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Abstract: We analyzed the properties of the logarithm of the Rician distribution leading to a full character-
ization of the probability law of the errors in the linearized diffusion tensor model. An almost complete lack
of bias, a simple relation between the variance and the signal-to-noise ratio in the original complex data, and
a close approximation to normality facilitated estimation of the tensor components by an iterative weighted
least squares algorithm. The theory of the linear model has also been used to derive the distribution of mean
diffusivity, to develop an informative statistical test for relative lack of fit of the ellipsoidal (or spherical) model
compared to an unrestricted linear model in which no specific shape is assumed for the diffusion process, and
to estimate the signal-to-noise ratios in the original data. The false discovery rate (FDR) has been used to
control thresholds for statistical significance in the context of multiple comparisons at voxel level. The methods
are illustrated by application to three diffusion tensor imaging (DTI) datasets of clinical interest: a healthy
volunteer, a patient with acute brain injury, and a patient with hydrocephalus. Interestingly, some salient
features, such as a region normally comprising the basal ganglia and internal capsule, and areas of edema in
patients with brain injury and hydrocephalus, had patterns of error largely independent from their mean
diffusivities. These observations were made in brain regions with sufficiently large signal-to-noise ratios (�2)
to justify the assumptions of the log Rician probability model. The combination of diffusivity and its error may
provide added value in diagnostic DTI of acute pathologic expansion of the extracellular fluid compartment
in brain parenchymal tissue. Hum Brain Mapp 24:144–155, 2005. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

Although the functions relating the magnetic resonance
signal with a diffusion tensor in diffusion tensor imaging
(DTI) have a nonlinear nature, they are linearized frequently
to benefit from the technical simplicity of the transformed
model [Anderson, 2001; Basser et al., 1994; Papadakis et al.,
1999]. One direct advantage of a linear model is that under
some mild assumptions, least squares estimates have opti-
mal properties such as lack of bias and low variance [Raw-
lings et al., 1998]. Additionally, if the assumptions of nor-
mality and independence of the errors are met, they can be
used to derive the distributional properties of the least
squares estimates of the parameters. Normality of the resid-
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uals has been assumed frequently in the linearized diffusion
tensor model to explore some of the statistical features of the
estimated tensor [Anderson, 2001; Papadakis et al., 1999].

It is well known that due to the nonlinear transformations
involved in the construction of the intensity images from the
original complex data, the noise will be described properly
by a Rician probability law [Rice, 1944; Sijbers et al., 1998].
Fortunately, unless the signal-to-noise ratio (SNR) is very
low, the Rician distribution can be approximated closely by
a normal distribution [Pajevic and Basser, 2003; Sijbers et al.,
1998]. However, when logarithms are applied to the inten-
sity values to obtain the linear equations, their probability
law changes (it is not Rician anymore) and the normal
approximation may not be tenable. Moreover, it is not even
clear that the expectation of such a “log Rician” probability
law will equal the real intensity, i.e., that the errors in the
observed intensities will be centered at zero, which may lead
to systematic biases in the least squares estimates of the
tensor values.

On the other hand, despite extensive work in the devel-
opment of new descriptors to summarize the properties of
diffusion, proper statistical methods to assess the uncer-
tainty of basic quantities such as the mean diffusivity remain
missing. Indeed, assessment of the accuracy of any esti-
mated quantities will be crucial to draw reliable conclusions
from them.

Two different causes may lead to high levels of error in
estimates of the components of the tensor. Either the ac-
quired data is quite noisy, with high levels of error without
any structure (in which case no other model will better
describe the data), or it may be that although noise levels are
rather low, the ellipsoidal (or spherical) model does not
describe the structure of the data adequately. Lack of fit tests
should be carried out to discriminate between the two situ-
ations described above. In fact, several authors have pro-
posed lack of fit tests for DTI models. Basser et al. [1994] thus
devised a test to assess the lack of fit of the spherical model
by comparing it with the more flexible ellipsoidal model, i.e.,
a test to check for anisotropy. Alexander et al. [2002] pro-
posed a similar test to discriminate among models of in-
creasing complexity derived from truncation of the spherical
harmonic expansion.

Finally, a multiple comparisons problem will arise if the
results of many tests are analyzed simultaneously. Although
classic solutions have been available for many years (such as
the Bonferroni correction), they lead to overconservative
corrections when the number of tests is particularly large
(which is the case for tests applied at the voxel level). Re-
cently, a new approach based on controlling the expected
proportion of false positives has overcome this problem.
Indeed, the false discovery rate method (FDR) [Benjamini
and Hochberg, 1995; Benjamini and Yekuteli, 2001] already
has been applied successfully in other modalities of mag-
netic resonance imaging (MRI) [Genovese et al., 2002].

In this study, we develop further several aspects of the
statistical framework of DTI: (1) we analyze statistical prop-
erties of the logarithm of the Rician distribution; (2) we

combine this new probability law with the deterministic
equations of DTI and define weighted least squares (WLS)
estimators of the parameters; (3) we also find the statistical
distribution of the errors of mean diffusivity; and (4) we
define and implement a test for relative lack of fit of the
ellipsoidal (or spherical) model using an algorithm to con-
trol the FDR over multiple dependent tests at voxel level.
Finally, these methods are applied to three datasets of clin-
ical interest: a healthy volunteer, a patient with acute brain
injury, and a patient with hydrocephalus.

