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Abstract: Predictive modeling of functional magnetic resonance imaging (fMRI) has the potential to
expand the amount of information extracted and to enhance our understanding of brain systems by
predicting brain states, rather than emphasizing the standard spatial mapping. Based on the block
datasets of Functional Imaging Analysis Contest (FIAC) Subject 3, we demonstrate the potential and
pitfalls of predictive modeling in fMRI analysis by investigating the performance of five models (linear
discriminant analysis, logistic regression, linear support vector machine, Gaussian naive Bayes, and a
variant) as a function of preprocessing steps and feature selection methods. We found that: (1) indepen-
dent of the model, temporal detrending and feature selection assisted in building a more accurate
predictive model; (2) the linear support vector machine and logistic regression often performed better
than either of the Gaussian naive Bayes models in terms of the optimal prediction accuracy; and (3) the
optimal prediction accuracy obtained in a feature space using principal components was typically lower
than that obtained in a voxel space, given the same model and same preprocessing. We show that due to
the existence of artifacts from different sources, high prediction accuracy alone does not guarantee that a
classifier is learning a pattern of brain activity that might be usefully visualized, although cross-validation
methods do provide fairly unbiased estimates of true prediction accuracy. The trade-off between the
prediction accuracy and the reproducibility of the spatial pattern should be carefully considered in
predictive modeling of fMRI. We suggest that unless the experimental goal is brain-state classification of
new scans on well-defined spatial features, prediction alone should not be used as an optimization
procedure in fMRI data analysis. Hum Brain Mapp 27:452–461, 2006. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

Data from functional magnetic resonance imaging (fMRI)
are extremely rich in signal information but poorly charac-
terized in terms of signal and noise structure [e.g., Lange et
al., 1999; Skudlarski et al., 1999]. The dominant fMRI anal-
ysis methods so far focus on the detection of the spatial
activation pattern and take advantage of only part of the
signal information of the datasets. Motivated by the latest
developments in machine learning, predictive modeling of
fMRI data has the potential to expand the amount of infor-
mation extracted and to enhance our understanding of brain
systems by predicting brain states, rather than emphasizing
the standard spatial mapping.

There are several other reasons to consider predictive
modeling for fMRI data. First, from a Bayesian perspective
there is no obvious advantage in estimating a spatial sum-
mary map from a priori knowledge of the experiment over
trying to estimate these experimental parameters from the
input patterns [Morch et al., 1997]. Second, prediction accu-
racy, which is potentially unbiased through cross-validation,
can be used along with other metrics (e.g., spatial pattern
reproducibility) as a data-dependent means of methodolog-
ical validation [LaConte et al., 2003]. This validation reduces
the likelihood of false insights due to limitations in acquisi-
tion or processing by uncoupling the testing of the “quality”
of functional neuroimaging results from interpretations
based on the neuroscientific knowledge base and associated
neuroanatomic hypotheses [Strother et al., 2002, 2004].
Third, predictive modeling explicitly uses the assumption
that we have more reliable knowledge about the temporal
aspects of the data than the spatial activation patterns. This
is the same assumption implicitly used for generating Sta-
tistical Parametric Images (SPIs), interpreting “data-driven”
results, and modeling the hemodynamic response.

The number of investigations into predictive modeling of
neuroimaging data has grown over the years [Haxby et al.,
2001; Haynes and Rees, 2005; LaConte et al., 2005; Mitchell et
al., 2004; Morch et al., 1997; O’Toole et al., 2005]. This par-
allels the increased use of such machine learning techniques
in science [Mjolsness and DeCoste, 2001]. For example, the
software package NPAIRS (Nonparametric Prediction, Ac-
tivation, Influence, and Reproducibility reSampling), intro-
duced by Strother, provides a formal predictive modeling
framework for exploring multivariate signal and noise struc-
tures of neuroimaging data [LaConte et al., 2003; Shaw et al.,
2003; Strother et al., 2002, 2004]. The high-dimension, low-
sample characteristics of fMRI data have also attracted the
interest of more traditional machine learning groups.

