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Purpose: Detection of the huge amount of data generated in real-time visual evoked
potential (VEP) requires labor-intensive work and experienced electrophysiologists.
This study aims to build an automatic VEP classification system by using a deep
learning algorithm.

Methods: Patients with sellar region tumor and optic chiasm compression were
enrolled. Flash VEP monitoring was applied during surgical decompression. Sequential
VEP images were fed into three neural network algorithms to train VEP classification
models.

Results: We included 76 patients. During surgical decompression, we observed 68
eyes with increased VEP amplitude, 47 eyes with a transient decrease, and 37 eyes
without change. We generated 2,843 sequences (39,802 images) in total (887
sequences with increasing VEP, 276 sequences with decreasing VEP, and 1680
sequences without change). The model combining convolutional and recurrent neural
network had the highest accuracy (87.4%; 95% confidence interval, 84.2%–90.1%). The
sensitivity of predicting no change VEP, increasing VEP, and decreasing VEP was
92.6%, 78.9%, and 83.7%, respectively. The specificity of predicting no change VEP,
increasing VEP, and decreasing VEP was 80.5%, 93.3%, and 100.0%, respectively. The
class activation map visualization technique showed that the P2-N3-P3 complex was
important in determining the output.

Conclusions: We identified three VEP responses (no change, increase, and decrease)
during transsphenoidal surgical decompression of sellar region tumors. We developed
a deep learning model to classify the sequential changes of intraoperative VEP.

Translational Relevance: Our model may have the potential to be applied in real-
time monitoring during surgical resection of sellar region tumors.

Introduction

More than 20% of tumors in the central nervous

system originate in the sellar region, which houses the

pituitary gland.1,2 The most common among these

sellar tumors are pituitary adenomas, craniopharyn-

giomas, and meningiomas. Visual dysfunctions are

usually one of the complaints in these patients and are

indications for surgical decompression. The close

relationship of tumors and the optic nerve or chiasm

makes the latter vulnerable to any direct intraopera-
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tive injury, blood supply reduction, and indirect insult
due to heat conduction during coagulation. Although
the visual outcomes are favorable in most patients,
10% of the patients are not able to fully recover after
surgical decompression.3

Electrophysiological monitoring by the intraoper-
ative real-time recording of visual evoked potential
(VEP) can detect any possible VEP deviations during
the surgical procedure and act as a surrogate for optic
nerve injury. Several studies showed that this proce-
dure had the potential to improve visual outcome.4–6

Nevertheless, detection of the massive amount of data
generated in real-time requires labor-intensive work,
which limits its wide usage in clinical settings.
Moreover, the lack of experts who are experienced
with electrophysiology and variations in different
statuses of anesthesia make the real-time monitoring
of VEP recordings difficult. The computer-aided
analysis may have a solution to these issues.

A source of this assistance may lie in the rapidly
progressing domain of artificial intelligence known as
the neural network: a recent study has found that
neural network algorithm performed well in classify-
ing images from multifocal VEP data.7 Several studies
also used an algorithm to predict steady-state VEP
data.8,9 Whereas in the dynamic field, multiple studies
applied artificial intelligence in real-time: a study used
hospital-wide deployment of artificial intelligence to
discern real-time clinician behaviors,10 and another
study focused on early diagnosis of patients with
heart failure.11 No study was performed on the
dynamic detection of abnormal VEP in real-time by
using neural network algorithms. This study aims to
determine whether deep learning algorithms can
detect abnormal VEP. We hypothesize that VEP
changing tendency can be identified by a deep
learning algorithm during surgical decompression of
sellar region tumors.

Methods

We enrolled 76 patients (36 female, 47.3%; mean
age, 45.7 years old) with sellar region tumor, and the
chiasm compression was indicated on the preopera-
tive magnetic resonance imaging scan. All the patients
underwent transsphenoidal tumor resection. The
study was approved by Huashan Hospital Institu-
tional Review Board and was in adherence to the
Declaration of Helsinki. Informed consents were
obtained from all the participants. Preoperational
evaluations included thorough ophthalmic examina-
tions as well as visual acuity and visual field

examination to exclude patients with fundus disease,
glaucoma, or traumatic optic injury. Among 152 eyes
included in this study, 60 eyes had decreased visual
acuity, including 19 eyes that had visual acuity less
than 0.1, and 87 eyes had an abnormal visual field (36
eyes had quadrantanopia and 51 eyes had hemianopia
or worse).