SUBJECTS AND METHODS

Diffusion Tensor Imaging

Subjects

Informed consent was obtained before scanning from a
healthy volunteer and from the patient with hydrocephalus.
For the patient with head injury, assent to these studies was
obtained from the next of kin. This study was approved by
the Local Research Ethics Committee of Addenbrooke’s
Hospital NHS Trust, Cambridge, UK.

The healthy volunteer was a 37-year-old man with no
history of neurologic problems. The patient with acute head
injury was a 36-year-old man who had suffered a severe
traumatic brain injury after falling down a flight of stairs.
Computed tomography images demonstrated bifrontal ce-
rebral contusions, which were more severe on the right. MR
imaging, including DTI, was carried out on posttrauma Day
5. The T2-weighted image demonstrated low signal in the
right frontal lobe consistent with blood products sur-
rounded by an area of increased signal. There was also
effacement of the frontal horn of the right lateral ventricle
and the white matter of the left frontal lobe demonstrated
increased signal, presumably due to edema. The patient
with hydrocephalus was a 77-year-old man with a history of
cognitive decline, decreased mobility, and incontinence. A
computerized infusion study demonstrated a resistance to
outflow RCSF � 25.89 mm Hg ml�1 min�1 and a pressure to
volume index (PVI) of 21.07 ml, indicative of hydrocephalus.

Data acquisition

DTI data were acquired using a 3-T whole body magnet
(Oxford Magnet Technology, Oxford, UK) connected to a
Bruker console (Bruker Medspec 30/100 spectrometer;
Bruker Medizintechnik, Etlingen, Germany). A single-shot
spin-echo (SE) echoplanar imaging (EPI) technique was
used, with Stejskal-Tanner diffusion sensitizing pulses
[Stejskal and Tanner, 1965]. Imaging parameters were: TR
� 5,070 ms; TE � 107 ms; � � 90 degrees; � � 21 ms; and �
� 66 ms. Eight interleaved, 5-mm thick, supratentorial slices
were acquired with a phase template in a near axial plane,
using a 128 � 128 matrix and field of view (FOV) of 25 � 25
cm. For each slice, images were collected from 12 non-
collinear gradient directions (Papadakis et al. 1999) with the
following spherical angles (in degrees): (53, 19), (20, 274),
(61, 76), (59, 124), (48, 238), (42, 157), (68, 307), (73, 184), (72,
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335), (18, 42), (88, 218), and (82, 268). For each gradient
direction, an unweighted b0 image and five diffusion-
weighted images were collected at equally spaced b-values
in the range bmin � 318 s/mm2 to bmax � 1,541 s/mm2.

Ideal DTI Model Without Noise

Under the ideal situation of no noise, the link between a
given signal intensity (�i) and the tensor (D) has been mod-
eled through an exponential function [Basser et al., 1994;
Papadakis et al., 1999]

�i � �0exp	�big
iDgi� (1)

in which bi is the b-value used (a parameter directly linked to
the magnitude of the gradients [see Stejskal and Tanner,
1965]), �0 is the intensity to be found when the b-value is
zero, and gi is the unit length vector pointing to the direction
of acquisition

gi � 	gix giy giz�
. (2)

The model of equation (1) can be linearized by applying
logarithms

log	�i� � log	�0� � big
iDgi (3)

and by further developing the quadratic form, it can be
given as a simple linear equation

log	�i� � xi�, (4)

where

xi � 1 � bi	gix
2 giy

2 giz
2 2gixgiy 2gixgiz 2giygiz� (5)

is a known vector and � � (�1 … �7)
 is a column vector
containing the unknown value of log�0 (denoted as �1) and
the six unknown parameters of the tensor, coded as

D � � �2 �5 �6

�5 �3 �7

�6 �7 �4

� . (6)

Finally, all n equations describing the intensities for a
given voxel can be presented as a single linear system

log	
� � X� (7)

where 
 is the column vector containing the n intensities
and X is the matrix with ith row equal to the respective xi

vector (i: 1, …, n).

Log Rician Model for DTI Noise

In the ideal situation of zero noise, the values from �
would be obtained by solving the deterministic linear sys-
tem of equation (7). However, the observed intensities are
naturally contaminated by noise and these equations do not
hold anymore.

Under the supposition of no motion or other artifacts, the
main source of noise in MR images is thermal noise [Haacke
et al., 1999]. Although the structure of such noise in the
originally acquired complex data is assumed to be Gaussian,
the nonlinear transformation involved in the construction of
the image of intensities leads to a Rician probability law for
the observed intensity zi [Rice, 1944]:

fZ	zi� �
zi

�i
2 exp��

zi
2 � �i

2

2�i
2 � I0��izi

�i
2 � . (8)

where I0 is the modified zero-order Bessel function, �i
2 is the

variance of the noise in the original complex data, and �i is
the actual unknown intensity (the norm of the complex
vector with real and imaginary parts Re [�i] and Im[�i]).
However, when the logarithm is applied to linearize this
equation, i.e., yi � log(zi), the probability law changes again.
Applying the general rule for transformed laws

fY	y� � fZ	log�1�y��d log�1	y�/dy (9)

leads to

fY	yi� �
e2yi

�i
2 exp��

e2yi � �i
2

2�i
2 � I0��ieyi

�i
2 � . (10)