In the context of predictive modeling, the goal of fMRI
analysis is to learn a function that predicts a variable of
interest (brain states or volume label, e.g., does a volume
belong to a block where the subject was listening to the same
sentence or to different sentences?) from features (e.g., vox-
els) of training samples. Given the high dimensionality of
the feature space and the small sample size of fMRI datasets,
“overfitting” (learning an overly complex classifier that has
no predictive power on new samples) is a major issue. One

way to avoid this is to use models with a relatively strong
bias toward low complexity that are less susceptible to noise.
This study considers five such models including linear dis-
criminant analysis (LDA � Canonical Variates Analysis),
Gaussian naive Bayes (GNB), GNB_pooled (a variant of
GNB), logistic regression (LogReg), and linear support vec-
tor machines (SVM). The performance of these models in
classifying and differentiating brain states was investigated
on the basis of the Functional Imaging Analysis Contest
(FIAC) data as a function of preprocessing steps and feature
selection methods. A standard GLM analysis was also run as
a baseline for comparison. The basic description of the fMRI
experiment, subjects, and data acquisition methods related
to the FIAC can be found in Dehaene-Lambertz et al. [2006].
Our study uses only the block data provided for Subject 3.

MATERIALS AND METHODS

Preprocessing

Before feeding the functional data into a predictive model,
we aligned each fMRI volume using the 3dVolReg program
in AFNI (http://afni.nimh.nih.gov), spatially smoothed
each axial slice in these volumes using a 2D Gaussian filter
with an in-plane full-width half-maximum (FWHM) of 6
mm, normalized the intensity by grand-mean-session scal-
ing [Gavrilescu et al., 2002], and removed temporal trends
and experimental block effects within a GLM framework as
suggested by Holmes et al. [1997]. The temporal detrending
was performed in NPAIRS by using a linear combination of
four cosine basis functions with a cutoff value of 2 cycles.

In addition to the above-noted preprocessing, we also
removed several combinations of the following three types
of volumes from the data before analysis: 1) volumes ac-
quired during transitions between experimental states; 2)
the two volumes following a positive transition to an active
experimental state; 3) the remaining baseline volumes. Such
volume removal simplifies class assignments, reduces ef-
fects of the hemodynamic response function (HRF), and also
removes potentially nonstationary first sentence effects. Ex-
ceptions or deviations required for specific modeling tech-
niques will be discussed in their respective sections.

A mask for the whole brain was generated using the
3dAutomask program in AFNI and applied prior to process-
ing. In addition, a secondary mask omitting the lower 13
slices of the brain was also included to remove significant
artifacts that we could not satisfactorily correct.

Classification Problem

In predictive modeling settings, the analysis of fMRI is
essentially a classification problem. There are four condi-
tions for the FIAC data (C1: same sentence, same speaker;
C2: same sentence, different speaker; C3: different sentence,
same speaker; C4: different sentence, different speaker) [De-
haene-Lambertz et al., 2006]. Hence, it is natural to treat it as
a 4-class problem with the volumes in the same condition
being assigned the same class label (1, 2, 3, or 4). Two 2-class
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problems derived from the FIAC are: (1) differentiating be-
tween same sentence and different sentences (main sentence
effect, reflecting the adaptation of the brain to the linguistic
content that is independent of the speaker.); and (2) between
same speaker and different speakers (main speaker effect,
reflecting the adaptation of the brain to the speaker identity
that was independent of the linguistic content). We focused
on the main sentence effect in this study since our prelimi-
nary study revealed that the main sentence effect was much
stronger than the main speaker effect and our primary goal
was to compare predictive modeling approaches. In this
case, all volumes in C1�C2 (same sentence) were assigned
class –1 and those in C3�C4 (different sentences) class 1. For
simplicity, we examined the binary classification problem
(class � �1) for all models, focusing on the main sentence
effect. The 4-class classification problem was only investi-
gated using the LDA model.

Resampling Framework and Cross-Validation

In our cross-validation resampling framework, data were
split into two partitions—a training set and a validation set
with each run as the split unit. A cross-validation procedure
was then performed on this single split (only two runs in the
FIAC data), generating two prediction accuracy estimates:
training with run1 and estimating prediction on run2 and
vice versa. The prediction accuracy was calculated as the
proportion of the scans that were correctly classified in each
validation run. The average of the two prediction accuracies
was reported as the final result of the prediction metric (p).
Besides the p, we also computed the Pearson’s correlation
coefficient between the SPIs generated over each split (run)
as the spatial pattern reproducibility metric (r), and con-
verted the SPI pair to a Z-score volume as described by
Strother et al. [1998, 2002] and Tegeler et al. [1999]. Such
reproducible Z-score SPIs created from pairs of independent
SPIs from the two runs will be referred to as rSPIs.

Predictive Models

For all predictive models we removed volume types 1–3
as described in the Preprocessing section.

Model of linear discriminant analysis

LDA looks for the linear transformation of a dataset that
maximizes the ratio of between-class variance to within-
class variance. This model assumes that all classes possess a
multivariate Gaussian distribution with identical covariance
matrices.

