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Abstract

Inflammasomes are cytoplasmic multi-protein complexes that coordinate inflammatory responses, 

including those that take place during pregnancy. Inflammasomes and their downstream mediators 

caspase-1 and IL-1β are expressed by gestational tissues (e.g. the placenta and chorioamniotic 

membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the 

chorioamniotic membranes has been partially implicated in the sterile inflammatory process of 

term parturition. In vivo and ex vivo studies have consistently shown that the activation of the 

NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of 

microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 

inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes 

associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 

inflammasome or its downstream mediators may foster the development of novel anti-

inflammatory therapies for the prevention or treatment of pregnancy complications.
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AN OVERVIEW OF THE INFLAMMASOMES

Inflammasomes are cytosolic multiprotein complexes that typically consist of a sensor 

molecule (e.g. a pattern recognition receptor), the adaptor protein (apoptosis-associated 

speck-like protein containing a caspase recruitment domain; ASC), and the pro-

inflammatory caspase-1 (1). Inflammasome sensor molecules are responsible for 

recognizing pathogen-associated molecular patterns (PAMPs) or endogenous danger signals/

alarmins/damage-associated molecule patterns (DAMPs) (2–11). Upon recognition, 

oligomerization of the inflammasome complex and activation of caspase-1 occur (2–7), 

which initiates downstream responses including the processing and release of interleukin 

(IL)-1β and IL-18 (12–18) as well as pyroptosis, a lytic form of cell death (19–22). 

Inflammasomes were thought to be exclusive to innate immune signaling (1, 23); however, 

recent reports showed that these platforms also promote adaptive immune responses (24–

26). Several members of the nucleotide-binding oligomerization domain leucine-rich repeat-

containing protein (NLR) family function as the sensor molecules of the inflammasome (1, 

27, 28); therefore, it was initially thought that NLR signaling was inherent to inflammasome 

activation (2). Consequently, multiple NLR-dependent inflammasomes were described, 

namely nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-

containing protein (NLRP)-1 (1), NLRP3 (28), and NLR family caspase-activation-and-

recruitment domain (CARD)-domain-containing protein-4 (NLRC4) (27, 29). Yet, NLR-

independent inflammasomes that are driven by alternative sensor molecules such as absent 

in melanoma-2 (AIM2) (30–33) and pyrin (34) have also been described.

To date, five distinct inflammasomes have been well characterized, each identified by its 

specific sensor molecule: NLRP1, NLRP3, NLRC4, AIM2, and pyrin (2–7). Other 

inflammasomes that require further characterization of their specific ligands, mechanisms of 

action, and roles in disease include NLRP6 (35), NLRP7 (36), NLRP12 (37), retinoic acid-

inducible gene-I (RIG-I) (38, 39), and interferon-γ (IFNγ)-inducible protein-16 (IFI16) (40, 

41). Next, we will provide a brief overview of the NLRP1, NLRC4, AIM2, pyrin, and 

NLRP3 inflammasomes.

The NLRP1 inflammasome was the first to be described (1) and exists as a single protein in 

humans, whereas mice express multiple NLRP1 paralogues (42). Initial reports showed that 

NLRP1 responds to the lethal toxin of Bacillus anthracis (42), and subsequent studies 

indicated that this inflammasome also responds to Toxoplasma gondii (43), Listeria 
monocytogenes, and Shigella flexneri (44). The NLRP1 inflammasome can also be activated 

by the microbial product muramyl-dipeptide, a component of peptidoglycan (45). 

Interestingly, mutations in NLRP1 have been associated with severe inflammatory skin 

disorders (46), which may be due to the high expression of this molecule in keratinocytes 

(46). Therefore, the NLRP1 inflammasome is implicated in host defense against pathogens 

and skin homeostasis.