Intraoperative VEP Recording

Flash VEP monitoring was applied using the
NIM Eclipse system (Medtronic, Minneapolis, MN),
with the International Society for Clinical Electro-
physiology of Vision VEP standard.12 The scalp for
electrode placement (the midline active electrode was
located at Oz, two lateral active electrodes were
located at O1 and O2, and the reference electrode was
located at Fz) was prepared by shaving and cleaning
before recording channels were connected with gold
cup electrodes. Conductive paste was applied to
decrease the impedance of the electrodes. Light-
proof goggles with a flashing light-emitting diode for
visual stimulation were placed over the two eyes.
Monocular flashing stimulation was made at a rate
of 1 Hz alternatively.

The preoperational recording was obtained before
the anesthesia. Propofol was used to induce anesthe-
sia with a 3-mg/kg/h maintaining dosage. We did not
use inhaling anesthesia. The baseline of postanesthe-
sia was obtained 5 minutes after successful anesthesia.
VEPs were recorded during the surgical process in
three channels per eye.

Preanalysis Processing

We measured amplitude from the positive P2 peak
at around 120 ms to the preceding N2 negative peak
at around 90 ms. Latency was measured as the time
from stimulus onset to the P2 amplitude. To minimize
the noise during monitoring, we used the average
response over 5 minutes after stable anesthesia to
measure the amplitude and latency. Then, the
amplitude and latency after anesthesia were used as
the baseline, and change from the baseline was
calculated in status after tumor resection.

To train the model for detecting VEP change, we
identified no change, increase, and decrease (the
criterion was defined as a .25% increase or .25%
decrease in amplitude compared with the baseline)
VEP sequences during surgical decompression. Pre-
analysis processing of the VEP sequences included
extracting VEP images from all three channels in each
eye and combining 14 VEP images over 5 minutes into

2 TVST j 2019 j Vol. 8 j No. 6 j Article 21

Qiao et al.



a sequence. Images with huge noise and artifacts were
excluded. All the sequences were transformed into 350
3 90-pixel size and vectorized using the value of each
pixel.

Statistical Analysis

We applied three neural network models (a three-
layer convolutional neural network, a pretrained
convolutional neural network, and a combination of
a convolutional and recurrent neural network) to
detect different VEP responses. In the first model
(Supplementary Table S1), convolutional neural
network alone has the potential to distinguish among
different responses. In this model, we used three
convolutional layers and max-pooling layers. In the
second model (Supplementary Table S2), a VGG19
architecture with preinitialization weights from the
same network trained in our previous work7 was used.
In the third model (Supplementary Table S3), the
convolutional neural network first recognized the
images from each sequence; then, the recurrent neural
network distinguished the sequence. In this model,
multiple convolutional layers were followed by a
long-short memory layer. We used another simpler
model (one long-short memory layer) with amplitude
and latency from every single VEP image as inputs for
comparison. Workflow for VEP analysis is provided
in Figure 1.

During the training process, random dropout was
used to prevent overfitting. Data were randomly split
into training dataset (60%), validation dataset (20%),
and test dataset (20%). We used bootstrap (a new
dataset was created by sampling from the original
data in every step of the bootstrap) to test the
robustness of our built models in the test dataset.
Confusion matrix of the whole cohort was calculated
with 5-fold cross-validation. Mean and 95% confi-
dence intervals of the accuracy were provided. To
provide model interpretability, we used class activa-
tion map (CAM) visualization technique to demon-
strate the model explanation.13 The CAM computes
how important each location is concerning the
classification. For instance, given an image fed into
our ‘‘no change versus decreasing versus increasing’’
model, CAM visualization allows generation of an
‘‘importance’’ heatmap for any input image. All the
analyses were performed on Python 3.6 with the
Keras package (version 2.1.1).

All the post-processing data can be assessed by
request. The code will be available on GitHub
(https://github.com/norikaisa/DeepiVEP).

Results

Characteristics of VEPs of the Cohort

Preoperation baseline VEP amplitude was 4.0 6

2.4 lv, and the latency was 99.3 6 27.2 ms. After
anesthesia, VEP amplitude decreased to 1.5 6 1.4 lv,
and the latency increased to 104.7 6 29.3 ms
(Supplementary Figure S1). The change was signifi-
cant in VEP amplitude (�107%; interquartile range,
�291% to �5%) but not in VEP latency (7%;
interquartile range, �25% to 24%).

During surgical decompression of the optic chiasm,
we observed 68 eyes had increased VEP amplitude. We
also identified 47 eyes with a transient decrease in VEP
amplitude and 37 eyes without change during the
surgical decompression (Table 1). These statuses were
used as the ground truth for future training. Eyes with
transient VEP amplitude decrease had better preoper-
ative visual acuity. On the contrary, eyes without
obvious change had worse visual acuity.