The LDA was performed on a principal component anal-
ysis (PCA) basis over each detrended, half-split data in
NPAIRS [Strother et al., 2002]. The number of principal
components used controls the model complexity. For each
preprocessing combination (smoothing and detrending), the
LDA was performed on a variable number of principal
components ([2,4,6,8,10,15,20,25,30,40] components were ex-
plored for 2-class, and [5,10,15,20,25,30,35,40,50,60] compo-
nents for 4-class). The model (either 2-class or 4-class) for

each preprocessing was tuned across different numbers of
principal components (PC) by two different criteria: maxi-
mizing p alone or jointly maximizing r and p (minimizing
the Euclidean distance between (1,1) and (r, p)) [LaConte et
al., 2003; Shaw et al., 2003; Strother et al., 2004].

Models of GNB, GNB_pooled, LogReg, and SVM

Four more models, GNB, GNB_pooled, LogReg, and lin-
ear SVM, were investigated together with feature selection
methods.

A voxel-based simplification of LDA, GNB makes the same
assumption as GLM that voxels are independent [Kjems et al.,
2002]. It obtains one estimate of variance for each combina-
tion of voxel and class. A variant, GNB_pooled, uses data
from all classes to estimate variance per voxel. GNB_pooled,
therefore, produces a more biased estimate of the variance,
but with lower variance of the variance estimate. Both GNBs
are considered generative classifiers in that they model the
conditional probability distribution of each class and use
that with Bayes’ rule to produce a predictor [Mitchell et al.,
2004], which can be expressed as a linear function of the
features. The GNB with pooled variance is a predictive
analog of the standard GLM.

LogReg and linear SVM are the two discriminative linear
classifiers we considered. Both classifiers directly learn a
combination of features that can be used as a predictor. The
2-class LogReg learns a linear combination of features to
predict the ratio of the posterior class probabilities. The
version of LogReg used in our study includes an additional
regularization parameter—set to 1 in all experiments—that
trades off the squared norm of the weight vector within the
traditional conditional likelihood objective for LogReg
[Hastie et al., 2001; Mitchell 1997]. A linear SVM also learns
a linear discriminant directly, but with the goal of finding
the discriminant that maximizes the margin between exam-
ples of two classes. The margin is defined as the distance
from the discriminant to the examples closest to it [Hastie et
al., 2001; LaConte et al., 2005; Vapnik, 1995]. Each of the
above four models was applied to the preprocessed half-
split data in both the voxel and PC feature spaces. In the PC
space, each model used as features the principal components
obtained by applying singular value decomposition (SVD)
to both runs simultaneously. This is different from the LDA
model, where the PCs were obtained for each run separately
to maintain strict training and validation-set independence.

Feature Selection, Additional Preprocessing, and
SPI Visualization

Feature selection is another way to deal with the problem
of “overfitting” in fMRI classification. Feature selection is
based on the informative extent of each feature measured by
a “score” [Mitchell et al., 2004]. For a designated number N,
a subset of the features with the top N scores will be selected.
The three feature selection methods we used to compute the
“score” were: intensity level (ILFS) [Mitchell et al., 2004],
nested cross-validation, and logistic regression [Hastie et al.,
2001; Xing et al., 2001]. While the latter two are relatively
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common in high-dimension machine learning, ILFS is more
specific to fMRI. In ILFS, a one-tailed t-statistic was calcu-
lated for each voxel, checking the activation for each condi-
tion/class against the baseline. For any given condition/
class, the voxels were ranked in descending order based on
the t-statistic (the voxel with the largest t-statistic has rank
1). A final score was then generated as the lowest rank
number across all conditions/classes for a given voxel. The
feature selections were only performed on the models of
GNB, GNB_pooled, LogReg, and linear SVM. Each feature
selection method was used to select a varying number of
features, based on which a classifier was trained. This selec-
tion and classification procedure was performed with 18
different sets of voxels (N from 25–2000) and 10 different sets
of PCs (N from 5–200).

For the above four models, in addition to the general
preprocessing steps in the Preprocessing section, two addi-
tional steps were performed: block averaging (AWB) and
standard normalization (mean � 0 and StdDev � 1) of the
volume intensity (STDNORM) across voxels. When using
block averaging, the volumes in each block, or condition
epoch, were averaged to one mean volume, producing four
average scans per condition per run. STDNORM was per-
formed on either each mean volume or on all volumes in
each block. These two additional steps occurred either in the
voxel space or the PC space. The combination of different
options for each step in preprocessing (2(detrending: ON/
OFF) � 2(AWB: ON/OFF) � 2(STDNORM: ON/OFF)
� 2(space: voxel/PC)) resulted in 16 different datasets.
Based on each preprocessed dataset, within the resampling
framework each model was trained on the whole feature
space or a fixed number of features selected by different
feature selection methods. For each feature set, one predic-
tion metric (p) was obtained using the cross-validation pro-
cedure. The optimal p is reported across all combinations of
feature selection methods and selected-feature numbers to-
gether with the p for no feature selection.