NLRC4 was first characterized as an apoptotic-protease activating factor-1 (APAF1)-related 

protein (27), and was shown to induce inflammasome activation in response to Salmonella 
typhimurium infection in mice (29). Subsequent reports indicated that the murine NLRC4 

inflammasome was activated in response to flagellin (47) as well as multiple components of 
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the bacterial type 3 secretion system (T3SS) (48). The NLRC4 inflammasome is unique in 

that it relies on multiple NLR family apoptosis inhibitory proteins (NAIPs) (49) to detect 

specific bacterial proteins (e.g. T3SS rod protein in mice (48, 50) and T3SS needle subunit 

in humans (48). NAIPs can then interact with NLRC4 to trigger the assembly of this 

inflammasome (48, 50). Humans express only one NAIP with at least two reported isoforms 

(51), which recognize Chromobacterium violaceum and Salmonella flagellin (48, 51). The 

assembly of the NLRC4 inflammasome may also require the phosphorylation of NLRC4 

(52), highlighting the complexity of the mechanisms by which this inflammasome is 

activated.

The AIM2 inflammasome is unique in that it is activated by cytosolic DNA of microbial or 

host origin independently of NLRP3 and TLR signaling (30–32, 53). In the absence of 

cytosolic DNA, AIM2 exists in an auto-inhibitory state with its HIN200 domain tightly 

bound to the pyrin domain (PYD) (54, 55). The binding of cytosolic DNA to HIN200 

releases the protected PYD, allowing for self-oligomerization and interaction with ASC in 

order to initiate inflammasome assembly (54, 55). The AIM2 inflammasome orchestrates 

host defense against DNA viruses such as cytomegalovirus and vaccinia virus, as well as 

infections with intracellular bacterial pathogens (30–32, 53, 56, 57). In addition, the AIM2 

inflammasome is implicated in the pathogenesis of psoriasis (58) and prostate cancer (59). 

Hence, the AIM2 inflammasome participates in host defense and tumor progression (5).

The most recently discovered of the well characterized inflammasomes is the Pyrin 

inflammasome (34, 60). This inflammasome indirectly responds to Burkholderia 
cenocepacia and Clostridium difficile (34, 60) by sensing the bacterial modification and 

inactivation of Rho GTPases (60). Such modifications include glycosylation, adenylation, 

and ADP-ribosylation, all of which result in activation of the Pyrin inflammasome; yet, 

direct interactions between Rho and Pyrin have not been detected (60). Interestingly, recent 

reports indicate that the activation of the Pyrin inflammasome can occur in response to 

microtubule disruption and other cytoskeletal modifications resulting from microbial 

infection, rather than in response to the pathogen itself (61, 62). More recently, it was shown 

that specific bile acid analogs can directly activate the Pyrin inflammasome, suggesting a 

new mechanism whereby the production of bile acid metabolites by gut microbiota could 

affect host innate immune responses (63). Therefore, the Pyrin inflammasome can 

participate in host defense responses and gut homeostasis.

The most widely studied of the inflammasomes is the NLRP3 inflammasome (23, 28, 64–

66). This inflammasome has two key characteristics: first, it can be activated by a wide range 

of unrelated molecules, including PAMPs (64, 67) and both endogenous and exogenous 

DAMPs or alarmins (23, 66, 68), as has been previously reviewed (11). Second, the NLRP3 

inflammasome is highly expressed in innate immune cells such as macrophages, neutrophils, 

and dendritic cells (23, 69, 70), as well as in multiple tissues (23, 68, 71–73). Notably, 

classical or canonical activation of the NLRP3 inflammasome requires two distinct steps: 

priming and assembly (74, 75). The priming step is initiated by inflammatory stimuli via 

surface PRRs such as TLRs, which induce NF-κB activation resulting in the increase of 

NLRP3 and pro-IL-1β (65, 76). The second step includes multiple signaling events 

occurring upon recognition of the PAMP or DAMP which, in turn, promotes the assembly of 