A sequence comprised 14 VEP images over 5
minutes, including the changing amplitude (Fig. 2).
We created 1931 sequences during surgical decom-
pression (887 sequences with increasing VEP, 276
sequences with decreasing VEP, and 768 sequences
without change). Thus, on average, 4.2 sequences
were generated per eye per channel. We further
increased the sample size of VEP without change to
1680 sequences (adding 912 sequences from the
baseline). The total sample size of our study was
2843 sequences (39,802 images).

Deep Learning Models

First, we built a simple convolutional neural
network (Supplementary Table S1) to classify the
three VEP status. The model got an accuracy of
82.7% (95% confidence interval [CI], 78.3%–86.5%).
The sensitivity of predicting no change VEP, increas-
ing VEP, and decreasing VEP was 84.6%, 79.3%, and
88.5%, respectively. The specificity of predicting no
change VEP, increasing VEP, and decreasing VEP
was 82.4%, 88.3%, and 99.3%, respectively.

In transfer learning using pretrained VGG16
structure (Supplementary Table S2), the accuracy
was 84.1% (95% CI, 79.8%–87.8%). The sensitivity of
predicting no change VEP, increasing VEP, and
decreasing VEP was 90.4%, 80.5%, and 86.0%,
respectively. The specificity of predicting no change
VEP, increasing VEP, and decreasing VEP was
83.3%, 90.4%, and 99.3%, respectively.
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Table 1. Gold Standard of the Classification in Visual Evoked Potential

Visual Measurements
No Change

(n ¼ 37)
Increasing
(n ¼ 68)

Decreasing
(n ¼ 47) P

Visual acuity, no. (%)
Normal 11 (29.7) 33 (48.5) 29 (61.7) 0.003
Abnormal 26 (70.3) 35 (51.5) 18 (38.3)

Visual field, no. (%)
Normal 15 (41.7) 29 (42.6) 21 (44.7) 0.484
Abnormal 22 (58.3) 39 (57.2) 26 (55.3)

Preanesthesia VEP, mean 6 SD
Amplitude (lv) 4.4 6 2.1 3.6 6 2.1 4.2 6 2.9 0.253
Latency (ms) 103.3 6 28.4 97.2 6 26.3 99.5 6 27.9 0.586

VEP after stable anesthesia (baseline)
Amplitude (lv), mean 6 SD 2.2 6 0.9 1.2 6 0.7 1.5 6 2.0 0.001
Amplitude change from preanesthesia,

(CI), %
�53 (�70, �20) �67 (�79, �45) �71 (�107, �21) 0.037

Latency (ms), mean 6 SD 112.8 6 28.3 102.2 6 28.7 102.0 6 30.4 0.153
Latency change from preanesthesia,

(CI), %
13 (�5, 31) 8 (�23, 40) 2 (�19, 32) 0.892

VEP during tumor decompression
Amplitude (lv), mean 6 SD 2.1 6 0.9 3.0 6 1.9 1.4 6 1.2 ,0.001
Amplitude change from baseline,

(CI), %
0 (�10, 0) 146 (69, 270) �75 (�270, �43) ,0.001

Latency (ms), mean 6 SD 99.1 6 29.3 95.6 6 27.1 100.6 6 25.7 0.604
Latency change from baseline,

(CI), %
�5 (�17, 0) �3 (�15, 5) 0 (�12, 17) 0.058

no., number; CI, 95% confidence interval.

Figure 1. The proposed workflow of analyzing intraoperative visual evoked potential. Time sequential visual evoked potentials were
inputted to a convolutional neural network, followed by a recurrent neural network to predict no change, increasing, or decreasing. CNN,
convolutional neural network; RNN, recurrent neural network.
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In the model combining convolutional and recur-
rent neural network (Supplementary Table S3), the
accuracy was 87.4% (95% CI, 84.2%–90.1%). The
sensitivity of predicting no change VEP, increasing
VEP, and decreasing VEP was 92.6%, 78.9%, and
83.7%, respectively. The specificity of predicting no
change VEP, increasing VEP, and decreasing VEP
was 80.5%, 93.3%, and 100.0%, respectively. The 5-
fold cross-validation of this model demonstrated that
2488 sequences were correctly classified (Fig. 3).

The simpler model only using amplitude and
latency from every single VEP images as prediction
features yielded an accuracy of 83.1% (95% CI,
81.7%–84.5%).