In addition to the estimation of prediction accuracy, at-
tempts were also made to generate spatial patterns for some
models with high optimal prediction accuracy. All the clas-
sifiers described above use a weighted linear sum of features
to reach a decision. The weight of the features can be visu-
alized to see which features the classifier is using and how
they influence the decision. This forms an SPI in which the
voxel intensity reflects its discriminant weight. If a model is
trained in voxel space, the discriminant it computes has as
many weights as the number of features (voxels) selected for
use. It is quite possible that the features selected during
training with one half-data split may not overlap much with
those selected during training with the other half split. If a
classifier is trained in PC space, the discriminant it computes
again has as many weights as the number of features (com-
ponents) selected for use (note, the components could either
be selected by some feature selection methods or be desig-
nated as we did in LDA). However, as each component is a
linear combination of voxels in the original space, it is pos-
sible to project the weights back so that an “equivalent”

discriminant in voxel space is produced that covers the
whole brain, reflecting the functional connectivity network.
As an example, a detailed mathematical description of the
SPI generation from LDA can be found in LaConte et al.
[2003] and Strother et al. [2002].

GLM Analysis

A GLM analysis was performed on the block data using
the 3dDeconvolve program in AFNI. The design matrix con-
sisted of four columns corresponding to the covariates of
interest, the four possible condition types. A voxel-mean

Figure 1.
The first-dimension results of 4-class LDA analysis on the whole
brain of Subject 3. a: Axial slices 10–13 of the Z-score rSPI (see
the Resampling Framework and Cross-Validation section). b: Plot
of canonical variates score (CVS) as a function of the condition.
The data were preprocessed by 2D smoothing and detrending
with a 1-cycle cosine-basis-function cutoff. The LDA was per-
formed on the first 10 principal components (PCs) of each run. In
the CVS plot of each dimension, “%” is the percentage of total
variance accounted for, “e” is the canonical eigenvalue, and “cc” is
the canonical correlation coefficient (image right � brain left).
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column was also included as a covariate of no interest.
Detrending for the GLM analysis was accomplished by in-
cluding four half-cosine columns as covariates of no interest
where appropriate. Individual SPIs were generated for dif-
ferent contrasts, in addition to an omnibus F-statistic SPI for
all conditions against the baseline. The GLM was imple-
mented in two different ways to test removing volumes vs.
using the HRF model. For GLM1 the design matrix was
constructed based on a dataset with the type 1 and type 2
volumes described in the Preprocessing section removed.
For GLM2 the HRF was modeled as the default Gamma
function in AFNI. The four regressors in the design matrix
were generated by convolving the reference function for
each condition with the Gamma function. GLM2 appeared
to produce somewhat stronger activation results and we
used it to examine a range of contrasts for both individual
and concatenated runs. The contrasts we tested were the
main sentence effect (C4�C3-C2-C1), separate sentence ef-

fects for different (C4-C2) and the same speakers (C3-C1),
and the largest effect indicated by our 4-class CVA (C4-C1).
To facilitate comparison with multivariate models and to
test run-to-run reproducibility, for analysis of individual
runs an rSPI was created from a scatter plot of the two runs’
SPIs.

Spatial Normalization

To obtain the Talairach coordinates of the activation loca-
tions in each region of the brain, we first normalized the
structural image to the Talairach space in AFNI, and then
coregistered the rSPIs to the Talairach-normalized structural
image with a 7 DOF affine transformation using FLIRT in
FSL (http://www.fmrib.ox.ac.uk/fsl/).

If not annotated otherwise, all rSPIs are reported with an
absolute Z threshold greater than 3.3 (corresponding to a
two-tailed, uncorrected P � 0.001).

Figure 2.
The spatial patterns corresponding to the SVM
analysis of the detrended data with features se-
lected in either voxel space (a) or PC space (b)
(image right � brain left). In voxel space, 200
voxels were selected by the intensity level
method (ILFS) for each run. Panel a highlights the
selected voxels in slices 14–18 when run1 was
used as a training set. The overlap voxels—those
were also selected when run2 was used as a
training set—are highlighted in yellow, others in
red. In PC space, 10 PCs were selected by nested
cross-validation for each run and then passed to
the SVM model. The resultant Z-score rSPI is
shown in panel b. See Figure 1a for the color scale
of Figure 2b.

