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Abstract: We used straightforward linear mixed effects models as described in Worsley et al. together
with recent advances in smoothing to control the degrees of freedom, and random field theory based on
discrete local maxima. This has been implemented in BRAINSTAT, a Python version of FMRISTAT. Our
main novelty is voxel-wise inference for both magnitude and delay (latency) of the hemodynamic
response. Our analysis appears to be more sensitive than that of Dehaene-Lambertz et al. Our main
findings are greater magnitude (1.08% � 0.17%) and delay (0.153 � 0.035 s) for different sentences
compared to same sentences, together with a smaller but still significantly greater magnitude for different
speaker compared to same speaker (0.47% � 0.08%). Hum Brain Mapp 27:434–441, 2006.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

Our main aim is to duplicate part of the analysis of De-
haene-Lambertz et al. [2006] (henceforth DL) so that their
methods using SPM can be compared directly with ours
using BRAINSTAT/FMRISTAT. To do this, we approach
the Functional Image Analysis Contest (FIAC) dataset as a
hierarchical study with three levels: runs, sessions, and sub-
jects. We analyze the event sessions separately from the
block sessions, but our analysis method is the same in both
cases. This common analysis method seeks to detect changes
in magnitude and changes in latency or delay of the re-
sponses to the stimuli, and provide standard errors for these
estimates.

The changes we looked at were (1) different minus same
sentence (averaged over speakers); (2) different minus same
speaker (averaged over sentences); and (3) an interaction
between the two. All these estimates, both of magnitudes
and delays, are combined in a hierarchical mixed-effects
analysis to produce one map of voxel-wise statistics for each
of the three contrasts of scientific interest just described.

In addition to these contrasts, DL also looked at sentence
effects separately for different and same speaker, and asym-
metry differences between hemispheres, but only for mag-
nitudes. Although BRAINSTAT/FMRISTAT can easily do
these extra analyses, we chose to concentrate just on the two
main effects of sentence and speaker and their interaction,
both for magnitudes and delays.

MATERIALS AND METHODS

The details of our approach are as follows. The fMRI data
were corrected for motion and different slice acquisition
times using the FSL package [Smith et al., 2004]. These data
were then proportionally scaled to a percentage of the whole
volume mean. The data were not smoothed spatially, unlike
DL, who used 8-mm smoothing before combining the data
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over subjects. Separate but identical analyses were con-
ducted for the event data and the block data.

First Level: Frames

At the first level (frames or scans), the statistical analysis
of the percentages was based on a linear model with corre-
lated errors. The design matrix of the linear model was set
up in exactly the same way as in DL. For the event experi-
ment, we constructed five variables corresponding to all
sentences except the first, separately for the four conditions,
and to the first sentence pooled across all conditions. For the
block experiment, we constructed five variables correspond-
ing to the second to sixth sentences in each block, separately
for the four conditions, and to the first sentence pooled
across all conditions. This fifth variable, which removes any
effect due to the onset of the stimulus after a period of rest,
was not used in any of the contrasts.

Each of the variables consisted of 1�s and 0�s for the
presence/absence of each of the conditions. The five vari-
ables were then convolved with a hemodynamic response
function (HRF) modeled as a difference of two gamma func-
tions. To estimate delays, the variables for each condition
were shifted over a range of delays, and a singular value
decomposition was used to extract two basis functions per
condition that optimally captured each shifted variable [Liao
et al., 2002]. For each condition, these two basis functions,
which closely match the unshifted variables and their deriv-

atives, were added as covariates to the design matrix of the
linear model, together with the fifth (“onset”) variable, giv-
ing 8 covariates for the conditions and one nuisance covari-
ate (Fig. 1).

Information from their coefficients was used to estimate
both the magnitude of the response and the shift in its delay
for each of the four conditions. An inverse tangent transfor-
mation was used, very similar to that of DL for experiment
1. The advantage of our delay estimation method is that it
can be applied to any experimental design, not necessarily
periodic (as in DL), and either events or blocks. Another
advantage is a theoretical standard deviation (SD) for the
delay as well as the magnitude, so that both magnitudes and
delays can be further analyzed by the same statistical meth-
ods.

