
HBM Functional Imaging Analysis Contest Data
Analysis in Wavelet Space

John A.D. Aston,1 Federico E. Turkheimer,2,3 and Matthew Brett4

1Institute of Statistical Science, Academia Sinica, Taiwan
2Imanet, Hammersmith, UK

3Department of Clinical Neurosciences, Imperial College, London, UK
4MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK

� �

Abstract: An analysis of the Functional Imaging Analysis Contest (FIAC) data is presented using spatial
wavelet processing. This technique allows the image to be filtered adaptively according to the data itself,
rather than relying on a predetermined filter. This adaptive filtering leads to better estimation of the
parameters and contrasts in terms of mean squared error. It will be shown that by introducing a slight bias
into the estimation, a large reduction in the variance can be achieved, leading to better overall mean
squared error estimates. As no single filter needs to be preselected, results containing many scales of
information can be found. In the FIAC data, it is shown that both small-scale and large-scale (smoother,
more dispersed) effects occur. The combination of small- and large-scale effects detected in the FIAC data
would be easy to miss using conventional single filter analysis. Hum Brain Mapp 27:372–379, 2006.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

The Functional Imaging Analysis Contest (FIAC) at Hu-
man Brain Mapping 2005 provided those interested in meth-
odology a unique opportunity to showcase the latest forms
of analysis available for functional magnetic resonance im-
aging (fMRI) data. As can be seen in the other articles in this
issue, there are many and varied techniques for this analysis.
This article examines a recent mathematical methodology,
wavelets, adapted for use in neuroimaging [Ruttimann et al.,

1998; Turkheimer et al., 2000a,b, 2003], which is steadily
gaining popularity.

The techniques used in the FIAC could be broadly cate-
gorized into three different classes. First, there are the tem-
poral models, which primarily focus on the task of tempo-
rally modeling the fMRI time series. The second class is that
of spatial models, of which the method proposed here is an
example. These tend to use more standard temporal models,
although usually any temporal model can, in principle, be
used. The temporal models are combined with spatial tech-
niques to enhance the signal and allow deductions to be
made based on spatial information in addition to the tem-
poral information. The third class is that of spatiotemporal
models, where both the time and space elements of the data
are modeled simultaneously and often nonparametrically.
Intrinsically all three classes deal with spatiotemporal data,
the distinction really concerns the separation or not of the
spatial and temporal processing.

Wavelets are a recently introduced mathematical tool for
the treatment of signals with nonperiodic behavior (e.g., a
hammer blow, an airplane flyover noise). Compression for-
mats based on wavelets, such as the new JPEG2000 [Taub-
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man and Marcellin, 2001], are very efficient in dealing with
not only pictures but also text (that can be seen as a set of
local bursts of signal on a white canvas). The counterpart of
the wavelet transform is the Fourier transform that achieves
optimal encoding of periodic signals (e.g., radiowaves). The
use of wavelets for data encoding, transmission, and com-
pression is now pervasive in many fields such as the mili-
tary, astronomy, and medical electronics.

As mentioned, the wavelet techniques used in this study
will be concerned with spatial modeling. A spatial transform
of the data will be taken and this transform will be analysed
to produce the underlying parameter estimates associated
with the tasks under investigation in the FIAC dataset.
Wavelets have underlying properties that allow the en-
hancement of signal-to-noise ratios in certain classes of sig-
nal, and fMRI data happens to be well represented in these
classes.

There are many articles on the virtues of using wavelets in
neuroimaging in a spatial context [Aston et al., 2005; Csele-
nyi et al., 2002; Müller et al., 2003; Ruttimann et al., 1998;
Turkheimer et al., 1999, 2000a,b, 2003; Van De Ville et al.,
2004]. There is also a large literature on the use of wavelets
in the temporal dimension (see Bullmore et al. [2003] for a
review of both spatial and temporal wavelet methodology in
neuroimaging). We will not attempt to give a lengthy tech-
nical discussion of the merits of using wavelets, but rather
refer the interested reader to the previous references and
those contained therein. It is our purpose to explain the
basics of wavelet analysis, its intrinsic advantages, and how
wavelets can be used easily. This will be demonstrated
through the use of the FIAC datasets. In addition, it will be
shown how the results of the wavelet analysis differ from
some of the other standard analyses often used in the exam-
ination of neuroimaging data.