TABLE I. Summary of the prediction accuracies for GNB, GNB_pooled, logistic regression, and linear SVM models

GNB GNB-pooled LogReg SVM_linear

No detrending 0.66 (0.45) 0.71 (0.47) 0.74 (0.64) /
0.69 (0.50) 0.66 (0.47) 0.72 (0.59) 0.84 (0.56)

No detrending, STDNORM 0.70 (0.66) 0.72 (0.68) 0.72 (0.61) /
0.75 (0.72) 0.81 (0.69) 0.78 (0.66) 0.78 (0.62)

Detrended (cutoff: 2 cycles) 0.79 (0.74) 0.79 (0.76) 0.81 (0.76) /
0.91 (0.81) 0.94 (0.84) 0.94 (0.88) 0.94 (0.84)

Detrended (cutoff: 2 cycles), STDNORM 0.82 (0.74) 0.81 (0.75) 0.82 (0.78) /
0.91 (0.84) 0.91 (0.88) 0.94 (0.88) 0.94 (0.84)

No detrending, PC 0.53 (0.50) 0.61 (0.50) 0.69 (0.50) 0.71 (0.66)
0.69 (0.50) 0.56 (0.50) 0.69 (0.62) 0.78 (0.50)

No detrending, PC, STDNORM 0.57 (0.47) 0.62 (0.53) 0.66 (0.66) 0.65 (0.65)
0.62 (0.56) 0.56 (0.41) 0.75 (0.75) 0.75 (0.50)

Detrended (cutoff: 2 cycles), PC 0.64 (0.50) 0.72 (0.72) 0.78 (0.50) 0.82 (0.77)
0.69 (0.50) 0.75 (0.47) 0.94 (0.81) 0.91 (0.50)

Detrended (cutoff: 2 cycles), PC, STDNORM 0.71 (0.53) 0.77 (0.62) 0.77 (0.77) 0.79 (0.79)
0.56 (0.53) 0.66 (0.50) 0.78 (0.78) 0.94 (0.66)

Unbolded and boldface rows contain results without and with block averaging (AWB), respectively. The numbers within parentheses
correspond to models trained using the entire feature space; the numbers not in parentheses indicate the optimal accuracy across all
combinations of feature selection techniques and selected feature numbers.
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RESULTS

A 4-class LDA study performed on the whole brain re-
vealed some significant artifacts. Figure 1 demonstrates the
first dimension rSPI (Fig. 1a) and the corresponding canon-
ical variate score (CVS) as a function of the class (condition)
number (Fig. 1b). The CVS reflects significant condition
effects. However, visually examining the rSPI, it seems very
likely that these effects are driven by artifacts, possibly due
to an interaction between susceptibility and condition-re-
lated movement as opposed to “real” activation. We could
not adequately correct for these artifacts. As an expedient
feature selection approach to control artifacts, the lower 13
slices of the brain were omitted in the remainder of our
predictive model analyses.

The results of prediction accuracy are summarized in
Table I for the predictive models of GNB, GNB_pooled,
LogReg, and SVM over Subject 3’s dataset preprocessed
with 16 different schemes. Unbolded and boldface rows
contain results without and with block averaging (AWB),
respectively. There are two accuracy results provided within
each cell. The number within parentheses corresponds to no
feature selection (namely, the prediction accuracy when us-
ing all available features); the number without parentheses
is the optimal prediction accuracy across all combinations of
feature selection techniques and selected feature numbers.
By comparing results across different preprocessing choices
and different models, we find that: (1) the number within
parentheses is consistently lower across models and prepro-
cessing schemes, suggesting feature selection assists in
building a more accurate predictive model; (2) in either the
voxel space or the PC space, detrending with the 2-cycle
cosine-basis-function cutoff consistently improves the opti-
mal prediction accuracy value compared to no detrending,
for the same preprocessing steps and model; (3) the SVM
and LogReg often perform better than either of the GNB
models in terms of the optimal prediction accuracy; and (4)
the optimal prediction accuracy obtained in the PC space is
typically lower than that obtained in the voxel space, given
the same model and same preprocessing. However, these
findings are only based on the results for a single subject. It
would be necessary to analyze all subjects in order to deter-
mine whether the conclusions drawn generalize across sub-
jects within this single study.