Temporal drift was removed by adding a cubic spline in
the frame times to the design matrix (one covariate per 2
minutes of scan time), and spatial drift was removed by
adding a covariate in the whole brain average to give 15
covariates in the design matrix (Fig. 1).

The correlation structure was modeled as an autoregres-
sive process of degree 1. At each voxel the autocorrelation
parameter was estimated from the least-squares residuals
using the Yule–Walker equations, after a bias correction for
correlations induced by the linear model [Worsley et al.,
2002]. The autocorrelation parameter was first regularized
by 3D spatial smoothing with a Gaussian filter to control the
effective degrees of freedom (DF) to at least 100 [Worsley,
2005a]. Smoothing was unnecessary for the event design
since the effective DF was already greater than 100, but for
the block design 2.2- to 2.6–mm smoothing was used to
achieve �100 effective DF for all contrasts. The smoothed
autocorrelations were used to “whiten” the data and the
design matrix. The linear model was then re-estimated using
least squares on the whitened data to produce estimates of
effects (contrasts) and their SDs. There were three contrasts
of interest: different – same sentence, different – same
speaker, and the interaction of the two (Table I).

Second Level: Runs

The three effects in Table I, both for magnitudes and
delays, together with their estimated (fixed effects) standard
errors, were transformed linearly to Talairach space using a
transformation estimated by the FSL package [Smith et al.,
2004]. Subjects 2 and 5 were dropped due to problems with
this registration (FSL needed some manual intervention that
we were not aware of), leaving 14 subjects for further anal-
ysis.

Figure 1.
Covariates of the linear model for the first run on the first subject
(block experiment). S � same, D � different, snt � sentence, spk
� speaker, B � basis function. The first nine covariates model the
conditions, and the remaining six model the drift. For each con-
dition the coefficient of the first basis function is the magnitude,
and the coefficient of the second basis function is used to estimate
the delay shift.

TABLE I. Contrasts used for event and block designs, and for magnitudes and delays

Contrast
Same sentence,
same speaker

Same sentence,
different speaker

Different sentence,
same speaker

Different sentence,
different speaker

Sentence � 0.5 � 0.5 0.5 0.5
Speaker � 0.5 0.5 � 0.5 0.5
Interaction 1 � 1 � 1 1
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The contrasts from each of the two runs per subject were
combined using a fixed effects analysis for the effects (as
data) with fixed effects SDs taken from the previous analy-
sis, leaving 14 effects and their SDs for further analysis.

Third Level: Subjects

The 14 effects, one per subject, were combined using a
mixed effects linear model for the effects (as data), again
with SDs taken from the previous analysis. This was fitted
using ReML implemented by the EM algorithm with a repa-
rameterization to avoid positivity constraints that would
bias the SD. We then estimated the ratio of the random
effects variance to the fixed effects variance, then regular-
ized this ratio by spatial smoothing with a Gaussian filter.
The variance of the effect was estimated by the smoothed
ratio multiplied by the fixed effects variance [Worsley et al.,
2002]. The amount of smoothing was chosen to achieve 40
effective DF, and varied from 6.7–10.7 mm.

Inference

The resulting T statistic images were thresholded at P
� 0.05 using the minimum given by a Bonferroni correction,
random field theory, and discrete local maxima [Worsley,

2005b], taking into account the nonisotropic spatial correla-
tion of the errors [Hayasaka et al., 2004]. Both high and low
values of the T statistic images were examined. For the
magnitudes, the search region was taken as the whole brain
(minimum functional image � �6000 BOLD units, volume
�1400 cm3); for the latencies, the search region was the
voxels where the T statistic image for the overall magnitude
exceeded 5 (12 cm3 for the event design, 20 cm3 for the block
design).

These higher-level analyses were repeated 12 times, once
for each combination of stimulus type (event or block),
contrast (sentence, speaker, or interaction; see Table II), and
parameter (magnitude or delay). No special code was added
to BRAINSTAT to perform these calculations, apart from a
script to repeat the analyses as above.