Explanation of the Model

We calculated CAM in a typical image, and the
visualization showed that VEP images in the bottom

area (later time) and the P2-N3-P3 complex were
more important in determining the output (Fig. 4).

Discussion

In this paper, we built a workflow (extracting,
preprocessing, and analysis) of the intraoperative
monitoring VEP. Deep learning models were trained
to detect the sequential change of intraoperative VEP.
The model performance was comparable to human
intelligence level in terms of differentiating VEPs
without change, with increasing amplitude, or with
decreasing amplitude. The results suggest our models
can potentially assist or partially substitute human
labor for VEP monitoring during surgical resection of
sellar region tumors.

Intraoperative VEP monitoring was introduced to
the field of neurosurgery in the 1970s14 when multiple
publications demonstrated the usefulness of this
technique to protect optic nerve from surgical
injury.15,16 But a few publications indicated that this
technique might be susceptible nonspecific influences,
such as anesthesia,17 blood pressure, oxygen satura-
tion, and bone procedures.18,19 We observed a huge
discrepancy before the anesthesia and after anesthe-
sia—the amplitude decreased by roughly 60% and the
latency increased by roughly 5%, which corresponded
to most of the previous studies.

Several publications have made criteria to predict
postoperative visual functions; for example, Harding
et al.16 argued that the absence of a previously normal
VEP for more than 4 minutes during surgical
manipulation within the orbit showed a correlation
with postoperative impairment of vision. The decrease
in latency was correlated with better visual prognosis

Figure 2. Examples of preprocessed visual evoked potential
sequences.

Figure 3. Confusion matrix of the whole cohort after cross-
validation.

Figure 4. Class activation map visualization technique to
demonstrate the model explanation. The visualization showed
that visual evoked potential images in the bottom area (later time)
and in the P2-N3-P3 complex were more important in determining
the output.
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in several publications.13 Several groups used a 20%
to 50% increase or decrease in amplitude as the
criterion.20–22 Recent studies also argued the effec-
tiveness of intraoperative VEP monitoring during
surgeries that might have the risk of optic injury.4–6

On the contrary, several studies concluded that this
procedure had no predictive value for postoperative
prognosis.18,19 We cannot rule out publication bias
where a negative result was less likely to be published.

In the previous paper, we built a convolutional
neural network to differentiate normal VEPs from
abnormal VEPs from signals obtained from multifo-
cal VEP examination.7 Still images are more suitable
for the convolutional neural network. In data with
dynamic properties, a combination of the convolu-
tional and recurrent neural network was more
suitable. The recurrent neural network has been
proven to be useful in analyzing data, such as clinical
notes,23,24 anesthesia parameters,25 and cardio-
graphs.26 Here, we combined a convolutional neural
network and recurrent neural network with the
assumption that the former can differentiate static
images and the latter can recognize dynamic patterns.
We chose the long-short memory layer because of its
property of selectively remembering and forgetting
patterns for long and short durations of time. The
performance of the combining model outranged that
of a simpler model using only amplitude and latency,
the single convolutional neural network, and even the
pretrained convolutional neural network, which
suggested the usefulness of our model. We also argue
that our model is simple enough in practice because
the workflow (recording VEP sequences, extracting
pixels, and feeding models) was automated.

Tumors for which craniotomy was warranted
decades ago can now be resected using neuroendo-
scope with less risk of optic nerve injury. In our
included cases, we always used the endoscopic
transsphenoidal approach where direct injury to the
optic apparatus was less likely to happen. Although
we did not have enough cases for VEP decrease
during monitoring, the differentiating power in these
cases was not compromised. We will use generative
adversarial networks to generate simulated decreasing
VEP responses in future studies.

We have several limitations to our study. We did
not have postoperative visual outcomes, but we
argued the correlation of intraoperative monitoring
and the outcome had been investigated by other
studies,4–6,14–21 and our study did not focus on this
topic. We have a relatively small sample size for a
deep learning study. But, we generated more than

10,000 images from these samples, which were
sufficient for deep learning training. The developed
system should be investigated in the real-time setting
to discern if the system can truly detect the increasing
or decreasing amplitude, especially for those signals
with noise artifacts. Future studies might include
‘‘noise’’ as one of the outcomes and let the net decide
if these artifacts should be excluded or not. The
generalizability of the model should be studied in a
wider broad extend including other institutions.

Conclusion

In this paper, we developed a deep learning model
to monitor the sequential change of intraoperative
VEP. The model performance was comparable to
human intelligence level in terms of differentiating
VEP with increasing amplitude, decreasing amplitude,
or with no change.
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