Figure 2 illustrates the spatial patterns corresponding to
the highest optimal prediction metric (0.94) in Table I, ob-
tained by applying SVM to the detrended data with certain
features selected in either the voxel space (Fig. 2a) or the PC
space (Fig. 2b). In voxel space, 200 voxels were selected by
ILFS for each run. The overlap between the two runs is only
10 of 200 voxels, indicating the instability of the feature-
selected spatial pattern. Figure 2a highlights the selected
voxels in slices 14–18 when run1 was used as a training set.
The overlap voxels are in yellow, while other selected voxels
are in red. In PC space, 10 PCs were selected by nested
cross-validation for each run and then passed to the SVM
model. The associated Z-score rSPI had a reproducibility of
0.32 and is shown in Figure 2b.

Table II lists the prediction metric (p) accompanied by the
reproducibility (r) in parentheses for 2- and 4-class LDAs.
The LDA model was tuned either by maximizing the p only
or by minimizing the distance from (r, p) to (1,1) (boldface
row). For 2- and 4-classes, p should be compared with their
different performance levels for random guessing of 0.5 and
0.25, respectively. The reproducibility is dimension-specific,
and only the reproducibility for the first dimension is re-
corded.

Figure 3 illustrates the results for the first three dimen-
sions of the 4-class LDA analysis on the masked brain (lower
13 slices were dropped). The masked brain was smoothed
and detrended with a 2-cycle cosine-basis-function cutoff.
The number of the principal components passed to the LDA
was 5. This PC number was determined by tuning the model
using r and p simultaneously. Selected slices (14–18) of
different dimensional rSPIs are shown in Figure 3a (row A:
1st dimension; row B: 2nd dimension; row C: 3rd dimen-
sion). Corresponding plots of the CVS as a function of the
condition are shown in Figure 3b (from left to right). The
first dimension CVS plot, which accounts for 74% of the total
variance, illustrates a functional network (rSPI, row A, Fig.
3a) that reflects differences across all four conditions. The
positive responses in Fig. 3a are weakest for same speaker
same sentence (C1) and strongest for different speakers dif-
ferent sentences (C4). The high reproducibility of the dimen-
sion, 0.45, summarizes the strength of the spatial activation
pattern associated with these differences. In the first dimen-
sional rSPI, despite some artifacts in the ventricle, high
intensity activation foci mainly occur in bilateral superior
temporal lobes as well as in the inferior frontal gyrus (Table
III). The second dimension accounts for 23% of the total
variance, which, despite its low reproducibility of 0.07, il-
lustrates a strong interaction centered in the right superior
temporal gyrus. There is a large functional network modu-
lation of the speaker effect for the same sentence with a
smaller effect of opposite sign for different sentences. The
third dimension looks like a simple speaker effect with very
low reproducibility (0.02) and low total variance. The stron-
gest activation in this dimension occurs in the left medial
frontal gyrus. Table III reports the Talairach coordinates of
the location with the peak Z-score in each region of the brain

TABLE II. The prediction metric (p) accompanied by
the reproducibility (r) in parentheses for 2-

and 4-class LDAs

LDA
(2 class)

LDA
(4 class)

Detrended (cutoff: 2 cycles), PC 0.77 (r: 0.25) 0.39 (r: 0.24)
0.69 (r: 0.52) 0.33 (r: 0.45)

No detrending, PC 0.66 (r: 0.16) 0.29 (r: 0.13)
0.63 (r: 0.49) 0.21 (r: 0.16)

LDA model was tuned either by maximizing the p only or by
minimizing the distance from (r, p) to (1,1) (boldface row). The
reproducibility is dimension-specific, and only the reproducibility
for the first dimension is presented.
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for each dimension. These regions are delineated with the
dotted black circles in Figure 3a. Targeted region of interest
analysis and/or a group analysis in Talairach space is
needed to further investigate these initial exploratory find-
ings.

Figure 4a illustrates the rSPI for GLM2 using the Gamma
HRF model. This omnibus F-statistic–based rSPI is success-
ful in detecting an overall effect of conditions against the
baseline. These auditory and language effects are located
primarily in the left and right perisylvian regions with a
high reproducibility of 0.95 across runs. The correlation of

the rSPI for GLM1 with the rSPI from GLM2 is 0.77, sug-
gesting some dependence on removed volumes and the use
of the HRF model. In general, the GLM2 results seem to have
more activated voxels than for GLM1, so we focused on
GLM2. The main sentence effect (C4�C3-C2-C1) for GLM2
with concatenated runs is illustrated in Figure 4b, row A.
There is little perisylvian activity in slices A14–A16 to com-
pare with the results in Figure 3a, and the few voxels that are
weakly activated have uncorrected t values of only 2.5–3.5.
Note that Figure 4 includes slices 12 and 13 that were
masked out to avoid artifacts in the predictive modeling