The third-level analysis was validated by changing the
sign of the effects on seven subjects chosen at random from
the 14. Such an analysis should give null results. In fact, no
false-positive local maxima or clusters were detected at the P
� 0.05 level on 16 such analyses of both magnitudes and
delays. This gives us some assurance that the entire analysis
is valid. If, on the other hand, the amount of smoothing was
increased to achieve 100 effective DF, then the excessive

TABLE II. Local maximum T statistics

T EF � SD (%) P x, y, z Area

Magnitude
Contrast: sentence

Experiment: event 6.57 0.86 � 0.13 0.003 �54,�12,�20 LITG
6.08 0.88 � 0.14 0.015 �58,�44, �2 LMTG
5.43 0.64 � 0.12 0.109 �18,�64, 18 LPRE
4.98 0.62 � 0.12 0.426 54,�16,�14 RMTG

�4.73 �0.48 � 0.10 0.860 �58,�48, 34 LSmG
Experiment: block 7.61 1.00 � 0.13 �0.001 �60,�10,�10 LMTG

5.94 0.62 � 0.10 0.021 56,�14, �6 RMTG
5.69 1.17 � 0.21 0.048 �56,�42, �2 LMTG

�6.48 �0.58 � 0.09 0.004 �52,�52, 46 LIPl, B40
Experiment: combination 7.85 0.96 � 0.12 �0.001 �60,�10,�10 LMTG

6.30 1.08 � 0.17 0.007 �56,�42, �2 LMTG
5.93 0.79 � 0.13 0.022 �52,�10,�22 LITG
5.74 0.69 � 0.12 0.039 56,�14,�12 RMTG
5.69 0.51 � 0.09 0.047 60,�10, �6 RMTG

�6.65 �0.52 � 0.08 0.002 �52,�56, 44 LIPl
�6.37 �0.38 � 0.06 0.006 �50,�56, 34 LIPl
�5.61 �0.40 � 0.07 0.060 50,�48, 40 RIPl

Contrast: speaker
Experiment: block 5.46 0.58 � 0.11 0.098 �64,�40, �2 LMTG, B21
Experiment: combination 5.97 0.47 � 0.08 0.020 �64,�40, �2 LMTG, B21

Delay 5.77 0.38 � 0.07 0.038 �58,�34, �2 LMTG
Contrast: sentence

Event 4.33 0.153 � 0.035a 0.048 58,�18, 2 RSTG, B22

(T � EF/SD, 40 DF), P values (P � 0.05, corrected), effect (EF) � standard deviation (SD), and x, y, z Talairach coordinates (mm). Only local
maxima separated by more than one FWHM (8.6 mm) are shown. Boldface indicates a local maximum inside a significant cluster (P � 0.05,
corrected). Combination indicates the combination of the event and block data. Only the events data were used for delay. L � Left, R
� Right, I � Inferior, S � Superior, M � Middle, T � Temporal, G � Gyrus, Sm � Supramarginal, Pl � Parietal lobule, B � Brodmann.
The threshold for delay local maxima is lower than that for magnitude because the delay search region is much smaller (20-37 cm3) than
the magnitude search region (1424 cm3). There were no significant activations for the interaction contrast, nor for the speaker contrast in
the delays.
a Values represent EF � SD in seconds.

� Taylor and Worsley �

� 436 �



smoothing biased the SD and resulted in too many false-
positives.

RESULTS

Efficiencies

Before we start the analysis, it is worth looking at the
efficiencies of the two designs (event, block) at estimating
the three contrasts in a single run. Efficiencies are just the
inverse of the SD of a contrast; the lower the SD, the more
efficient is the design. Of course, this depends on the under-
lying SD of the errors, so we measure SD relative to the SD
of the errors (but for delays it depends not on the SD of the
errors, but on the T statistic for the magnitude, which we fix
at 5). This allows us to compare designs, and to get some
idea of the sizes of effects we can hope to detect under ideal
conditions.

The validity of the SDs rests on the assumptions of the
linear model. In particular, they depend on the constancy of
the BOLD response throughout a block. Judging by the
time-courses in DL, this seems to be a reasonable approxi-
mation, although there is some evidence of a steady decline
in response after the second event in a block.