The rest of the article is organized as follows. A brief
introduction to spatial wavelet analysis in neuroimaging is
given, followed by the methodology, including preprocess-
ing, that was undertaken on the FIAC data. The details of the
alternative methods of analysis that were compared will also
be included here. The results of the analysis will then be
given, and finally some concluding remarks on both the
applicability of the wavelet techniques to the FIAC data and
their suitability for application in other contexts.

MATERIALS AND METHODS

Wavelet Analysis

There are many good expositions of the mathematical
derivation of wavelets, including Mallat [1999], Vidakovic
[1999], and Percival and Walden [2000]. Therefore, these
derivations and underlying methods will not be reproduced
here, but rather a description of wavelet methodology spe-
cific to neuroimaging data will be given. The intention is not
to provide a rigorous exposition of wavelet techniques, as
excellent examples of these can be found in many of the
articles referenced in the introductory section, but rather to
provide a framework for intuitive understanding of the role

that wavelets play in the analysis for those who prefer a less
technical description.

fMRI data can be thought of as a four-dimensional data-
set—three spatial dimensions and one temporal dimension.
While a wavelet transform can be taken of any of these
dimensions, three-dimensional spatial transforms will be of
interest in this article. Spatial transforms operate in each of
the spatial dimensions. This is usually through transforms
that operate separately on each dimension, although tech-
niques that combine dimensions have also recently been
introduced in image processing and neuroimaging [Van De
Ville et al., 2005]. Figure 1 illustrates the transform in three
dimensions. This is a two-level transform. First, a high and
low pass filter are applied to the data in each dimension,
giving eight possible combinations of filtering (HHH, HHL,
HLH, HLL, LHH, LHL, LLH, LLL). These are indicated by
the eight resulting blocks. The transform is then applied
again to the block of data (now half the size in each dimen-
sion) that corresponds to the LLL filter combination, result-
ing in a further eight blocks, as can be seen in the second
level transform in the figure. This can be carried on until
there is no more data to filter (given that the data dimension
size was a power of two in each dimension). In practice, in
neuroimaging it is assumed that only signal is present after
a small number of filtering steps (levels), often taken to be
about four.

It is well known in neuroimaging that when trying to
estimate a signal of a known width, the width of the filter to
be used should match that of the signal [Worsley et al.,
1996]. However, in practice the signal in neuroimaging is
usually of an unknown size and may occur in different
places with different sizes, making it difficult to choose any
one specific filter. This problem has been known for some
time and methods have been proposed to overcome it
[Worsley et al., 1996]. Wavelets offer an alternative “data
driven” filter size. Each resolution, or level of decomposi-
tion, corresponds to a different filter size. Each wavelet
coefficient can then be tested as to whether that coefficient is
signal or noise, and appropriate steps based on this test can
then be taken (see below). This can be viewed as a spatially
adaptive model where the data helps determine which filter
should be associated with each area.

Figure 1.
Graphical representation of the 3-D wavelet transform.
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There are other advantages of transforming the data using
the wavelet transform. The properties of the wavelet trans-
form allow more informed modeling of the data as signal
tends to be represented by a small number of coefficients,
whereas the noise tends to be spread evenly throughout the
wavelet coefficients. This is even true when the noise is
correlated in the image domain. As can be seen in Figure 2,
the wavelet transform can decorrelate the data. Here simu-
lated noise was generated with a 6-mm Gaussian full-width
at half-maximum (FWHM). This is often assumed to be the
underlying spatial correlation structure in an fMRI dataset.
As can be seen, the image space correlation function is a
6-mm Gaussian kernel. However, when the data are trans-
formed into wavelet space, the correlation between wavelet
coefficients is significantly reduced, and thus many statisti-
cal procedures that would be difficult to perform on corre-
lated data can now be performed on these essentially uncor-
related wavelet coefficients.

