV). (The data we report here indicate
that NONMC�COV could equally be used in place of
MC�COV).

3. Compare the activated clusters of MC�COV (step 2) to
NONMC (step 1). If clusters of interest in MC�COV
are unchanged or increase in significance, then they are
most likely real activations, and motion has been prop-
erly accounted for. Clusters in MC�COV that show
decreases in size or mean t-value, however, are either
due to an artifact related to motion or else the motion
parameters are sufficiently correlated with the task that
they account for some of the real activation variance,
thus reducing the significance of true activations.

4. To identify which of the clusters showing a t-value
decrease in step 3 are most probably artifactual, run the
group analysis a third time using the motion-corrected
images but without the motion parameters as covari-
ates at the first level (MC). In this case, true activations
show an increase in significance, because removal of
actual motion from the image sequence reduces error
variance in the activated voxel time series. Artifacts
caused by motion, however, should show a decrease in
significance due to the reduction in image motion, and
can be excluded from further analysis.

This procedure has the potential to increase the statistical
significance of real clusters of activation even when motion
is correlated with the experimental design, while identifying
probable artifactual clusters caused by motion. Although
such a multistage procedure might seem unwieldy and
slow, with automated batch processing via scripts and with
modern desktop computers it can be accomplished in a
reasonable time. If speed is an issue, then one may use a fast
GLM estimation technique (e.g., one using simple ordinary
least squares [OLS]), such as that provided in AFNI [Cox et
al., 1996]) to identify and mask out motion artifacts before
proceeding to a more rigorous analysis. It is worth noting
that although this multi-step procedure should prove useful
in identifying and eliminating probable motion artifacts, the
experimenter should still base the final decision not only
upon the impact of motion correction and the inclusion of
covariates but also upon a priori expectations of regions of
activation, cluster shape, and size (i.e., being wary of rim
effects), and close examination of the data itself.

A multistep analysis process such as that described above
was not necessary for the event-related design examined in
this study, because inclusion of motion covariates increased
sensitivity for all event-related clusters. Nevertheless, the
procedure outlined above would be advisable with event-
related designs, particularly in cases where the experimenter
is unsure whether the correlation between the experimental
design and subject motion is sufficient to cause problems
when including motion covariates. It is likely that such a
multistep procedure would also be appropriate for widely
spaced event-related experiments, as well as mixed event-
related/block designs (i.e., “hybrid” designs [Donaldson et
al., 2001]), in which the hemodynamic response to at least
some of the experimental events or periods might have
similar temporal characteristics to subject motion.

CONCLUSIONS

Subject motion, whether correlated to the design model or
not, can have a significant impact on the sensitivity of
group-level fMRI data analysis. The judicious inclusion of
motion parameters as nuisance covariates in the first level
GLM can improve sensitivity as measured by t-values and
cluster sizes, as well as improve the detection and elimina-
tion of spurious activations.

This study, using archetypes of a block design and a rapid
event-related design along with various motion-correction
processing pathways, demonstrates the benefits and draw-
backs of including the estimated motion parameters as co-
variates of no interest in the first-level GLM. In a rapid
event-related design where motion parameters show little or
no correlation with the model, it is generally beneficial to
include motion estimates in the GLM. In a block design, or
more generally a design in which motion parameters are
even moderately correlated (r � 0.2 or greater) with the
model, including the motion parameters as covariates can
reduce the sensitivity for detecting activations. Without the
inclusion of motion estimates in the GLM, however, motion
artifacts may persist. The series of processing steps proposed
in this work permits the identification of probable false
activations caused by motion while maximizing the sensi-
tivity to activations likely to be of true experimental interest.
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