Gomez-Lopez et al. Page 3

J Immunol. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the inflammasome complex, the cleavage of caspase-1, and subsequent processing and 

release of IL-1β and IL-18 (11). The activation of the NLRP3 inflammasome has been 

associated with multiple cellular events including potassium efflux (77, 78), lysosomal 

rupture (79), mitochondrial dysfunction (80), calcium influx (81, 82), and decreased cellular 

cAMP levels (82), many of which seemed to depend on the activating stimulus. A later study 

suggested that potassium efflux is a common cellular event associated with NLRP3 

inflammasome activation by showing that multiple microbial and endogenous signals induce 

a drop in cytosolic potassium that is sufficient to activate this inflammasome (83). Yet, even 

potassium efflux-independent pathways of NLRP3 inflammasome activation have been 

described (84). Further studies are required to elucidate all of the cellular pathways 

associated with the canonical activation of this inflammasome.

In addition to the canonical activation pathway of the NLRP3 inflammasome, this 

inflammasome can also be indirectly triggered by caspase-11 in mice (85) (or the 

homologues caspase-4 and caspase-5 in humans (85, 86)), which has been termed the non-

canonical activation pathway (87). The non-canonical pathway was first described in murine 

macrophages infected with Escherichia coli, Citrobacter rodentium, and Vibrio cholera (87). 

This report showed that caspase-11 was required for the non-canonical activation of the 

NLRP3 inflammasome, which subsequently leads to the cleavage of caspase-1 and release of 

IL-1β and IL-18 (87). Notably, in the non-canonical pathway, caspase-11 directly recognizes 

and binds to intracellular lipopolysaccharide (LPS) (88, 89), resulting in its oligomerization 

and activation by auto-proteolytic cleavage (90). Active caspase-11 can then directly induce 

the cleavage of gasdermin D (GSDMD) to cause pyroptosis (e.g. release of caspase-1-

processed IL-1β and IL-18) (87, 91).

In summary, inflammasomes mediate central processes during host defense against 

pathogens and immunoregulation, whose processes are essential for homeostasis (92). 

Hence, aberrations in inflammasome activation can be implicated in the pathogenesis of 

disease (92). In this review, we focus on describing the role of inflammasomes during 

normal pregnancy and its complications, including preterm labor and birth, the leading cause 

of perinatal morbidity and mortality worldwide (93, 94), and pregnancy disorders associated 

with placental inflammation.

INFLAMMASOMES DURING NORMAL PREGNANCY

Inflammation is a key process in reproductive success since it is required for implantation 

(95), pregnancy maintenance (96), and parturition (97–99). Therefore, it is tempting to 

propose that inflammasomes are involved in each of the above processes and, consequently, 

their components are expressed in the gestational tissues.

Inflammasome components in the gestational tissues

Inflammasome components have been detected during pregnancy in both maternal and fetal 

compartments. Initial reports showed that NLRP3 (100–102), NLRC4 (103), and NLRP1 

(102) are expressed by peripheral leukocytes of pregnant women. In the placenta (organ 

serving as the lungs, liver, and kidney for the fetus (104)), a tissue-wide survey revealed that 

multiple sensor molecules including NLRP1, NLRP3, and NLRC4 were expressed (105). In 
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the first trimester, in vitro studies have shown that placental cells (e.g. trophoblasts) 

expressed NLRP1, NLRP3, and NLRC4 (106, 107), as well as NLRP2 (108). At term (≥37 

weeks of gestation), placental tissues also expressed these sensor molecules (106, 109–114). 

Mirroring the expression of the NLRs, the adaptor protein ASC (or PYCARD) is also 

expressed in the placenta throughout pregnancy (105–107, 113, 114). The chorioamniotic 

membranes (also known as the extraplacental membranes: fetal tissues forming the amniotic 

cavity (115)) expressed sensor molecules of the inflammasome, namely NLRP1 (116), 

NLRP3 (109, 116), NLRC4 (116), and AIM2 (116), as well as ASC (117). Immune cells 

infiltrating the chorioamniotic membranes (e.g. choriodecidual leukocytes) also expressed 

ASC (117). Moreover, NLRP3 is expressed by myometrial tissues from women at term 

pregnancy (118). Together with the fact that inflammatory caspases (caspase-1 and 

caspase-4) have been detected in the human placenta (110–113, 119, 120), chorioamniotic 

membranes (110, 116, 117, 121, 122), and myometrium (121), this evidence indicates that 

gestational tissues possess the machinery to initiate inflammasome-mediated immune 

responses during pregnancy. Figure 1 includes a schematic representation of the 

inflammasomes reported in the chorioamniotic membranes during normal pregnancy.