The two properties above lead to the most significant part
of the wavelet analysis. Having performed a wavelet trans-
form of the data, direct application of the inverse wavelet
transform returns the original data. Indeed, even if linear
temporal modeling is performed (such as the general linear
models popular in Statistical Parametric Mapping (SPM)
[Ashburner et al., 1999] and other packages), and the subse-
quent parameter estimates transformed with the inverse
wavelet transform, the resulting image space estimates will
be identical to those estimates obtained using the same
general linear model in image space, as if the wavelet trans-
form was never performed. However, the decorrelation and
sparse representation properties of the wavelet transform
allow a thresholding step to be undertaken before the return
inverse transformation of the parameters.

Thresholding the wavelet coefficients allows the estimates
back in image space to have different properties compared
with those of the underlying linear model. The temporal
linear models of the type used in SPM are concerned with
unbiased estimation. This, in effect, means that on average
the estimated parameter will be the true value (given that
the assumptions of the model are true). Indeed, the estimates
obtained from these linear models are the “best linear unbi-
ased estimates,” meaning that the variance of these esti-
mates is minimal for all linear estimators that give unbiased
estimates. However, there are different metrics for measur-

ing whether an estimate is good or not. An alternative metric
is that of Mean Squared Error (MSE) [Rice, 1995]. Here, both
the bias of the estimate and the variance of the estimate are
taken into account and their combined total (bias2 � vari-
ance) is compared. An estimator is said to be better if the
MSE is less than another estimator. This can be simply
thought of in terms of a target (Figure 3).

In the first target (left target), the overall average is unbi-
ased (i.e., is in the centre) but the individual estimates can be
a long way from the centre itself, whilst in the second target
(right target), the average of the estimates is no longer the
centre of the target (i.e., the estimates are biased) but each of
the individual estimates is close to the centre of the target.
Using an MSE metric, the second estimator would be char-
acterized as better than the first estimator even though the
second is a little biased. Indeed, SPM first smoothes the data
to try to gain better MSE estimates and then uses linear
models to fit the data; however, wavelet analysis provides
adaptive smoothing compared with the fixed kernel smooth-
ing of SPM. A large reduction in variance can be achieved
using a large width filter, but this will lead to large bias.

Wavelet thresholding works on the principle of trying to
find estimates that improve the MSE of the parameters.
Different thresholding schemes can be used, such as nonlin-
ear thresholding, where a wavelet coefficient is kept or
removed depending on whether it is deemed to contain
signal, or linear shrinkage, where the wavelet coefficients
are shrunk towards zero depending on the level of noise

Figure 2.
Simulated Gaussian 6-mm noise image and the corresponding estimated spatial correlations in image
space and wavelet space. As can be seen, the wavelet space has greatly reduced correlation.

Figure 3.
Diagrammatic representation of estimators with different mean
squared error properties.
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they contain. Depending on the data and the underlying
signal under investigation, different thresholders will have
better or worse MSE properties. In the analysis of the FIAC
data, linear shrinkage was used, as it has been shown to
have better MSE properties for neuroimaging data than
either unbiased estimators or those of nonlinear threshold-
ers [Turkheimer et al., 2003].

Until recently, it had not been possible to obtain estimates
of the variance or statistics of the parameters after the wave-
let analysis. However, this problem has now been alleviated
in different ways [Aston et al., 2005; Van De Ville et al.,
2004], and there are now quantifiable error components
associated with these estimates.

The above ideas lead to the following implementation
(available in the Phiwave toolbox for SPM). Figure 4 gives the
schematic for the analysis. The input data for the analysis is
the result of standard spatial preprocessing, but omitting the
final stage of spatial smoothing that is common in voxel-
based analyses. First, the wavelet transform of the original
preprocessed data is taken. We refer to the wavelet trans-
formed data as being in wavelet space. The resulting wavelet
coefficients are then temporally modeled using standard
methods, and the associated parameter estimates, their error
variances, and residuals are calculated. Using these esti-
mates and error variances in wavelet space, thresholding of
the parameters is carried out, as is thresholding of the re-
siduals. The parameters and residuals are then transformed
back to the image domain using the inverse wavelet trans-
form to recover parametric images and variance maps in the
original image space [Aston et al., 2005].