Its expectation can be obtained analytically by E(yi) �
�0

� log(zi)fZ(zi)dzi, giving

E	yi� �
1
2 �

	�i
2/2�i

2�

�

t � 1e � tdt � log	�i�, (11)

where the integral is an incomplete gamma function with
�i

2/2�i
2 as the lower boundary. Now, if we define the error

as the difference between the actual log�i and the observed
log-intensity (yi), i.e.,

�i � yi � log	�i�, (12)

its probability law can be obtained using the same principles
of equation (9), leading to

f	�i� � exp��
	1 � e2�i��i

2

2�i
2 � 2�i��i

2I0�e�i�i
2

�i
2 ���i

2. (13)
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Interestingly, this law has the convenient property of de-
pending solely on �i � �i/�i, which is a measure of SNR in
the originally acquired data, and equation (13) can be re-
written as

f	�i� � exp��
1
2 	1 � e2�i��i

2 � 2�i��i
2I0	e�i�i

2�. (14)

Figure 1 shows the shape of equation (14) for different
values of the SNR. As the SNR increases, the function be-
comes more symmetrical and gets closer to a Gaussian law.
As a consequence of the unique dependence of equation (14)
on �i, its expectation and variance will also only depend on
�i. The expectation can be derived directly from equation
(11):

E	�i� �
1
2 �

	�i
2/2�

�

t�1e�tdt (15)

As shown in Figure 2a, it drops almost to zero for mod-
erate values of �i:

E	�i� � 0 (16)

This is equivalent to the fact that E(yi) � log(�i) for mod-
erate values of SNR, i.e., the observed log-intensities will be
centered around the unknown real values. Finally, the vari-
ance of the law of equation (14) (which is obviously the same
as the variance of equation [10]) cannot be given analytically
and should be obtained by numerical integration. Figure 2b
shows the values of the standard deviation of �i (	i) as a
function of �i. Interestingly, as is shown graphically in Fig-
ure 2c, an extremely simple equality holds true for moderate
and high values of �i:

�i � �i
�1. (17)

Weighted Least Squares Algorithm for Model
Parameter Estimation

Once both the deterministic model and the probabilistic
model for the noise have been developed, they can be com-
bined in a single model to estimate parameters of the tensor.
First, all n intensities (see equation [12]) observed in a voxel
are summarized in a single equation

Y � log	
� � � (18)

with Y being the vector of n observed log-intensities and �
being the vector of n independent error terms distributed
under the log Rician probability law of equation (14). Equa-
tion (18) may now be combined with the deterministic
model of equation (7) to give

Y � X� � �. (19)

As seen in the previous section (equations [16–17]), for
moderate values of �i it can be assumed realistically that

E	�� � 0 (20)

and

Var	�� � Diag	�1
�2, . . . , �n

�2�. (21)

If the variance of noise in the original complex data is now
considered constant (�i

2 � �2) for all n intensity measure-
ments of a given voxel, which seems a reasonable assump-
tion because the main error source is usually the bandwidth

Figure 1.
Plots of the log Rician probability distribution
of the errors of the linearized tensor model
(solid line) assuming different values of the
SNR, �i. As SNR increases, the error distribu-
tion conforms closer to a normal distribution
(broken line) with mean zero and standard
deviation equal to the inverse of the SNR, i.e.,
N(0, � i

� 1).
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used in the receptor system [Haacke et al., 1999], equation
(21) may be given as

Var	�� � �2Diag	�1
�2, . . . , �n

� 2� � �2	I
��2 (22)

where I is the identity matrix.
The model characterized by equations (19), (20), and (22)

clearly resembles the type of model for which the weighted
least squares estimators (WLS) are optimal (in terms of
minimum variance and bias of the estimates) [Rawlings et
al., 1998]. Here, (I
)�2 is not known and should be esti-
mated beforehand. Because the ordinary least squares (OLS)
estimates remain unbiased under inequality of variances,
they can be used to give a preliminary estimate of 
:


̂0 � exp�	X	X
X��1X
�Y� (23)

and this vector can be used in equation (22) to approximate
the weighing matrix

W � I
̂0 (24)

required for the WLS estimates of � and �2 [Rawlings et al.,
1998]

�̂ � 	X
W2X� � 1	X
W2Y� (25)

�̂2 � 	WY � WX�̂�
	WY � WX�̂�/	n � 7�

� 	Y � X�̂�
W2	Y � X�̂�/	n � 7�. (26)

Not only the tensor components and log�0 are estimated,
but also the variance of the noise in the original data, �2. At
some extra computational cost there is also the possibility of
improving initial estimates of the weighting matrix by ob-
taining iterated estimates of expected intensities. Specifi-
cally, the estimate of expected intensities found at the end of
the second step can be substituted iteratively in equation
(24) to refine incrementally the estimated weighting matrix.