These SDs depend only on the design matrix, the con-
trasts, and the temporal correlation structure (AR(1) lag 1
correlation taken as 0.6) so they can be calculated before the
data is collected. This is useful at the planning stage to help
choose the paradigm (event or block), and parameters of the
paradigm (interstimulus interval, block length) that give the
smallest SD, thus making best use of the time in the scanner.

Unfortunately, it is only possible to do this at the first level
in the hierarchy, that is, within subjects, since we usually
have no idea in advance of the variability of an effect from
one subject to another, that is, the random subject effects. In
the absence of random subject effects, SDs will decrease as
the square root of the number of subjects, but if random
effects are present, they will add an unknown (and some-
times large) extra component of variability to the SDs that
we can usually never estimate in advance of doing the
experiment.

The efficiencies for a single run are shown in Figure 2 as
SDs, relative to error (for magnitudes), or in seconds (for
delays, assuming a T statistic for a magnitude of 5). Assum-
ing additivity of the responses, both designs are roughly
equally efficient for all contrasts in the magnitudes. For the
delays the event design is much better for all contrasts. Of
course, this is for a single run, and the results may differ
after combining effects in higher-level analyses, depending
on the strengths of the random effects.

Mixed Effects Analysis Over Subjects
at the Third Level

To illustrate the analyses, we show in Figures 4 and 5 a
display of the single subject results after level 2, and their
combination in level 3. These figures are included only to
show how a mixed effects analysis works, and how it com-
bines variability both within and between subjects.

We chose just one contrast, different – same sentence,
which shows the most interesting results. We show the
analyses of the event and block data for both magnitude and
delay. We chose part of just one slice (–74 � x � 70, –46 � y
� 4, z � –2 mm), rotated 90° so that left is uppermost. This
slice is located on Figures 6 and 7. The contour of the search
region is added to give some idea of anatomy.

The first row of each figure shows the estimated effect (EF)
for each of the 14 subjects from the first two levels of the
analysis (200 frames/run, 2 runs/subject). The last panel is
the estimator combined over subjects using the mixed effects
analysis at the third level.

The second row shows the estimated SD of the first row
and their effective DF. The DFs are substantially lower than
200 � 2 � 400 due to the randomness of the estimated
temporal autocorrelations [Worsley et al., 2005]. They are
not quite identical since they depend on the sequencing of
the stimuli, which varied from run to run.

The mixed effects SD on the right is obtained by smooth-
ing the ratio of random/fixed effects SD by an amount
chosen to give 40 effective DF [Worsley et al., 2002]. The
amount of smoothing varies because it depends on the in-
herent smoothness of the effects (as data). The smoothed
random/fixed effects SD image is shown on the far right. A
value of 1 indicates that the mixed effects SD is the same as
the fixed effects SD, so that the random effect is zero and can

Figure 2.
SD of designs (lower is better) for a single run, assuming additivity
of responses. Interactions are harder to detect than main effects.
For delays, the event design is more efficient (lower SD) than the
block design; the event design estimates sentence and speaker
delays to within 0.12 seconds.

Figure 3.
Illustration of how a decline in BOLD response during a block can
alter both the apparent magnitude and delay of the block.
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be ignored. A value greater than 1 indicates the presence of
a random effect. Only magnitudes for the block design show
some evidence of random effects (�1.5), either due to dif-
ferent sentence effects for different subjects, or due to dif-
ferent locations of these effects.

The third row shows the T statistics, equal to the first row
divided by the second. The P � 0.05 threshold for the final
T image on the right is based on the minimum of Bonferroni,
random field theory, and discrete local maxima (DLM)
[Worsley, 2005b]. This requires calculation of the voxel-wise
effective full-width at half-maximum (FWHM), shown in the
panel at the far right, which averages �8.6 mm. The thresh-
old is lower for delays because the search region is much
smaller (since it only makes sense to look at delays where

there is some signal). The positive T statistics, particularly on
the left, indicate increased magnitude and delay for different
sentences over same sentences.