We implement random effects (cross-subject) analyses us-
ing the same approach as standard voxel-based packages:
the input images are contrast images from a preliminary
single subject analysis for each subject. The images can be
the wavelet space unthresholded contrast images from a first
level wavelet analysis, as above. Note that we obtain an
identical set of images from taking the wavelet transform of

the contrast images from a voxel-based analysis that has
used unsmoothed data.

Here we describe our own implementation of spatial
wavelet analysis, instantiated in the Phiwave toolbox. We
should also note that there is an excellent alternative method
for doing spatial wavelet analysis—WSPM—that is also
available as an SPM toolbox. WSPM is based on the methods
determined in the article by Van De Ville et al. [2004]. While
the principles are a little different from those in this article
and the schematic of the Van De Ville et al. approach would
vary slightly from ours (including methods to generate p-
values back in the image domain), the overall methodology
is again aiming to take advantage of the signal representa-
tion properties of the wavelet transform.

Methodology for FIAC Data

In order to compare the results of the Phiwave wavelet
analysis with a voxel-based method, we analysed the FIAC
data using a standard Phiwave procedure and a standard
SPM2 procedure. The experimental paradigm can be found
in the first article in this issue [Dehaene-Lambertz et al.,
2006]. The spatial preprocessing is identical for the two
analyses, and was also based on SPM2, as the Phiwave tool-
box imports the results of SPM preprocessing. Thus, the
preprocessing procedure documented here is not specific to
the Phiwave analysis, and is applicable to any dataset with
the components contained in the FIAC dataset.

For simplicity, we only present results for the block ver-
sion of the experiment. The event-related version can also be
analysed in a similar fashion.

Preprocessing

We have described the preprocessing for these data at
http://Phiwave.sourceforge.net/fiac/; this page includes
batch scripts to reproduce the analysis. In what follows we
refer to subjects using the subject numbers given by their
directory in the data provided. For example, the first subject
will be fiac0.

First, we excluded session 3 for subject fiac10, as the notes
for the dataset commented that the subject was asleep dur-
ing this session.

All the time series were reviewed with the tsdiffana util-
ity http://www.mrc-cbu.cam.ac.uk/Imaging/Common/
downloads/SPMUtils/tsdiffana.tar.gz. This found a large
number of high variance spikes within subject fiac8 and this
subject was excluded from subsequent analysis. The datasets
were then corrected for slice timing effects, and corrected for
EPI distortion using the Fieldmap toolbox http://www.fil.io-
n.ucl.ac.uk/spm/toolbox/fieldmap/. As subjects fiac0, fiac5,
and fiac11 did not have fieldmaps, these were also eliminated
from subsequent analysis. The remaining datasets were then
realigned and unwarped with the Unwarp toolbox http://
www.fil.ion.ucl.ac.uk/spm/toolbox/unwarp/. We segmented
the anatomical image for each subject into grey matter, white
matter, and cerebrospinal fluid (CSF), and normalized the re-
sulting definition of grey matter to the grey matter MNI tem-

Figure 4.
Schematic of the underlying methodology for the PhiWave analysis.
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plate. We then resliced the EPI images to match the template
using the normalization parameters.

Statistical analysis in SPM2

For the SPM http://www.fil.ion.ucl.ac.uk/spm/ analysis,
additional 5-mm Gaussian spatial smoothing was per-
formed on the data for single subject analysis, and 10-mm
Gaussian smoothing for the random effects analysis. We set
up a model by defining the five conditions given in the
documentation for the data:

• Same Sentence-Same Speaker (SSt_SSp): a given sen-
tence said by the same speaker was repeated six times;

• Same Sentence-Different Speakers (SSt_DSp): a given
sentence was repeated by six different speakers (three
males, three females);

• Different Sentences-Same Speaker (DSt_SSp): a given
speaker produced six different sentences;

• Different Sentences-Different Speakers (DSt_DSp): six
different speakers (three males, three females) produced
six different sentences.