Assessment of Uncertainty of Mean
Diffusivity Estimates

The standard theory on WLS can be used to give formulas
for the expectation and variance of �̂

E��̂� � � (27)

and

Var��̂� � 	X
W � 2X� � 1�2. (28)

Additionally, for moderate values of �i, the probability
law for the errors clearly approaches a normal distribution
(see Fig. 1). This fact will lead also to the approximate
normality of �̂.. Thanks to the invariance property of the
trace of a matrix, the mean diffusivity [Basser and Pierpaoli,
1996] can be estimated directly from the trace of the fitted
tensor

M̂ � tr	D̂�/3 (29)

Because M̂ is a linear combination of some elements in �̂,
the normality of �̂ will also lead to the normality of M̂.
Specifically, taking equations (27) and (28) into account, it
can be shown easily that

M̂ � N	M, c
Var��̂�c� (30)

where

Figure 2.
Properties of the log Rician error distribution as a function of SNR.
A: Plot showing the sharp drop (to zero) of the expectation of the
error derived from the log Rician distribution as the SNR �i

increases. B: The standard deviation of the errors 	i also declines
monotonically as a function of increasing SNR,�i. C: There is a
simple relation of identity between SNR �i and standard deviation
of the errors 	i, provided SNR is at least moderately high.
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c
 � 	0 1/3 1/3 1/3 0 0 0�
. (31)

In equation (28) �2 is unknown and the estimate given by
equation (26) should be used instead, leading to

�̂2	M̂� � c
�	X
W � 2X� � 1�̂2�c. (32)

Next, the ratio

	M̂ � M�/��̂2	M̂� (33)

will approximately follow a t distribution with n � (7 � 1)
degrees of freedom (df), and this may be used to give a
confidence interval for the mean diffusivity

M̂ 
 t	n � p,�/2���̂2	M̂�. (34)

Other simple but quite useful statistics may be obtained
from those shown above. The coefficient of variation of the
mean diffusivity CV � �̂(M̂)/M̂ is a measure of error stan-
dardized by the mean, and the range of the confidence
interval 2t(n�p,�/2)��̂2(M̂) is an alternative scalar measure
of dispersion.

Because all statistics described in this section are quanti-
fied for each voxel of the dataset, the total set of values can
be displayed informatively as images. High levels of error in
these statistic images may suggest local inadequacy of the
diffusion model. With this in mind, a new test for lack of fit
of the commonly used ellipsoidal diffusion model is pro-
posed below.

Statistical Test for Goodness of Fit of Ellipsoidal
(and Spherical) Models of the Tensor

The theory of linear models can be used to choose be-
tween two linear models [Christensen, 1996]. Provided that
one model is a submodel of the other, in the sense that

C	X1� � C	X2� (35)

where C(Xi) is the subspace spanned by the columns of Xi, a
statistical test can be used to decide whether the reduced
submodel is as good as the extended full model. Such a test
requires the previous fitting of the full model (full) and the
reduced submodel (sub) to calculate the sum of squares of
the error (SSE)

SSE � 	Y � X�̂�
W2	Y � X�̂� (36)

for both models. It also requires the degrees of freedom of
the error dfE given by n � Dim(C[Xi]). Under the null hy-
pothesis that the reduced model is as good as the full model,
the ratio

F �
	SSE	sub� � SSE	full��/	dfE	sub� � dfE	full��

SSE	full�/dfE	full� (37)

will then follow an F probability distribution with [dfE(sub)
� dfE(full)] and dfE(full) degrees of freedom [Christensen,
1996].

We wish to test the relative goodness of fit of an ellipsoi-
dal (reduced) model of diffusion compared to an unre-
stricted (full) model that imposes no prior constraints on
direction of diffusion in a voxel. To do this, we must first
prove that the subspace spanned by the columns of the
design matrix of the restricted model is contained in the
subspace of the design matrix of the full model, i.e., equation
(35) holds true. If we start with the linearized model for a
single direction k, where the intensities will depend only on
the b values applied (given as a vector B) and the unknown
diffusivity �k in the given direction, we have

Yk � 	1j � B�� log �0

�k
� � �k (38)

where Yk is the vector of logarithms of intensities obtained
for the kth direction, 1j is a column vector of ones of order j
(j being the number of b values), and �k is the unknown
vector of errors (with the same properties as � in equation
[18]). If we make the obvious assumption of a unique �0 and
the same B for all m directions sampled, we can combine the
model of equation (38) for all m directions in a single linear
model

� Y1

:
Ym

� � � 1j �B � � 0
: � � � � � �
1j 0 � � �B

��
log �0

�1

:
�m

	 � � �1

:
�m

�
(39)

that may be given in a simpler form as

Y � Z� � �. (40)

We then need to prove that

C	X� � C	Z�, (41)

where X is the design matrix of equation (19). We first divide
the rows of X into m submatrices linked to the m directions

X � � X1

:
Xm

� . (42)

For any direction k, we have

Xk � 	1j � B � r� k : 1, . . . , m (43)
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where

r � 	gkx
2 gky

2 gkz
2 2gkxgky 2gkxgkz 2gkygkz� (44)

and the components of r are, in turn, defined by the com-
ponents of the unit length vector giving the direction (see
equation [2]). In consequence, the extensive form for the
ellipsoidal model is