Comparison of Block and Event Designs

Overall, the block and event designs seem to be equally
good for estimating the magnitude, but the block design has
slightly lower SDs, giving slightly larger T statistics. This is
not surprising, since they have roughly similar efficiencies in
Figure 2. Note that the SD for the events design on Subject 7
is high (and DF low) because only one run was available.

What is surprising is the delays. Here the block design
gives T statistics as high as the event design, despite the fact

Figure 4.
Single subject results after level 2, and their combination in level 3 for magnitudes of different – same
sentence for (A) event design, and (B) block design, rotated so that left is uppermost (located on
Figs. 6, 7).

Figure 5.
Single subject results after level 2, and their combination in level 3, for delays of different – same
sentence for (A) event design, and (B) block design, rotated so that left is uppermost (located on
Figs. 6, 7).
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that the SDs are much lower (as anticipated by Fig. 2). The
explanation may lie with the assumed model. Delays are
estimated from both the onset and termination of the BOLD
response, which is assumed to be constant throughout a
block. If the response diminishes over time or terminates
early, then this will result in decreased latency (see Fig. 3). It
is reasonable to suppose that this might happen more for the
same sentence condition (due to boredom) than with the
different sentence condition (novelty will sustain interest).
The time courses given by DL appear to show just this linear
decline after the second event in a block, more pronounced
for the same sentence condition than for the different sen-
tence condition. The result might be an apparent increase in
latency for different sentences in the blocks design due

perhaps to sustained response rather than delayed response
(see Fig. 3).

Can the event and block results be combined? The answer
appears to be yes, at least for the magnitudes. The reason is
that the magnitude effects are roughly equal between events
and blocks (see also Table II). In fact, most cannot be rejected
as being different by a two-sample t test. Of course, the
delays cannot be combined because of the apparent delay
shifts in blocks due to a decline in BOLD response within a
block, as just discussed. Accordingly, the events and blocks
were combined at the second level of the hierarchy (over
runs within subjects), then combined in the usual way at the
third level (over subjects).

Inference

The complete results are shown in Table II for comparison
with other analyses. Local maximum T statistics inside a sig-
nificant cluster are indicated in bold. Clusters were thresholded
at P � 0.001 (uncorrected) for magnitudes, and P � 0.01 (un-
corrected) for delays. P values for clusters are based on their
spatial extent measured in resels, which allows for spatially
varying FWHM [Hayasaka et al., 2004]. Only the events data
were used for detecting differences in delays.

There appear to be significant magnitude effects for sen-
tence and speaker, but there is no evidence of an interaction.
The sentence contrast shows both positive and negative
effects. The combination of events and blocks detects more
activation than either events or blocks alone, as expected,
since the combined SDs are lower. There is some evidence
for a sentence effect on delay for the events data, but this is
not supported by a significant cluster.

Figure 6.
Sentence and speaker magnitude T statistics (40 DF) for event
superimposed on block superimposed on combined datasets,
thresholded at P � 0.05 (corrected) and superimposed on the
average anatomy of the 14 subjects. The portion of the slice used
in Figures 4 and 5 is outlined in yellow dashes.

Figure 7.
Sentence delay T statistics (40 DF) for the event dataset, thresh-
olded at P � 0.05 (corrected), superimposed on the search region
where all conditions are activated, superimposed on the average
anatomy of the 14 subjects. The portion of the slice used in Figures
4 and 5 is 4 mm below the dashed yellow outline.
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Summary of Results

The most prominent effects are increases of magnitude for
different – same sentence. We estimate increases as high as
1.08% � 0.17% if events and blocks are combined. These
increases are spread all along the left mid-temporal gyrus, as
reported in DL, and to a lesser extent in the right mid-
temporal gyrus (Fig. 6). There is some evidence for a de-
crease in magnitude in the left and right inferior parietal
lobule (Brodmann area, BA, 40), although it is about half that
of the increases (–0.52 � 0.08).

There is also evidence for a speaker effect on magnitudes
in roughly the same part of the left mid-temporal gyrus as
the sentence effect, BA 21. However, the size of the speaker
effect is about half that of the sentence effect, peaking at 0.47
� 0.08 for the combined data.