Figure 3.
The first three dimensions of 4-class LDA analysis on the masked
brain (lower 13 slices removed to avoid artifacts). The masked
brain was smoothed and detrended with a 2-cycle cosine-basis-
function cutoff. The number of the principal components passed to
the LDA is 5. Selected slices (14–18) of different dimensional rSPIs
are shown in panel a (row A: 1st dimension; row B: 2nd dimen-

sion; row C: 3rd dimension) (image right � brain left). The dotted
black circles in panel a indicate the regions whose peak Z-score
locations are reported in Table III. Corresponding plots of canon-
ical variates score (CVS) as a function of the condition are shown
in panel b (from left to right). The “%,” “e,” and “cc” headings on
the CVS plots are defined in the legend of Figure 1.
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analyses (cf. Fig. 1a). The other SPIs for concatenated runs
with different contrasts are similar, with little evidence of
perisylvian activity. Analysis of individual runs was highly
variable, with nonreproducible run-to-run SPI correlations
of 0.08 for (C4�C3-C2-C1), 0.09 for (C4-C2), 0.1 for (C3-C1),
and 0.03 for (C4-C1). For comparison with the multivariate
results in Figure 3 we displayed the SPI from run1 that had
the strongest activations for (C4-C1). There is evidence of
perisylvian activity on the left side in slice A12, but only
scattered voxels in A14–A16, and the pattern in run2 is quite
different, leading to the low run-to-run SPI correlation of
0.03. Overall, the GLM seems unable to detect any reliable
sentence, or other effect, between runs.

DISCUSSION

Advances in the interrelated fields of machine learning,
data mining, and statistics have enhanced our capabilities to
extract and characterize subtle features in datasets with high
dimensionality but small sample size. Nevertheless, artifacts
still make predictive modeling of fMRI a challenging task,
particularly in individual subjects. Due to the existence of
artifacts from different sources, high prediction accuracy
alone does not guarantee that the classifier is learning a
pattern of brain activity that may be usefully visualized,
although cross-validation methods do provide fairly unbi-
ased estimates of true prediction accuracy. The reproducible
spatial-activation map provides a way to check which pat-
tern of brain activity the model learns, and helps to prevent
the model from learning obviously incorrect patterns. A
typical example can be seen in the 4-class LDA analysis of
the FIAC data. When 4-class LDA was performed on the
whole brain, the tuned first dimension reproducibility was
0.41, while the prediction metric was 0.49. When 4-class
LDA was performed on the masked brain the overall pre-
diction accuracy was reduced to 0.33. However, the rSPI in
Figure 1a illustrates that the higher prediction accuracy from
unmasked data was obtained, partly by learning movement-
and susceptibility-related artifact patterns. The sharp posi-
tive-negative transition (yellow-green) in the anterior of
slices A10 and A11 is a characteristic eigenimage pattern of
a moving boundary, and this occurs most strongly in this
dataset, where there are susceptibility artifacts visible in the
raw EPI images. To reduce the effect of artifacts on predic-
tion, particularly LDA on a PCA basis, a very careful pre-
processing is necessary to reduce structured and random
noise variance because it is often much larger than the signal
and/or is coupled to the stimulus. These results reinforce
and extend the earlier results in Tegeler et al. [1999] com-
paring GLM and 2-class LDA, which showed the sensitivity
of an LDA to noise variance, particularly vascular artifacts at
4T.

The issue of how best to control excess noise variance
through feature selection in multivariate predictive model-
ing of an fMRI time series is an open research question,
although its importance may be somewhat model-depen-
dent. For example, LaConte et al. [2005] demonstrated that
linear SVMs are less influenced by temporal detrending than

are LDAs. One option is to select basis components (e.g.,
PCA component features) on which to build the predictive
model. Strother et al. [2004] demonstrated artifact suppres-
sion with nonselective PCA tuning for an LDA of an fMRI
group study. Formisano et al. [2002] demonstrated how ICA
components might be selected to reduce artifacts prior to
predictive modeling. Nevertheless we obtained mostly
lower prediction results for PCA feature selection compared
with spatial-voxel feature selection in the present study
(Table I). Another option is to use feature selection tech-
niques targeted at specific artifacts, such as the mask used in
this study. However, all such masks carry the risk of remov-
ing some true activation signal, as demonstrated in this
study by the GLM results in masked slices A12 and A13 (Fig.
4a). Finally, the need to deal with subject-dependent, struc-
tured artifacts is mitigated in group analyses, where they are
likely to appear as somewhat random effects across subjects.