� Y1

:
Ym

�� � 1j �g1x
2 B �g1y

2 B � � �2g1yg1zB
: : : : :
1j �gmx

2 B �gmy
2 B � � �2gmygmzB

�

 �

log �0

�2

:
�7

	 � � �1

:
�m

� (45)

from which it may be shown that each column of X is a
linear combination of columns of Z. Indeed, besides the
trivial case of the column of ones present in both matrices,
any other column of X is a linear combination of the rest of
the columns of Z:

� �a1B
:

�amB
� � � �a1B

:
0

� � · · · � � 0
:

�amB
�

� a1� �B
:
0

� � · · · � am� 0
:

�B
� , (46)

the ak being any of the scalars in the vector of equation (44).
By showing that all columns of X are linear combinations

of columns of Z, equation (41) is proved and we have shown
that an ellipsoidal model is properly comparable to the
unrestricted linear model using the F ratio, equation (37), for
inference. Because the spherical model exists in a subspace
of the ellipsoidal model, an analogous argument can be
made to use equation (37) to test its relative goodness of fit,
i.e., to test the spherical model against the unrestricted linear
model. By the same token, it must be understood that the
test is limited to comparison of nested linear models; it
cannot be used, for example, to compare goodness of fit of
linear and nonlinear models. Finally, it should be noted that
the weighting matrix W of equation (36) has to be the same
for both the full model and the restricted model. In fact, W
will be estimated previously from the full model as defined
by equations (23) and (24).

Correction for Multiple Comparisons by the FDR

If this test is applied to a large number of spatially corre-
lated voxels, a probabilistic threshold for statistical signifi-
cance that accounts for multiple, nonindependent compari-
sons will be strictly necessary. We can define an acceptable
voxel-wise significance threshold in terms of the overall FDR

for dependent tests [Benjamini and Yekuteli, 2001]. First, the
individual P values for each of the n voxels tested are sorted
in ascending order

p	1� � p	2� � · · · � p	n�. (47)

An upper limit (q) for the acceptable proportion of false
positive tests is then arbitrarily set, e.g., q � 0.01. Next, the
number of null hypotheses to be rejected is given by a simple
rule

k � max
 i : p	i� �
i
n q�� �

j � 1

n

1/j�� . (48)

Finally, all tests (voxels) with a p-value equal or smaller
than p(k) are considered significant (this is equivalent to
rejecting the first k tests as ordered in equation [47]).

WLS Estimation of SNRs

All statistical methods developed in the previous subsec-
tions rely on the approximate equalities given by equations
(16) and (17). The accuracy of these equalities, in turn, de-
pends on the SNRs in the original data, �i. Specifically, as �i

decreases, the accuracy of the results will also diminish (see
Figs. 1 and 2). Consequently, although the results obtained
from the proposed methods may remain quite informative
under low signal-to-noise conditions, the exact numerical
values will be less reliable and more biased.

Usefully, WLS estimators can be extended to estimate
�i for any voxel in all the input intensity images through

�̂i � 	�̂i1 · · · �̂in�
 � 	�̂i1/�̂i · · · �̂in/�̂i�


� 
̂i�̂i
� 1 � exp	Z�̂i��̂i

� 1 (49)

where �̂i is the WLS estimate of its respective vector in the
unrestricted linear model of equation (40) and �̂i is the
square root of the estimate of the variance of the same model
(both quantities are estimated when testing for lack of fit of
the ellipsoidal or spherical models).

Because accuracy of these signal-to-noise estimators relies
also on the assumptions of equations (16) and (17), low
values estimated by equation (49) would be less accurate.
Finally, the lowest SNRs are expected in images created with
the highest b-value. Estimating �i in these images first will be
the most efficient way to check the general reliability of the
results.

RESULTS

Healthy Volunteer Dataset

Statistic images obtained by applying the proposed meth-
ods to analysis of one slice of the image of the healthy
volunteer are shown in Figure 3. Some patterns observed in
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the image representing the range of the 95% confidence
intervals for the mean diffusivity (Fig. 3b) are correlated
positively with the features observed in the image of esti-
mated mean diffusivities (Fig. 3a). An obvious example of
this is provided by the “ghost,” highlighted by the green
region in the lower part of the images, which has both high
mean diffusivity and high error.

However, this correlation between mean diffusivities and
their errors is not always evident (or at least does not have
the same strength), as is shown by the inhomogeneities in
the image of the coefficient of variation (CV; Fig. 3c). To put
it another way, there are some patterns observed in the
image of the range of confidence intervals that are not no-
ticeable in the image of the mean diffusivities. In particular,
two symmetric regions (highlighted in red) have estimated
diffusivities similar to these in the surrounding areas (Fig.
3a) but clearly higher errors than them (Fig. 3b,c).

Although the shape and location of these two symmet-
ric regions is clearly related to the basal ganglia, the image
of estimated fractional anisotropies (FA; Fig. 3d) also
suggests a high density of myelinated fibers. Despite this,
as shown by the test for isotropy or goodness of fit of a
spherical diffusion model thresholded to control the FDR
at 1% (Fig. 3e), these regions also contain a considerable
number of voxels that conform to the spherical model.
Such agreement with the spherical model is not caused
simply by a low anisotropy (which would have to be
visible in the FA image). Instead, it is probably a result of
a higher level of noise that has led to locally lower statis-
tical power and thus to an inability to reject the null
hypothesis of isotropy, i.e., that the spherical model is as
good as the full model.