• First Sentence in each block (FSt).
We modeled the events from each condition using the

standard SPM HRF (Haemodynamic Response Function)
method, which generates one regressor for each event,
where each regressor consists of delta functions at the
time of each event onset convolved with the standard
HRF. To this model we added six columns of movement
parameters (translations and rotations relative to the first
scan in the session), giving 11 columns of regressors per
session. We used a 120-s high pass temporal filter, and
ordinary least squares estimation was used in the data
fitting.

If we then use the condition labels to refer to the param-
eter estimates for the regressor for that condition, we can
express the main effect of Sentence in the usual way with
this contrast: (DSt_DSp � DSt_SSp) – (SSt_DSp � SSt_SSp).
The main effect of Speaker is given by (DSt_DSp � SSt_DSp)
– (DSt_SSp � SSt_SSp), and the interaction can be expressed
by (DSt_DSp – DSt_SSp) – (SSt_DSp – SSt_SSp). One possi-
ble interpretation of a positive value for such an interaction
could be that there is a greater (more positive) difference
between same and different sentences when the speaker also
changes than when the speaker stays the same. The contrasts
here could be expressed differently or expanded to include
those with repetition priming from the first sentence, but as
the main interest is that of differential response to speaker
and sentences, these will not be reported.

We initially applied the default SPM intensity threshold
masking for the SPM analysis. This has the effect of cutting
off the activation signal near the edges of the brain. There-
fore, it was deemed better not to apply the masking, even
though this was a slight departure from the default standard
analysis. Thus, the data were reanalysed using only a mask
of voxels within the template brain and without threshold
intensity masking and these are the SPM analyses presented
here.

Phiwave analysis.

The Phiwave analysis consists of selecting a saved SPM
model and estimating this in wavelet space. Thus, the tem-
poral model for the Phiwave analysis was identical to the
SPM2 model used. Phiwave automatically transforms the
unsmoothed image data into wavelet space, before estimat-
ing the temporal model. Battle-Lemarie wavelets, a class of
wavelet functions that have been shown to be good for
neuroimaging signals [Turkheimer et al., 2000a,b], were
used in the transform. Four levels of decomposition were
used; the elements in the lowest—and smoothest—level
(known as approximation coefficients) were not subject to
thresholding, as all these were regarded as signal. After the
estimation of the temporal model, all of the other wavelet
coefficients (detail coefficients) were subjected to Stein linear
shrinkage as shown in Turkheimer et al. [2003]. The proce-
dure for estimating variance maps in Aston et al. [2005] was
also applied. These steps are summarized in the schematic of
Figure 4.

Website

The associated Phiwave software for use with SPM (as an
SPM toolbox) can be found at http://phiwave.sourceforge.net

RESULTS

It should be first noted that most of the results were
consistent between the two methods of analysis. This is not
particularly surprising, as they are both using parameters
determined from the same temporal linear model, and while
the spatial smoothing differs, both have previously been
shown to model the data well. To illustrate the results of
Phiwave analysis compared to SPM, we used the FSt (first
sentence) contrast, as we were expecting strong bilateral
activation in the auditory cortex at the single subject and
random effects levels. We next show the results of the main
effects and interaction of the Sentence and Speaker factors. All
results are shown in neurological convention.

Figure 5 shows the contrast estimates for both the SPM
and the Phiwave analysis for the contrast of first sentence
against rest for a single subject, while Figure 6 gives the
same images for a random effects analysis. We simply used
the first retained subject in the analysis (fiac1) as the example
single subject. As can be seen, and as expected, there are
large effects bilaterally in the auditory cortices, in both single
subjects and also in the overall combined random effect
analysis. It can also be seen that there are only small differ-
ences in the effects map (top images) between the two anal-
ysis methods in this case. The main advantage of using the
wavelet shrinkage methods is to improve mean squared
error. As can be seen in Figures 5 (middle) and 6 (middle),
this is achieved by a large reduction in the variance from the
standard analysis to the wavelet analysis. This reduction (in
terms of standard deviation) was about 40% for the single
subject analysis and 25% for the random effects analysis, on
average across the brain. These reductions in variance were
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consistent or greater across all contrasts, not just the first
sentence vs. rest contrast.