Inflammasomes in term parturition

Parturition represents a form of physiological inflammation (98, 123), which is considered 

sterile in nature given that the majority of women who undergo labor do not have culturable 

microorganisms in the amniotic cavity (124). This concept is supported by numerous studies 

showing an increased bioavailability of cytokines (125–134) and chemokines (135–139) in 

the amniotic fluid, maternal circulation (140, 141), and gestational tissues such as the 

placenta (142–144), chorioamniotic membranes (123, 144–152), myometrium (146, 148, 

150, 151, 153), and cervix (146, 148, 151, 154, 155) during labor. This sterile inflammatory 

process occurs in conjunction with an influx of innate and adaptive immune cells into the 

choriodecidua (cell layer attached to the chorioamniotic membranes) (146, 156–167), 

myometrium (168–173), and cervix (148, 168, 174–182). Recent reports have established 

that inflammasomes also participate in the pro-inflammatory milieu of parturition (116, 117, 

183). Next, we discuss the evidence supporting such a concept.

The first link between the inflammasome and parturition was reported in 2008 by Gotsch et 

al. (183) who measured caspase-1 in amniotic fluid (biological fluid with physiological and 

immune properties that surrounds the fetus throughout gestation (184–186)). These authors 

reported that the inflammasome-dependent caspase-1 was detected in amniotic fluid of 

women at term pregnancy, but not in the second trimester (183). In addition, caspase-1 

concentrations in amniotic fluid were further increased in women with spontaneous labor at 

term (183). These findings are in line with reports showing that the main downstream 

product of the inflammasome, IL-1β, is elevated in women during the physiological process 

of labor at term (126, 127, 144). Yet, amniotic fluid concentrations of IL-18 do not increase 

during term parturition (187). In addition, amniotic fluid concentrations of the adaptor 

protein ASC and the effector protein of pyroptosis GSDMD are also increased in women 

with spontaneous labor at term (188, 189). The findings described above led us to 

hypothesize that the chorioamniotic membranes, tissues that surround the amniotic cavity, 

display an increased expression of the sensor molecules, the adaptor protein, and 
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inflammatory caspases in the process of parturition at term. Consistent with this hypothesis, 

we and others found that the chorioamniotic membranes expressed NLRP1, NLRP3, AIM2, 

and NLCR4 (116) as well as the inflammatory caspase-1 (116, 121) and caspase-4 (116). 

Yet, only the priming and activation of the NLRP3 inflammasome, as evidenced by the 

upregulation of the sensor molecule and increased amounts of the active forms of caspase-1 

and mature IL-1β, was observed in the chorioamniotic membranes of women with labor at 

term (116). The assembly of the NLRP3 inflammasome was later confirmed by localization 

of ASC/caspase-1 complexes and ASC specks (a readout of inflammasome activation (190)) 

in the chorioamniotic membranes and choriodecidual leukocytes of women with labor at 

term (117, 188). Subsequent studies also suggested that the NLRP3 inflammasome is 

involved in the inflammatory process of labor in the myometrium (118). The final piece of 

evidence showing a partial role for the NLRP3 inflammasome in the physiological process 

of labor was generated when pregnant dams were treated with an inhibitor of NLRP3 

inflammasome assembly, MCC950 (191), and arrest of labor (i.e. dystocia) was observed in 

a subset of animals (192). Collectively, the abovementioned studies indicate that the 

activation of the NLRP3 inflammasome in the amniotic cavity and surrounding tissues 

occurs as part of the sterile inflammatory milieu that accompanies physiological labor at 

term (Figure 1).