Although the test for a significant difference in good-
ness of fit between ellipsoidal and unrestricted models
was not refuted often (Fig. 3f; FDR � 1%), implying that
the ellipsoidal model was generally adequate to explain
diffusion processes in these data, there were a number of
highly anisotropic voxels in these subcortical regions
where the ellipsoidal model provided a relatively poor fit.
One interpretation is that there may be contiguous fiber
tracts of different orientations in these regions. This is
consistent with the fiber orientation map (see Fig. 3g,
where fiber orientation was estimated by the first eigen-
vector of the estimated ellipsoids [Pajevic and Pierpaoli,
1999]), indicating that anteroposterior tracts (green vox-
els) are juxtaposed with a superoinferior tract (probably
the internal capsule; blue voxels) in the medial edges of
these regions.

In general, it is important to emphasize that failure to
refute either the spherical or ellipsoidal models in these data
does not prove that the reduced model in question is the
correct model for local diffusion but merely that, given the
levels of noise in the data, there is no significant improve-
ment to be gained by a less restricted model.

Acute Brain Injury Patient

Areas of edema caused by a massive head injury are
shown, encircled by a blue line, in Figure 4. As observed
in the healthy volunteer image, although there are some
similarities between the image of estimated mean diffu-
sivities (Fig. 4a) and the image of the range of their
confidence intervals (Fig. 4b), these images are also locally
different.

Figure 3.
Healthy volunteer: statistic images estimated in a single slice of DTI
data. A: Mean diffusivity. B: Range of the confidence interval of
mean diffusivity. C: Coefficient of variation (CV). D: Fractional
anisotropy (FA). E: Test for goodness of fit of spherical (isotropic
diffusion) tensor model: voxels where the null hypothesis has been
rejected are colored white, FDR is controlled at 1%. F: Test for

goodness of fit of ellipsoidal model: voxels where the null hypoth-
esis has been rejected are colored white, FDR is controlled at 1%.
G: Fiber orientation map, highlighting juxtaposition of differently
orientated tracts in the bilateral subcortical regions of interest
(delimited by red lines) that are characterized by low mean/high
error diffusivity.
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For example, in contrast with regions of basal and ven-
tricular cerebrospinal fluid (CSF), which have large diffu-
sivities and large errors, the edematous frontal areas have
large diffusivity but small errors, which leads to especially
low values for the coefficient of variation in the edematous
regions (see Fig. 4c).

The image of FA (Fig. 4d) shows the loss of structure and
the increase in isotropy in the edematous regions, which
agrees with the presence of some voxels where the spherical
model is not significantly worse than the unrestricted linear
model (Fig. 4e). The lower noise relative to the magnitude of
the diffusivities (the lower coefficient of variation) observed
within the edema may have led to higher statistical power
and to a relatively lower proportion of nonrejected voxels. If
the relative error had been the same as in the rest of the
brain, even more voxels would have been described ade-
quately by a spherical model.

As in the case of the healthy volunteer image, the test for
lack of fit of the ellipsoidal model was not significant in most
of the voxels (Fig. 4f) suggesting that, considering the level
of noise in the images, the ellipsoidal model is adequately
adaptive to the diffusion process in most voxels.

Finally, it is interesting to note that the bilateral sub-
cortical pattern of high error/low mean diffusivity ob-
served in the healthy volunteer image (red regions in Fig.
3) is also evident in this image. Indeed, the salience of this
region in both the coefficient of variation map (Fig. 4c)
and the spherical model test map (Fig. 4d) is even greater
than in corresponding images derived from the healthy
volunteer image.

Hydrocephalus Patient

The results for this patient have some similarities to the
results for the patient with acute brain injury. The expanded
ventricles containing free CSF, which have the highest mean
diffusivities (Fig. 5a), also showed the highest levels of error

Figure 4.
Acute brain injury: statistic images estimated in a single slice of DTI
data. a: Mean diffusivity. b: Range of the confidence interval of
mean diffusivity. c: Coefficient of variation (CV). d: Fractional
anisotropy (FA). e: Test for goodness of fit of spherical (isotropic
diffusion) tensor model: voxels where the null hypothesis has been
rejected are colored white, FDR is controlled at 1%. f: Test for
goodness of fit of ellipsoidal model: voxels where the null hypoth-
esis has been rejected are colored white, FDR is controlled at 1%.
The two frontal regions delimited by blue boundaries show ex-
tensive post-traumatic edema characterized by high mean/low
error diffusivity.

Figure 5.
Hydrocephalus: statistic images estimated in a single slice of DTI
data. a: Mean diffusivity. b: Range of the confidence interval of
mean diffusivity. c: Coefficient of variation (CV). d: Fractional
anisotropy (FA). e: Test for goodness of fit of spherical (isotropic
diffusion) tensor model: voxels where the null hypothesis has been
rejected are colored white, FDR is controlled at 1%. f: Test for
goodness of fit of ellipsoidal model: voxels where the null hypoth-
esis has been rejected are colored white, FDR is controlled at 1%.
The four periventricular regions delimited by magenta boundaries
show edema characterized by high mean/low error diffusivity.
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in the image of the range of confidence intervals (Fig. 5b).
This in turn has led to intermediate values for the coeffi-
cients of variation (Fig. 5c). However, in areas where CSF
has pathologically infiltrated the brain parenchyma (regions
highlighted in magenta), mean diffusivity was high but the
error in estimation was low. This combination of high dif-
fusivity and low error (high coefficient of variation) in
periventricular areas of the hydrocephalic brain is similar to
that seen in edematous regions of the acutely injured brain
and suggests that the combination of mean diffusivity and
its error may provide added value in diagnosis of pathologic
expansion of the extracellular fluid compartment in paren-
chymal brain tissue.