Feature selection definitely improves the predictive per-
formance of the trained models in the experiments reported
here, especially in the voxel space. However, given the total
number of voxels to pick from, it is quite likely that the
voxels selected during training with one run may not over-
lap much with those selected during training with another
run. Our results show that in the voxel space, for an SVM
with the optimal prediction accuracy as high as 0.94, the
overlap of the 200 selected voxels between the two runs is
only 10, indicating associated highly noisy and unreliable
spatial patterns. One potential explanation is that more than
200 voxels contain correlated information useful for classi-
fication prediction, and therefore two or more different sub-
sets of voxels may both lead to reliable predictions. An
alternative explanation is that, given the very high dimen-
sion of the data, and the large number of feature subsets
considered, it is possible with high probability to find voxel
subsets that happen to perform well on cross-validation tests
without reflecting generally stable phenomena. This is re-
lated to the trade-off between reproducibility and prediction
that was emphasized by Strother and Hansen [Kjems et al.,
2002; LaConte et al., 2003; Shaw et al., 2003; Strother et al.,
2002, 2004]. The reproducibility reflects the reliability of the

TABLE III. Talairach coordinates of the peak Z-score
locations for 4-class LDA results of Figure 3

Dimension and brain region Talairach coordinates Z-score

1
Right superior temporal gyrus 52, �9, 7 5.63
Left superior temporal gyrus �54, �38, 7 5.46
Left superior temporal gyrus �57, �40, 7 4.77
Left medial frontal gyrus �2, 66, 6 –6.44
Right insula 44, 15, 15 6.15
Left superior temporal gyrus �48, �41, 16 5.20
Right inferior frontal gyrus 47, 18, 24 6.02
Left precentral gyrus �47, 8, 25 6.12

2
Right superior temporal gyrus 59, �12, 11 4.94

3
Left medial frontal gyrus �2, 63, 6 4.12
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SPI, while prediction reflects the generalizability of the
model. A more obvious example can be seen in Table II,
where the (r, p) values for 2- and 4-class LDA with two
different tuning methods are listed. It is very interesting to
observe that r improves dramatically, while p only de-
creased slightly, when the tuning method was switched
from maximizing p only to minimizing the distance of (r, p)
from (1,1). Therefore, considering r and p simultaneously
may be a better tuning choice in predictive modeling of
fMRI. In essence, this tuning method gives an investigator a
quantitative means of balancing confidence in matching
known temporal information of the data with the priority of
obtaining interpretable (and reproducible) summary im-
ages.

In our research, 2- and 4-class LDAs were applied to the
FIAC data analysis within a resampling framework. Both
LDAs were able to easily detect the sentence effect that was
not seen in the GLM analysis (Fig. 3a, row A vs. Fig. 4b, row
A). Four-class LDA further revealed strong, complex inter-
action effects with reproducible SPIs that appear to be con-
taminated with artifacts in the ventricles. A separate study
would be needed to fully explore these interactions within
and across subjects. Tuning by r and p enhances the robust-
ness of the rSPIs across these LDA models. The first dimen-
sion rSPI of the 4-class LDA (tuning by r and p) is correlated
with the rSPI for the 2-class LDA with correlation coeffi-
cients of 0.66 and 0.90 when the 2-class LDA is tuned by p
only, or by (r, p), respectively.

GLM is relatively insensitive to artifacts because it oper-
ates on a voxel-by-voxel basis. Although some artifactual
voxels may be falsely identified as “active,” they do not
corrupt the detection of other activated voxels. A similar
insensitivity to artifacts will be shared by GNB results, but
this seems to be reflected in reduced rather than improved
prediction performance (Table I). On the other hand, LDA
techniques using a PCA basis are built on the global variance
structure in the data, and as a result significant artifacts can

readily corrupt the identification of activated voxels and
lead to artificially high (if coupled to the stimulus states) and
low (if randomly occurring) prediction results. However,
with appropriate preprocessing to control artifacts and the
overall variance structure we have demonstrated that the
LDA may detect activation effects (main sentence effect in 2-
and 4-class LDA) that the GLM cannot readily find (Fig. 4b).
In addition, the 4-class LDA provides a result that demon-
strates interpretable, multiple complex interaction effects
from a single analysis procedure. Nevertheless, such detec-
tion within a predictive modeling framework requires care-
ful balancing of activation pattern visualization (i.e., repro-
ducibility) with prediction performance. Unless the
experimental goal is brain-state classification of new scans,
prediction alone should not be used as an optimization
procedure in fMRI data analysis.
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