Turning to delays, we note again that the delay local
maximum is isolated and not supported by a significant
cluster. Nevertheless, there is some evidence for an in-
creased delay of 153 ms for different sentences compared to
same sentences in the right superior temporal gyrus, BA 22.
What is interesting here is that the delay can be estimated so
accurately, to within 35 ms.

Our conclusions can be summarized as follows:
• an increase of sentence magnitude in the left and right

mid-temporal gyri, and in the left inferior temporal
gyrus;

• a smaller decrease of sentence magnitude in the left and
right inferior parietal lobule, BA 40;

• a smaller increase in speaker magnitude in the left
mid-temporal gyrus, BA 21;

• an increase in sentence delay in the right superior tem-
poral gyrus, BA 22.

DISCUSSION

Comparison with DL

We chose covariates identical to those of DL: four covari-
ates for each condition after the first in a block or run, and
one for the first event in any block or run. We analyzed
exactly the same contrasts, although DL analyzed several
others that we did not attempt: sentence effects under same
and different speaker conditions, and tests of asymmetry.

DL also looked at delays, but for a different dataset (ex-
periment 1) from the FIAC data analyzed here. They re-
ported increased delay in temporal poles and inferior frontal
regions, compared to Heschl’s gyrus. DL was more inter-
ested in differential regional delays of the same stimulus.
These differences could be partly attributed to differences in
hemodynamics, rather than neuronal activity, although DL
argue that hemodynamics cannot explain all the observed
delay differences. On the other hand, we were looking for
differential stimulus delays in the same region, which is
unaffected by regional differences in hemodynamics, and so
presumably only attributable to neuronal activity.

We compared our results in Table II with those reported
by DL in their table 2. Overall, we found more significant

activations than DL, indicating that our analysis is more
sensitive, while maintaining the same false-positive rate.
This is based on the fact that none of the local maxima
reported by DL reached statistical significance, whereas we
found four in the same blocks dataset. DL reported only one
significant cluster of 1.6 cm3, whereas we found three rang-
ing in size from 2.7–7.9 cm3 at the same cluster threshold.
Whereas DL only found evidence for an increase of sentence
magnitude, we found evidence for a decrease as well. Yet
this is despite that fact that we analyzed 14 subjects, whereas
DL analyzed 16.

It is difficult to pinpoint which aspects of our analysis
make it more sensitive. Note first that there were several
nonstatistical factors that could come into play:

• different slice timing and motion correction;
• different registration;
• different smoothing (DL used 8-mm smoothing, but we

did not smooth the actual data).
There are several minor differences on the statistical side,

such as the shape of the HRF, but the main ones are:
• different drift covariates;
• different strategies for dealing with temporal correla-

tion (DL used a spatially constant temporal correlation
structure, whereas ours varied spatially);

• mixed effects rather than pure random effects at the
subject level;

• spatial smoothing of the random/fixed effects SD ratio
to boost the effective DF from 13 to 40;

• the new DLM P values [Worsley, 2005b] that reduced
the P values of local maxima by �43% for P values near
0.05.

These last two factors may be one of the main contribu-
tors. We ran the same analysis as in Table II but with no
smoothing, so that the effective DF was 13 (as in DL) rather
than 40. Significant clusters were reduced from 20 to 14, and
significant local maxima were reduced from 16 to 4, with one
in the blocks data. This is still more than in DL, so smoothing
of the random/fixed effects SD ratio cannot be the only
factor that contributes to the increased sensitivity of our
analysis. We tried switching off the DLM P values, using just
the best of Bonferroni and random field theory (as in DL).
This increased P values by �10% but did not reduce the
number of local maxima (switching off DLM without
switching off the smoothing reduced the local maxima from
16 to 11, with 3 in the blocks data). This is still more than DL,
so smoothing of the random/fixed effects SD ratio and the
new DLM P values cannot be the only factors that contribute
to the increased sensitivity of our analysis.

Finally, it is reassuring that the centers of activation that
are reported by DL do coincide with ours.
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