Although some loss of structure may be expected in
these periventricular regions (see the low FA values in the
upper left region of Fig. 5d), the test for isotropy has been
refuted at almost all voxels (Fig. 5e). This again may be
explained by a higher relative accuracy in such areas, i.e.,
the coefficient of variation is locally low (see Fig. 5c). Once
again, the test for lack of fit of the ellipsoidal model has
only been significant in a few voxels, pointing to the fact
that the ellipsoidal model is adequate considering the
levels of accuracy present in the data. Finally, although
not shown here, the region of low diffusivity/high error
related to the basal ganglia and the internal capsule was
also found in this dataset.

Analysis of the Assumptions of the Model

SNRs in the original datasets were estimated using
equation (49). Specifically, the averaged maps for all im-
ages acquired with the lowest b-value (318 s/mm2) and
the highest b-value (1,541 s/mm2) are shown in Figure 6
for the three slices illustrated previously in Figures 3–5.
As expected, all voxels acquired using the lowest b-value
had rather high mean SNRs (most greater than 5), which
were clearly adequate to justify the assumptions of the
model. However, a considerable number of voxels ac-
quired with the highest b-value had rather low mean
SNRs. Many voxels located in the CSF or affected by
strong “ghost” artifacts had mean values of the SNR less
than 1, clearly violating the assumptions of the proposed
model. Such low mean values were rarely found in voxels
representing parenchymal brain tissue, where the mean
SNR was usually greater than 2 (a reasonable threshold
for satisfying the assumptions of the model). In particular,
the SNR (at highest b-values) was 2 or greater for the basal
ganglia/internal capsule region identified initially in the
healthy volunteer image, as well as for the pathologic
regions of the images acquired from the acute brain injury
and hydrocephalus patients, implying that these observa-
tions are not prejudiced substantively by departure from
the key model assumption of adequate SNR.

DISCUSSION

The properties of the logarithm of the Rician distribu-
tion for the errors of the linearized DTI model have been

analyzed. Interestingly, we have shown that this new
probability law depends solely on the SNR in the complex
data as acquired originally. In addition, for moderate
values of the SNR (approximately greater than 2), the log
Rician probability law has several convenient properties:
(1) it has null expectation; (2) its variance equals the
reciprocal of the squared SNR; and (3) it can be closely
approximated by a normal probability law (parameter-
ized by this mean and variance). This simple structure for
the errors has led to simple estimators for the parameters

Figure 6.
Signal-to-noise maps for healthy volunteer, acute brain injury, and
hydrocephalus DTI datasets. Left column: SNR is generally high
(�5) in images acquired with the lowest b-value (318 s/mm2).
Right column: SNR is too low to justify assumptions of log Rician
model only in areas of the image acquired at highest b-value (1,541
s/mm2), which represent free CSF or are dominated by ghosting
artifacts.
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of the tensor and for the variance of the noise in the
original data; specifically, a two-step weighted least
squares estimator has been proposed. By assessing the
properties of the errors in the estimates of the tensor
through linear model theory, we have also been able to
define a probability law for the estimate of the mean
diffusivity and to derive confidence intervals for the true
values of the mean diffusivity.

Additionally, by proving that (restricted) spherical and
ellipsoidal models are submodels of an unrestricted linear
model, we have developed a test for their relative lack of fit.
Specifically, both restricted submodels (the sphere and the
ellipsoid) are comparable to the full model in which no
geometrical shape is presupposed for the global diffusion
process but the diffusion in each direction is explained by an
univariate linearized model. Finally, FDR methodology was
proposed to handle the problem of multiple comparisons
that arises by testing each voxel in an image volume. The
benefit of estimating properties of the model and conducting
related significance tests at each voxel is evident from the
resulting statistic images (Figs. 3–5), which are much more
informative than are the plots created from a few regions of
interest.

The visual analysis of the statistic images derived from
the three different datasets has revealed several interest-
ing observations. Although the errors of the mean diffu-
sivity estimates may sometimes be correlated positively
with the magnitudes of the mean diffusivities, this asso-
ciation is not inevitable. An area of high error/low mean
diffusivity, perhaps due to locally juxtaposed fiber tracts
of different orientations, was observed repeatedly in a
subcortical region comprising basal ganglia and internal
capsule. The converse pattern, of low error/high mean
diffusivity, was observed in edematous brain regions as-
sociated with both acute brain injury and hydrocephalus.
We conclude that consideration of errors as well as mean
diffusivities may provide added value in DTI diagnosis of
acute pathologic expansion of the extracellular fluid com-
partment in parenchymal brain tissue.