Not all term pregnancies occur in the absence of pathology. A subset of women with labor at 

term are diagnosed with acute histologic chorioamnionitis (193). This placental lesion is 

associated with intra-amniotic infection (i.e. microorganisms in the amniotic fluid and 

inflammation) or sterile intra-amniotic inflammation (i.e. inflammation without detectable 

microorganisms in amniotic fluid) (194). Acute histologic chorioamnionitis is characterized 

by the invasion of neutrophils and macrophages into the chorioamniotic membranes (195), 

and is associated with elevated concentrations of pro-inflammatory cytokines such as IL-1β 
in amniotic fluid (196, 197). Therefore, we hypothesized that inflammasomes may be 

involved in the process of parturition associated with acute placental inflammation. In line 

with this hypothesis, NLRP3 and NLRC4 as well as the active/mature forms of caspase-1, 

IL-1β, and IL-18 were increased in the chorioamniotic membranes of women with labor at 

term and acute chorioamnionitis compared to those without this placental lesion (198). 

Enhanced inflammasome assembly in the chorioamniotic membranes of women with acute 

chorioamnionitis was later confirmed by detection of ASC/caspase-1 complexes (117). 

Furthermore, amniotic fluid concentrations of the adaptor protein ASC are increased in 

women with acute histologic chorioamnionitis at term (199). These descriptive findings are 

consistent with in vitro studies showing that the incubation of the chorioamniotic 

membranes with microbial products (e.g. LPS) induces the processing of the active forms of 

caspase-1 and the release of IL-1β, which is blocked by caspase-1 inhibitors (109, 121, 198, 

200). These studies suggest that the NLRP3 and NLRC4 inflammasomes may be involved in 

the pathological inflammatory process of labor at term associated with microbial invasion. 

Yet, further in vivo studies are needed to investigate whether these inflammasomes are 

indeed implicated in the acute inflammation of the placental tissues at term pregnancy.
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INFLAMMASOMES IN PRETERM LABOR AND BIRTH

Spontaneous preterm labor is a syndrome of multiple etiologies (201), which commonly 

leads to preterm birth, the leading cause of perinatal morbidity and mortality worldwide (93, 

202, 203). The best studied cause for preterm labor is intra-amniotic inflammation (204–

213), which can occur as a consequence of microbial invasion of the amniotic cavity (i.e. 

intra-amniotic infection) or as a result of elevated concentrations of danger signals or 

alarmins in amniotic fluid (i.e. sterile intra-amniotic inflammation) (214, 215). Both clinical 

conditions are characterized by increased cytokine concentrations (125, 127, 128, 135–137, 

187, 216–222) and elevated numbers of immune cells (186, 223–230) in amniotic fluid. One 

of the central players in this intra-amniotic inflammatory response is IL-1β (127, 221), 

given that this cytokine orchestrates the production of labor mediators such as 

prostaglandins (231–237). Indeed, the administration of IL-1β induces preterm birth in mice 

(129, 238, 239) and non-human primates (207, 240–244). The abovementioned studies led 

us to investigate whether inflammasomes, the primary machinery of IL-1β processing, were 

implicated in the intra-amniotic inflammatory response that accompanies preterm labor and 

birth. Next, we discuss the evidence indicating a role for the inflammasome in intra-amniotic 

infection- and sterile intra-amniotic inflammation-associated preterm labor and birth.

Intra-amniotic infection-associated preterm labor and birth

The first evidence suggesting a role for the inflammasome in the mechanisms that lead to 

preterm labor and birth in the context of intra-amniotic infection was generated by Gotsch et 

al. (183). These authors reported that amniotic fluid concentrations of caspase-1 were 

increased in women with preterm labor and intra-amniotic infection compared to those 

without this clinical condition (183). Such findings were in line with prior studies showing 

that amniotic fluid concentrations of IL-1β (125, 127, 221, 245, 246) and IL-18 (187, 247) 

were also elevated in women with preterm labor and intra-amniotic infection. This clinical 

evidence led us to investigate whether inflammasomes were involved in the pathophysiology 

of preterm labor/birth in the context of inflammation induced by microbes. First, we showed 

that women with preterm labor and birth and acute chorioamnionitis (a readout of intra-

amniotic infection (195, 248, 249)) displayed priming of the NLRP3 inflammasome as 

evidenced by the upregulation of NLRP3, caspase-1, caspase-4, IL-1β, and IL-18 in the 

chorioamniotic membranes (250). Next, the activation of the NLRP3 inflammasome was 

confirmed by increased concentrations of active caspase-1 and caspase-4 and mature forms 

of IL-1β and IL-18, as well as enhanced formation of ASC/caspase-1 complexes in the 

chorioamniotic membranes of women with preterm labor and acute chorioamnionitis (250). 

The increased concentrations of active caspase-4 suggest that non-canonical inflammasome 

activation may occur in the context of preterm labor resulting from intra-amniotic infection 

due to Gram-negative bacteria. Recently, we also found that amniotic fluid concentrations of 

the adaptor protein ASC (251) and the effector molecule of pyroptosis GSDMD (252) were 

increased in women with preterm labor and intra-amniotic infection compared to those 

without this clinical condition. Both ASC and GSDMD are also overexpressed by the 

chorioamniotic membranes of women with preterm labor and intra-amniotic infection. 

Together, these data provide descriptive evidence supporting a role for the NLRP3 
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inflammasome in the pathophysiology of intra-amniotic infection-associated preterm labor 

and birth.

Causal links between the activation of the NLRP3 inflammasome and preterm labor and 

birth in the context of infection include the following: 1) the intra-uterine administration of 

peptidoglycan and poly I:C increased the expression of NLRP3 and caspase-1, as well as 

increased amounts of active caspase-1, in the uterine tissues (253); 2) the deficiency of 

Nlrp3 protects against group B streptococcus-induced preterm birth (254); 3) the combined 

injection of MHV-68 and LPS induces preterm birth (255, 256) by causing exaggerated 

inflammation in the fetal membranes, which was suggested to occur in part through the 

activation of the NLRP3 inflammasome (200); and 4) the ultrasound-guided intra-amniotic 

administration of LPS induced priming and activation of the NLRP3 inflammasome in the 

fetal membranes prior to preterm birth, which was ameliorated by blocking the assembly of 

the NLRP3 inflammasome using MCC950 (257). Preliminary data from our group suggest 

that the NLRP3 inflammasome is implicated in host defense mechanisms against genital 

mycoplasmas (Motomura et al., unpublished data). It is worth mentioning that inhibition of 

the inflammasome in the context of intra-amniotic infection does not fully prevent adverse 

pregnancy and neonatal outcomes (257), indicating that the blockade of multiple pathways 

(including other inflammasomes) may be necessary to restore the normal timing of 

parturition. Further studies are required to investigate whether clinically-isolated bacterial 

cultivars associated with preterm labor and birth induce the activation of the NLRP3 

inflammasome in vivo, and whether conventional treatments are effective for prevention of 

adverse pregnancy outcomes.

Sterile intra-amniotic inflammation-induced preterm labor and birth

A link between the NLRP3 inflammasome and the mechanisms leading to sterile intra-

amniotic inflammation-associated preterm labor and birth was first hypothesized upon the 

observation that placentas from women with intra-amniotic inflammation without detectable 

microorganisms are diagnosed with acute chorioamnionitis (214, 215) and display 

characteristics of NLRP3 inflammasome activation (250). This hypothesis was confirmed by 

recent reports showing that women with preterm labor and sterile intra-amniotic 

inflammation have increased concentrations of ASC (251) and GSDMD (252) in amniotic 

fluid and the chorioamniotic membranes. These clinical observations led us to investigate 

the mechanisms whereby danger signals or alarmins, molecules that initiate sterile 

inflammation (258–260), trigger inflammatory processes in the amniotic cavity and 

chorioamniotic membranes. First, we showed that the ultrasound-guided intra-amniotic 

administration of the classical alarmin HMGB1, a molecule that is present in amniotic fluid 

of women with preterm labor (261), induces preterm birth in mice (262). Next, using an ex 
vivo model of intra-amniotic inflammation, we reported that HMGB1 causes the priming 

and activation of the NLRP3 inflammasome in the chorioamniotic membranes (263). 

Recently, we also provided in vivo evidence that the alarmin S100B can induce sterile intra-

amniotic inflammation by activating the NLRP3 inflammasome in the fetal membranes prior 

to inducing preterm birth (192). Importantly, by inhibiting the assembly of this 

inflammasome using MCC950, S100B-induced preterm birth can be prevented in most cases 

(192). Furthermore, we have generated data showing that the ultrasound-guided intra-
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amniotic injection of the alarmin IL-1α induces preterm labor and birth via the NLRP3 

inflammasome (Motomura et al., unpublished data). These findings have clinical 

implications given that we have proposed to use inhibitors of the NLRP3 inflammasome as a 

therapeutic strategy for sterile intra-amniotic inflammation, a condition that currently lacks 

treatment (192). Additional studies are required to investigate whether other alarmins [e.g. 

heat shock protein 70 (HSP70) (264)] present in amniotic fluid of women with preterm labor 

and sterile intra-amniotic inflammation can activate the NLRP3 inflammasome in the fetal 

membranes, inducing preterm labor and birth.

Figure 2 includes a representation of the proposed role for the canonical and non-canonical 

NLRP3 inflammasome pathways in the pathophysiology of preterm labor and birth in the 

context of intra-amniotic infection or sterile intra-amniotic inflammation.

INFLAMMASOMES IN PREGNANCY COMPLICATIONS ASSOCIATED WITH 

PLACENTAL INFLAMMATION

Given that inflammasome components are expressed by placental cells, as reviewed above, 

early studies have suggested that inflammasomes are implicated in the inflammatory 

responses associated with placental disease. Mulla et al. and Xie et al. were the first to 

demonstrate that NLRP3 inflammasome activation in trophoblasts (106) and peripheral 

blood (100) was implicated in the pathogenesis of preeclampsia. Indeed, it has been shown 

that peripheral monocytes from women with preeclampsia display enhanced expression of 

NLRP1 and NLRP3 (102, 265, 266), and polymorphisms in their coding genes are 

associated with the development of this syndrome (267, 268). In addition, women with 

preeclampsia had elevated levels of total cholesterol and uric acid, cellular metabolites that 

act as alarmins when released extracellularly (269, 270), which can potentially activate the 

NLRP3 inflammasome in the syncytiotrophoblast layer of the placenta (112). Descriptive 

studies have also shown that placentas from women with severe preeclampsia display higher 

expression of NLRP3, caspase-1, and IL-1β compared to normotensive pregnant women 

(120, 271). Further, in vivo studies (119, 272–275) have provided a link between alarmin-

induced activation of placental NLRP3 inflammasomes and the resulting placental 

inflammation-associated pregnancy complications. In line with this evidence, a recent study 

using murine models and human tissues showed that endothelial-derived extracellular 

vesicles induce NLRP3 inflammasome activation, triggering a preeclampsia-like syndrome 

that can be attenuated by inhibition of this pathway (276). Taken together, these findings 

suggest that NLRP3 inflammasome activation is implicated in the placental inflammatory 

processes associated with the pathophysiology of preeclampsia (Figure 3).

Moreover, in vitro and in vivo studies have shown that inflammatory stimuli (e.g. LPS or 

uric acid) induce the activation of the NLRP3 inflammasome in the placenta (107, 277), 

which may also contribute to the mechanisms of disease of other pregnancy complications 

associated with placental inflammation such as anti-phospholipid syndrome (277–279), 

gestational diabetes (280), and fetal growth restriction (119). Recent studies showed that the 

NLRP7 inflammasome is a key regulator of placental development and hypoxia, the 

impairment of which can lead to fetal growth restriction (281). This finding suggests that the 
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NLRP7 inflammasome, which has been previously shown to be activated by microbial 

products (36), may also be triggered by non-microbial signals resulting from hypoxic 

conditions in the placenta (281) (Figure 3). Yet, further studies are required to investigate 

whether the inhibition of inflammasomes can be considered as a strategy to prevent placental 

inflammation-associated disorders.

CONCLUSION

Growing evidence has consistently shown that inflammasomes are implicated in the 

physiological and pathological inflammatory processes of pregnancy. Several 

inflammasomes have been detected in the gestational tissues; yet, only the NLRP3 

inflammasome in the chorioamniotic membranes has been implicated in the mechanisms 

that lead to the sterile inflammatory process of term parturition. The premature activation of 

the NLRP3 inflammasome in the chorioamniotic membranes is now established to be an 

important mechanism whereby microbes or danger signals induce preterm labor and birth. 

The activation of the NLRP3 inflammasome in the placenta has also been involved in the 

pathogenesis of preeclampsia and other placental disorders. This evidence could foster the 

development of novel anti-inflammatory therapies based on the inhibition of the NLRP3 

inflammasome for the prevention or treatment of pregnancy complications.
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3Non-standard abbreviations:

AIM2 absent in melanoma-2

ASC apoptosis-associated speck-like protein containing a caspase 

recruitment domain

DAMPs damage-associated molecule patterns

GSDMD Gasdermin D

LPS Lipopolysaccharide

MCC950 sodium salt is a potent selective inhibitor of NLRP3

NAIPs NLR family apoptosis inhibitory proteins

NLR nucleotide-binding oligomerization domain leucine-rich repeat-

containing protein
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NLRC4 NLR family caspase-activation-and-recruitment domain (CARD)-

domain-containing protein-4

NLRP nucleotide-binding oligomerization domain leucine-rich repeat and 

pyrin domain-containing protein

PAMPs pathogen-associated molecular patterns

PRRs pattern recognition receptors

T3SS Type 3 secretion system
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Figure 1. Inflammasomes in the chorioamniotic membranes during normal parturition.
Representative image of the chorioamniotic membranes (amnion, chorion, and decidua) 

surrounding the amniotic cavity containing the fetus and amniotic fluid. The NLRP1, AIM2, 

NLRC4 and NLRP3 sensor molecules have been detected in the chorioamniotic membranes 

during normal pregnancy. The activation of the NLRP3 inflammasome leading to pyroptosis 

has been implicated in the physiological mechanisms of term parturition.
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Figure 2. The NLRP3 inflammasome in preterm labor and birth.
Bacteria (e.g. genital mycoplasmas) or alarmins (e.g. HMGB1, S100B, or IL-1α) can 

activate the canonical NLRP3 inflammasome pathway in the chorioamniotic membranes, 

which results in the release of active caspase-1 and mature forms of IL-1β and IL-18 into the 

amniotic fluid. Gram-negative bacteria may also activate the non-canonical NLRP3 

inflammasome pathway. Detection of extracellular ASC and gasdermin D in the 

chorioamnioitic membranes and amniotic fluid have also been reported as readouts of 

inflammasome activation and pyroptosis, respectively.
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Figure 3. Inflammasomes in placental inflammation.
Endothelial-derived extracellular vesicles and/or alarmins (e.g. cholesterol or uric acid) can 

activate the NLRP3, NLRP1, and NLRP7 inflammasomes in the placenta, leading to the 

processing and release of active caspase-1 and mature IL-1β. The resulting inflammation 

may lead to placental diseases such as preeclampsia and fetal growth restriction.
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