The pseudo t-statistics for the single subject analysis can
also be calculated (Fig. 5, bottom) and as can be seen, the
wavelet statistics are similar to the t-statistics from the stan-
dard analysis. There is slightly more structure present in the
map from the wavelet analysis, as the smoothing has been
adapted to the data, rather than using a predefined filter.

In Figure 7 the main effects of speaker and sentence type
are compared. It can be seen that while there is little main
effect of speaker, there is a pronounced left-sided effect in
response to same sentences vs. different sentences. These
findings were also observed in the standard analysis, al-
though the pattern was less smooth. Given the nature of the
random effects analysis, smoother results might be deemed
more appropriate, as there is generally considerable anatom-
ical variance across subjects after standard spatial normal-
ization.

For some contrasts, the results were not completely con-
sistent between the two types of analysis. This can be most
clearly seen in the random effects analysis of the interaction
between the main effects of speaker and sentence type,
which is shown in Figure 8. Both analyses pick out local
effects of interaction, but in the Phiwave analysis, there are, in
addition, more disperse, smoother effects that are not clearly

Figure 7.
Random effect images (effect size) for (left) PhiWave and (right)
SPM2 for the main effects of interest (top) DSt-SSt and (bottom)
DSp-SSp. As can be seen, there is little effect of different speakers,
but there is a large left-sided effect for different sentences vs. same
sentence. These findings were consistent between both methods
of analysis.

Figure 5.
Single subject images for (left) PhiWave and (right) SPM2. This is
the contrast of first sentence vs. rest. Effect (top), std of effect
(middle), (pseudo)-t statistic (bottom). As can be seen, there is
clear activation in the auditory cortex, as expected. There is also
a large reduction of the variance when using the wavelet transform
compared with the standard SPM2 analysis.

Figure 6.
Random effect images for (left) PhiWave and (right) SPM2. This is the
contrast of first sentence vs. rest. Effect (top), std of effect (middle),
(pseudo)-t statistic (bottom). As can be seen, there is clear activation
in the auditory cortex; this is also seen in the single subject analysis.
There is a large reduction of the variance when using the wavelet
transform compared with the standard SPM2 analysis.
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seen in the SPM analysis. The Phiwave analysis identifies an
interesting network of areas in the ventral visual stream and
supplementary motor area, as well as ventral and medial
prefrontal cortex.

This would imply that different speakers did modulate
the responses to the sentence type over rather large areas,
rather than a few sharply defined locations. A fixed width
10-mm smoothing kernel was used in the SPM analysis,
while the wavelet analysis adapted the smoothing to the
data and therefore was able to reconstruct both small- and
large-scale signals efficiently.

DISCUSSION

In this study a practical analysis of the FIAC data was
performed using the wavelet techniques that make up the

Phiwave analysis package. It has been shown that dramatic
reductions in the variance of the contrasts can be achieved
through the use of wavelet shrinkage. As the amount of
shrinkage is determined from the data, the methodology can
be seen to be data adaptive. This is different from standard
techniques where the amount of filtering is predetermined
before the size of the underlying signal is known.

The differences in the approach to filtering can lead to
differences in the estimation of the effects, and this was most
noticeable here in the FIAC data with regard to the random
effect maps. The standard analysis found effects that were
somewhat localized, whereas the Phiwave analysis estimated
both localized and also smoother, more dispersed effects.

It should be remembered that when using analysis based
on trying to minimize an MSE criterion, the subsequent
estimates of the effects may be biased. This can be noticed in
the differing ranges for the SPM and wavelet analysis. For
wavelet analysis, the size of the effect is reduced, but this
gains the advantage that the variance is also greatly reduced.
As can be seen, the statistic images are in similar ranges,
even though the effects are different sizes, due to the shrink-
age steps used to reduce the variance.

Wavelet analysis in the spatial domain provides a power-
ful tool to search for signals of unknown sizes. The enhance-
ment of analysis provided by these techniques will allow
neuroscientists to understand the brain on many scales, as
the data no longer needs to be considered using only one
size of filter.
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