On a more methodologic note, the potential independence of
means and errors raises some concerns about results based
solely on inspection of mean diffusivity in a few regions of
interest. The appropriate consideration of errors in addition to
means arguably becomes even more critical in interpretation of
several datasets acquired from different individuals, or on
different scanners, or at different time points.

Two main results can be derived from the images of
statistical tests: although an important proportion of the
brain (mainly white matter) has significant levels of an-
isotropy, i.e., the spheroidal model provides a signifi-
cantly less good fit than does the full model, the ellipsoi-
dal model generally seems good enough for most brain
tissue. In interpreting these results, it is important to
remember that the outcomes of tests of lack of fit are
dependent largely on the levels of noise and amount of
data available. The p-values resulting from the spherical
model test therefore cannot be used to quantify in abso-

lute terms the degree of anisotropy; for this purpose, an
index such as fractional anisotropy should be applied
instead. On the other hand, although (theoretically) we
are checking whether a given voxel conforms to the spher-
ical model, we know that perfect isotropy will never be
present in the brain parenchyma (all biological structures
are anisotropic in some degree). A nonsignificant result
will therefore not mean that the voxel is perfectly isotro-
pic but that the patterns of anisotropy observed (and
quantified by the FA index) are dominated mainly by the
noise in the data. In consequence, any conclusions drawn
from the FA index will be highly unreliable in voxels
where the spherical model is not refuted, e.g., tractogra-
phy involving nonsignificant voxels will probably lead to
erroneous results. Under these circumstances, we will
prefer the spherical (isotropic) model not because it is true
but because, considering the level of noise in the data and
the statistical power available, we cannot fit a more com-
plex model with confidence. Exactly the same rationale
can be applied to interpretation of the test for lack of fit of
the ellipsoidal model. Although a perfectly ellipsoidal
diffusivity may not be expected anywhere in the brain, it
may remain the best option for modeling voxels where it
is not refuted, simply because of limited precision and
availability of data. Fitting a more complex model may
simply risk fitting spurious trends created by noise.

ACKNOWLEDGMENTS

The Wolfson Brain Imaging Centre is supported by the
Medical Research Council (UK) (co-operative group grant to
T.A.C., J.D.P., E.T.B., and others). Dr. A. Peña is in receipt of
a Wellcome Trust Training Fellowship in Mathematical Bi-
ology. We thank S. Harding, L. Steiner, and B.K. Owler for
helping with data acquisition, and H. Green and K. Rice for
their comments on analysis. We also thank the R project and
the GNU for freely releasing the software required to carry
out this work.

REFERENCES

Alexander DC, Barker GJ, Arridge SR (2002): Detection and model-
ing of non-gaussian apparent diffusion coefficient profiles in
human brain data. Magn Reson Med 48:331–340.

Anderson AW (2001): Theoretical analysis of the effects of noise on
diffusion tensor imaging. Magn Reson Med 46:1174–1188.

Basser PJ, Mattiello J, LeBihan D (1994): Estimation of the effective
self-diffusion tensor from the NMR spin echo. J Magn Reson B
103:247–254.

Basser PJ, Pierpaoli C (1996): Microstructural and physiological
features of tissues elucidated by quantitative-diffusion-tensor
MRI. J Magn Reson B 111:209–219.

Benjamini Y, Hochberg Y (1995): Controlling the false discovery
rate: a practical and powerful approach to multiple testing. J R
Statist Soc B 57:289–300.

Benjamini Y, Yekuteli D (2001): The control of the false discovery rate
in multiple testing under dependency. Ann Statist 29:1165–1188.

� Salvador et al. �

� 154 �



Christensen R (1996): Plane answers to complex questions: the theory
of linear models. 2nd ed. New York: Springer-Verlag. 468 p.

Genovese CR, Lazar NA, Nichols T (2002): Thresholding of statis-
tical maps in functional neuroimaging using the false discovery
rate. Neuroimage 15:870–878.

Haacke EM, Brown RW, Thomson MR, Venkatesan R (1999): Mag-
netic resonance imaging: physical principles and sequence de-
sign. New York: Wiley. 914 p.

Pajevic S, Basser PJ (2003): Parametric and non-parametric statistical
analysis of DT-MRI data. J Magn Reson 161:1–14.

Pajevic S, Pierpaoli C (1999): Color schemes to represent the orien-
tation of anisotropic tissues from diffusion tensor data: applica-
tion to white matter fiber tract mapping in the human brain.
Magn Reson Med 42:526–540.

Papadakis NG, Xing D, Huang CL-H, Hall LD, Carpenter TA (1999):
A comparative study of acquisition schemes for diffusion tensor
imaging using MRI. J Magn Reson 137:67–82.

Rawlings JO, Pantula SG, Dickey DA (1998): Applied regression
analysis: a research tool. New York: Springer.

Rice SO (1944): Mathematical analysis of random noise. Bell Syst
Technol J 23:282–332.

Sijbers J, den Dekker AJ, Scheunders P, Van Dyck D (1998): Maxi-
mum-likelihood estimation of Rician distribution parameters.
IEEE Trans Med Imag 17:357–361.

Stejskal EO, Tanner JE (1965): Spin diffusion measurements: Spin-
echoes in the presence of a time-dependent field gradient.
J Chem Phys 42:288–292.

� Linearized Diffusion Tensor Model �

� 155 �


