
Linear Inverse Source Estimate of Combined
EEG and MEG Data Related

to Voluntary Movements

Fabio Babiloni,1* Filippo Carducci,1,4 Febo Cincotti,1,6

Cosimo Del Gratta,2,7 Vittorio Pizzella,2,7 Gian Luca Romani,2,7

Paolo Maria Rossini,3 Franca Tecchio,5 and Claudio Babiloni1,4

1Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza,” Roma, Italy
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Abstract: A method for the modeling of human movement-related cortical activity from combined
electroencephalography (EEG) and magnetoencephalography (MEG) data is proposed. This method
includes a subject’s multi-compartment head model (scalp, skull, dura mater, cortex) constructed from
magnetic resonance images, multi-dipole source model, and a regularized linear inverse source estimate
based on boundary element mathematics. Linear inverse source estimates of cortical activity were
regularized by taking into account the covariance of background EEG and MEG sensor noise. EEG (121
sensors) and MEG (43 sensors) data were recorded in separate sessions whereas normal subjects executed
voluntary right one-digit movements. Linear inverse source solution of EEG, MEG, and EEG-MEG data
were quantitatively evaluated by using three performance indexes. The first two indexes (Dipole Local-
ization Error [DLE] and Spatial Dispersion [SDis]) were used to compute the localization power for the
source solutions obtained. Such indexes were based on the information provided by the column of the
resolution matrix (i.e., impulse response). Ideal DLE values tend to zero (the source current was correctly
retrieved by the procedure). In contrast, high DLE values suggest severe mislocalization in the source
reconstruction. A high value of SDis at a source space point mean that such a source will be retrieved by
a large area with the linear inverse source estimation. The remaining performance index assessed the
quality of the source solution based on the information provided by the rows of the resolution matrix R,
i.e., resolution kernels. The i-th resolution kernels of the matrix R describe how the estimation of the i-th
source is distorted by the concomitant activity of all other sources. A statistically significant lower dipole
localization error was observed and lower spatial dispersion in source solutions produced by combined
EEG-MEG data than from EEG and MEG data considered separately (P , 0.05). These effects were not due
to an increased number of sensors in the combined EEG-MEG solutions. They result from the indepen-
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dence of source information conveyed by the multimodal measurements. From a physiological point of
view, the linear inverse source solution of EEG-MEG data suggested a contralaterally preponderant
bilateral activation of primary sensorimotor cortex from the preparation to the execution of the movement.
This activation was associated with that of the supplementary motor area. The activation of bilateral
primary sensorimotor cortical areas was greater during the processing of afferent information related to
the ongoing movement than in the preparation for the motor act. In conclusion, the linear inverse source
estimate of combined MEG and EEG data improves the estimate of movement-related cortical activity.
Hum. Brain Mapping 14:197–209, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Electroencephalography (EEG) and magnetoen-
cephalography (MEG) are useful techniques for the
study of brain dynamics and functional cortical con-
nectivity due to their high temporal resolution (msec)
[Nunez, 1995, 1981]. EEG reflects the activity of corti-
cal generators oriented both tangentially and radially
with respect to the scalp surface. The different electri-
cal conductivity of brain, skull, and scalp, however,
blurs markedly the EEG potential distributions and
makes the localization of the underlying cortical gen-
erators problematic. The distortion of the recorded
scalp potential distribution is further increased by the
ears and eyeholes, which represent shunt paths for
intra-cranial currents [Nunez, 1981, 1995]. These prob-
lems are known as “volume conduction effects” in the
recording of EEG activity. In the last few years, how-
ever, a new technology called high resolution EEG,
has markedly enhanced the spatial resolution of the
conventional EEG (2–3 cm vs. 6–9 cm) [Gevins et al.,
1995]. This technology consists of both high spatial
sampling of the surface EEG potential (64–128 chan-
nels), the use of realistic models for the head and
cortical surfaces, and the use of spatial enhancement
techniques such as Laplacian transformation or neural
current density estimation [Babiloni et al., 1996;
Gevins et al., 1999; Hjorth, 1975; Le and Gevins, 1993;
Nunez et al., 1991, 1994].

Magnetoencephalography (MEG) localizes and
characterizes the electrical activity of the central ner-
vous system by measuring the associated magnetic
fields generated by the synchronous neural assemblies
in the brain. MEG measurements of brain activity are
insensitive to the volume conductor effects that afflicts
the EEG recordings. With respect to EEG, MEG is
sensitive mainly to the tangential component of the
current flow in the pyramidal cells in the cerebral
cortex. Taken together, EEG and MEG offer comple-

mentary information about the brain neural processes
because they pick-up different aspects of the quasi-
static electromagnetic field produced by neural gener-
ators [Nunez, 1995].

Mathematical models for the head as volume con-
ductor and for the neural sources are employed by
linear and non linear minimization procedures to lo-
calize putative sources of EEG and MEG data. Several
studies have indicated the adequacy of the equivalent
current dipole as a model for the cortical sources
[Nunez, 1981, 1995], whereas the importance of real-
istic head volume conductor models for the localiza-
tion of cortical activity has been stressed more recently
[Gevins et al., 1991, 1999; Nunez, 1995]. Results of
previous intracranial EEG studies have led support to
the idea that high resolution EEG techniques (includ-
ing head/source models and proper regularized in-
verse procedures) might model with an acceptable
approximation the strengths and extension of cortical
sources of surface EEG data, at least in certain condi-
tions [Le and Gevins, 1993; Gevins et al., 1994]. When
the EEG and MEG activity is mainly generated by
circumscribed cortical sources (i.e., short-latency
evoked potentials/magnetic fields), the location and
strength of these sources can be reliably estimated by
the dipolar localization technique [Salmelin et al.,
1995; Scherg et al., 1984]. With this technique, the use
of combined EEG and MEG data increases the stability
and accuracy of the source solutions estimated on the
basis of EEG and MEG data considered separately
[Fuchs et al., 1998; Stok et al., 1987]. In contrast, when
EEG and MEG activity is generated by extended cor-
tical sources (i.e., event-related potentials/magnetic
fields), the underlying cortical sources can be de-
scribed by using a distributed source model with
spherical or realistic head models [Dale and Sereno,
1993; Grave de Peralta et al., 1997; Pascual-Marqui,
1995]. With this approach, thousands of equivalent
current dipoles covering the cortical surface modeled
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were used, and their strength was estimated by using
linear and non linear inverse procedures [Dale and
Sereno, 1993; Uutela et al., 1999]. In the context of the
linear inverse source estimate approach, the advan-
tage of combining EEG and MEG data has not yet
been definitively demonstrated. A simulation study
has shown an improved spatial accuracy of the linear
inverse source solutions, when EEG and MEG data are
fused together [Phillips et al., 1997]. Furthermore, a
recent simulation study has pointed to a non linear
weighting between EEG and MEG modalities by using
a scaling method dependent on the source location
[Baillet et al., 1999]. Demonstration of the usefulness of
EEG and MEG integration on empirical data, how-
ever, is still lacking.

In the present study, a method for the modeling of
human movement-related cortical activity from com-
bined high-resolution EEG and MEG data is proposed.
This method includes realistic subject’s multi-com-
partment head model, multi-dipole source model, and
a regularized linear inverse source estimate based on
boundary element mathematics. Linear inverse source
estimates of cortical activity were regularized by tak-
ing into account the covariance of background EEG
and MEG sensor noise. The EEG (121 sensors) and
MEG (43 sensors) data were recorded in separate ses-
sions whereas normal subjects executed voluntary
right one-digit movements (i.e., an unaimed self-
paced extension of the right index). Linear inverse
source solutions of EEG, MEG, and EEG-MEG data
were quantitatively evaluated by using appropriate
figures of merit which describe as the cortical activity
can be precisely retrieved, for the whole modeled
cortical space as well as for each cortical regions of
interest. It is noteworthy that the effect of EEG-MEG
sensors on the linear inverse source solutions was
evaluated by comparing the current density solution
using a different number of spatial samples (single or
combined EEG and MEG modalities).

We studied the performance of the linear inverse
estimation of combined EEG-MEG data on scalp
movement-related potentials, because the cortical gen-
erators of these potentials have been extensively stud-
ied with previous subdural EEG recordings [Ikeda et
al., 1992, 1995; Neshige et al., 1988] and with source
estimation procedures applied on surface EEG and
MEG data [Babiloni et al., 1999a; Kristeva et al., 1991;
Salmelin et al., 1995; Urbano et al., 1998]. This pro-
vided a solid anchor point for validation purposes.
The results of subdural EEG recordings have shown a
circumscribed involvement of the human primary
sensorimotor (M1-S1) and supplementary motor
(SMA) cortices in the generation of the readiness po-

tentials preceding self-paced voluntary finger move-
ments [Ikeda et al., 1992, 1995; Neshige et al., 1988;
Rektor et al., 1994]. These findings lend support to
previous dipole source localization modeling from
corresponding surface EEG and MEG data [Erdler et
al., 2000; Kristeva et al., 1991; Toro et al., 1993]. In this
regard, it is important to stress that a recent MEG
source estimation study has allowed the modeling of
SMA involvement during the movement preparation
in normal subjects [Baillet et al., 2001]. Indeed, this
study updated previous ideas that magnetic fields
generated by bilateral SMAs cancel each other during
the movement preparation [Kristeva et al., 1991; Lang
et al., 1991].

METHODS

Realistic Head and Source Models

Sixty-four t1-weighted sagittal magnetic resonance
(mr) images were acquired (30 msec repetition time, 5
msec echo time, and 3 mm slice thickness without gap)
from the subject’s head. These images were processed
with contouring and triangulation algorithms for the
construction of a model reproducing the scalp, skull,
and dura mater surfaces with about 1,000 triangles for
each surface. The source model was built with the
following procedure: 1) the points belonging to the mr
images of the cortex were selected with a semiauto-
matic procedure (threshold algorithm); 2) these points
were sub-sampled from 12,000–14,000 to 2,400–4,100,
so that the general features of the neocortical envelope
were well preserved especially in correspondence of
pre- and post-central gyri and frontal mesial area; 3)
the sub-sampled points of the cortex were triangu-
lated with 5,000–7,000 triangles); and 4) an orthogonal
unitary equivalent current dipole was placed in the
center of each triangle forming the cortex compart-
ment. The average distance between points of the
cortical tessellated surfaces was equal to 3.6 mm in the
first subject, whereas 3.1 mm was obtained for the
second subject. Figure 1 shows the multi-compartment
head model of Subject 1.

Cortical regions of interest (ROIs) were represented
by the supplementary motor area (SMA), as well as
the right and left primary sensory-motor areas (S1-
M1). The boundaries of these ROIs were traced on the
basis of the following anatomical landmarks: 1) the
pre-central and central (omega zone) sulci, delimitat-
ing the precentral gyrus for the M1-ROIs; 2) the central
(omega zone) and postcentral sulci, delimitating the
postcentral gyrus for the S1-ROIs; and 3) the sulcus
anterior to the vertical anterior commissure line, the
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medial precentral sulcus, and the cingulate sulcus,
delimitating the medial frontal gyrus for the SMA-
ROI. The M1- and S1-ROIs were located anteriorly and
posteriorly to the central sulcus, respectively. The M1-
ROI did not extend anteriorly up to the precentral
sulcus, but might include a minor part of the ventral
premotor area lying in the lateral precentral gyrus
(border region between Brodmann areas 4 and 6).
Finally, the SMA-ROI did not comprise the cingulate
motor areas located in the upper bank of the cingulate
sulcus.

Combined Electric and Magnetic Forward Solution

The forward solution specifying the potential scalp
field due to an arbitrary dipole source configuration
can be computed on the basis of the linear system

F E
B G @x# 5 F v

m G (1)

where 1) E is the electric lead field matrix obtained by
the boundary element technique for the realistic MR-
constructed head model [Hämäläinen and Sarvas,
1989; Lynn and Timlake, 1968]; 2) B is the magnetic
lead field matrix obtained for the same head model
[Hämäläinen and Sarvas, 1989]; 3) x is the array of the
unknown cortical dipole strengths; 4) v is the array of
the recorded potential values; and 5) m is the array of
magnetic values. The lead field matrix E and the array
v must be referenced consistently. To scale EEG and
MEG, the rows of the lead field matrix E and B were
first normalized by the rows norm [Baillet et al., 1999;
Phillips et al., 1997]. This scaling was applied equally
on the electrical and magnetic measurements arrays, v
and m. After row normalization the linear system can
be restated as

Ax 5 b (2)

where A is the matrix composed by the normalized
electric and magnetic lead fields and b is the normal-
ized measurement array of EEG and MEG data (v and
m, respectively).

Regularization

Because the number of dipoles was much higher
than the spatial measurements, the linear system of
equation (2) has infinite solutions. Furthermore, the
linear system was ill-conditioned as a result of the
substantial equivalence of several columns of the elec-
tromagnetic lead field matrix A. Regularization of the
linear inverse problem consisted in the reduction of
the oscillatory modes generated by vectors associated
with the smallest singular values of the lead field
matrix A. This was performed introducing additional
and a priori information on the sources to be esti-
mated. The general formulation of the linear inverse
problem based on this assumption is

j 5 arg min
x

~iAx 2 biWd
2 1 l2ixiWx

2 ! (3)

where Wd is equal to the inverse of the covariance
matrix of the normalized EEG and MEG sensors noise
and Wx is the matrix that regulates how each EEG or
MEG sensor is influenced by dipoles located at differ-
ent depths into the source model (column norm nor-
malization). More specifically, “column-norm normal-
ization” refers to the weighting of source amplitudes
by the norm of the associated column in the gain
matrix A [Pascual-Marqui, 1995]. An “ad hoc” choice

Figure 1.
Realistic magnetic resonance (MR)-constructed head model of
Subject 1. The structures modeling the scalp, skull, dura mater and
cerebral cortex are presented. On the visible modeled scalp
surface, electrode density can be appreciated (spatial sampling: 128
electrodes). The inset shows the modeled central sulcus and the
left primary sensorimotor area contralateral to the side of the
movement (right middle finger extension).
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for the regularization parameter of the linear system
of equation (3) was obtained by the L-curve approach
[Hansen, 1992]. This curve, which plots the Wd-
weighted residual norm vs. the Wx-weighted solution
norm at different l values, was used to choose the
correct amount of regularization in the solution of the
linear inverse problem. Computation of the L-curves
and optimal l correction values was performed with
the original Hansen’s routines [Hansen, 1994].

Evaluation and Comparison of Linear
Inverse Solutions

Equation (3) provides a unique solution vector j by
computing a particular pseudo-inverse matrix G

j 5 Gb

G 5 Wx
2 1At~AWx

2 1At 1 lWd
2 1! (4)

under the hypothesis that the metrics of the source
and data space are invertible. To draw an useful rela-
tionship between the unknown cortical source
strengths (x) and the estimated ones (j), the resolution
matrix R is defined as the pseudo-inverse G multi-
plied by lead-field matrix A [Menke, 1989]. Thus, we
have

j 5 GAx 5 Rx (5)

where the resolution matrix R is a N 3 N matrix in
which N is the number of dipoles in the model. This
matrix provides the mathematical framework to eval-
uate quantitatively linear inverse source solutions
from EEG and MEG considered separately or com-
bined EEG-MEG data. Previous studies have sug-
gested that the resolution matrix R analysis is the most
appropriate tool to compare and evaluate distributed
linear inverse source solutions [Grave de Peralta et al.,
1996; Menke, 1989; Pascual-Marqui, 1995]. In total, we
used three indexes based on the resolution matrix R.
The first two indexes served to compute the localiza-
tion power of the linear inverse source solutions (Di-
pole Localization Error [DLE] and Spatial Dispersion
[SDis]). These indexes are based on the information
provided by the column of the resolution matrix (i.e.,
impulse response).

The DLE [Pascual-Marqui, 1995] relative to the j-th
dipole was computed according to the equation

H i 5 arg max
k

~iRkji!

DLEj 5 dij

, j 5 1, . . . , N (6)

where N is the total number of dipoles, i is the location
in which the maximum of the i-th column of the
resolution matrix R is detected, and dij is the distance
between the j-th source point (generating the field to
model) and the i-th point (where the maximum of the
modeled source current is detected). The DLE repre-
sents the errors due to the estimated position of the
maximum activity in the modulus of the mapped
source currents, when a single dipole is used as a
source of the potential [Pascual-Marqui, 1995]. Ideal
DLE values tend to zero (source current correctly re-
trieved by the procedure). In contrast, high DLE val-
ues suggest a severe mislocalization in the source
reconstruction.

The second index, SDis measures the blurring of the
estimated solution [Pascual-Marqui, 1995]. The SDis of
the j-th source is expressed by

5SDisj 5 ÎO
k 5 1

N

dkj
2 z iRkji2

O
k 5 1

N

iRkji2

, j 5 1, . . . , N (7)

where symbols have the same meaning as described
above. High values of SDis at a source space point
would mean that the activity produced by that source
is retrieved by a large area of activation in the source
space. SDis should ideally tend toward zero, meaning
that the estimation procedure marks as active sources
very close to the true one. High values of SDis dem-
onstrate the unreliability of the solution, as sources far
away from the true one are considered responsible for
the observed measures.

The third performance index assesses the quality of
the source solution based on the rows of the resolution
matrix R, i.e., resolution kernels [Grave de Peralta and
Gonzalez Andino, 1998; Grave de Peralta et al., 1997].
The i-th resolution kernel of the matrix R describes
how the estimation of the i-th source is distorted by
the concomitant activity of all other sources. For each
component of the source vector the Resolution Index
(RI) is defined as:

5
j 5 arg max

k
(uRiku)

RIi5
(D2dij)zuRiiu

DzuRiju

, i51, . . . , N (8)

where 1) D is the maximum distance between the
cortical points; 2) uRiiu is the absolute value of the i-th
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diagonal element of the resolution matrix R; 2) uRiju is
the absolute value of the maximum of the considered
resolution kernel; and 4) dij is the distance between the
cortical point associated with this row and the point j
in which the maximum value of the i-th row is found.
A high value of RI indicates that the activity at that
source space point is correctly retrieved. RI values
tending to zero would express either that the main
peak is far away from the target source point or that
the amplitude of the source point resolution kernel is
small [Grave de Peralta et al., 1997; Grave de Peralta
and Gonzalez Andino, 1998].

The DLE, SDis, and RI indexes were applied to the
resolution matrices obtained from the linear inverse
source solutions, which were computed by using only
the EEG or MEG data or the combined EEG and MEG
data of both subjects. For each resolution matrix, the
mean and standard deviation of the three indexes
were computed on the dipoles belonging to each ROI
(modeled M1 and S1 of both hemispheres and mod-
eled SMA) as well as belonging to the whole cortical
source space. Statistical analysis was performed with
the Student’s t-test. Bonferroni correction for multiple
t-testing minimized alpha inflation due to multiple
t-test comparisons [Zar, 1984].

Influence of Sensor Number on the Linear
Inverse Solutions

A principal source of variance for the present results
was due to the different number of sensors used in the
EEG, MEG, and the combined EEG-MEG case. Accu-
racy of the linear inverse source solutions could be
affected by the total amount of spatial sample
(EEG1MEG) rather than to the combination of EEG
and MEG data per se. Thus, we compared source
estimate obtained by the integration of the whole EEG
data set (121 electrodes) vs. combined MEG (43 sen-
sors) and sub-sampled EEG (61 electrodes) data. Per-
formance indexes assessing the quality of the current
strengths of the estimated source were then applied.

Subjects and Task

Two healthy, right-handed [Oldfield, 1971] male
volunteers participated in the present study. The ex-
periments were undertaken with the understanding
and written consent of each participant. General pro-
cedures were approved by the local institutional ethics
committee. For these experiments, a sound-damped
and electromagnetically-shielded room was used. Mo-
tor task consisted of brisk, internally triggered unilat-
eral right middle finger extensions followed by a pas-

sive return to the original resting position (inter-
movement interval: 2–12 sec). A brief training was
performed to make the motor performance stable and
reproducible during the EEG and MEG recordings.
Furthermore, the surface EMG activity of bilateral ax-
ial and proximal muscles of the two participants was
also recorded , to monitor co-activation of these mus-
cles in concomitance with the finger movement. No
notable co-activation of axial and proximal muscles
was observed.

EEG Recording

EEG activity was recorded (0.1–100 Hz bandpass)
with 128 electrodes (linked earlobe electrical refer-
ence). Electrode positions and reference landmarks
were digitized for subsequent integration between the
EEG, MEG, and MR data. Electrooculogram (EOG;
0.1–100 Hz bandpass) and electromyogram (EMG;
1–100 Hz bandpass) from m. extensor digitorum of both
sides were also recorded. EOG served to control blink-
ing/eye movements and EMG to control operating
muscle response and involuntary mirror movements.
All data were acquired (400 Hz sampling rate) from 3
sec before to 1 sec after the onset (zerotime) of the
EMG response from the operating muscle. About 200
single trials were collected for each subject.

MEG Recordings

During the MEG recordings, subject’s head was sta-
bilized by a vacuum cast. Subjects were asked to avoid
blinking, eye movements, and respiration immedi-
ately before and during the movement. MEG activity
was recorded (0.16–250 Hz bandpass) in separate
blocks from the left and the right hemisphere by a
dewar (diameter: 16 cm) including an array of 25
sensors. This array comprised 9 magnetometers with a
80 mm2 integrated pick-up coil (plus 3 reference chan-
nels to be used for noise cancellation) and 16 axial
gradiometers (250 mm2 area, 8 cm baseline). The noise
spectral density of each sensor channel was 5–7 fT per
square root Hz at 1 Hz. A very short time interval (i.e.,
few minutes) between alternating right and left hemi-
sphere recordings made the off-line joining of the two
MEG sequential data set reliable. In two separate re-
cordings the sensor array was centered on the C3 or
C4 site of the 10-20 International system, which
roughly overlie the hand representation of the left and
right M1-S1, respectively. EOG (0.16–250 Hz band-
pass) and EMG (1–250 Hz bandpass) activity was also
recorded as during the EEG recordings. Data record-
ings were performed in blocks lasting about 10 min
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(10 min inter-block interval). All data were gathered in
a continuous mode (1,000 Hz sampling rate). The po-
sitions of the sensor array with respect to the subject’s
anatomical landmarks (nasion, inion, and preauricular
points) were detected after 1 or 2 recording blocks, to
register subtle head movements across the experimen-
tal session. Such detection was obtained by position-
ing three coils on the subject head. The positions of
these fiducial landmarks were also digitized off-line
for the subsequent integration between EEG, MEG,
and MR data.

Data Analysis

The precise onset of the EMG response (zero time)
was determined manually in the EEG and MEG data
by two expert experimenters. The EEG and MEG seg-
ments (single trials) free from eye or mirror move-
ments were averaged with respect to the zerotime,
digitally bandpassed (0.1–30 Hz), and sub-sampled to
200 Hz to have coincident EEG and MEG samples.
Subsequent data analysis regarded main peaks (p) of
EEG-MEG activity related to the preparation (Readi-
ness Field, RF; Readiness Potential, RP) and execution
(first Movement-Evoked Field, MEF1; first Movement-
Related Response, MRR1) of the movement. It should
be noted that the term Movement-Evoked Potential
(MEP) was not used here, because that usually serves
to identify EMG responses to transcranial magnetic
stimulation. At least 150 single trials of artifact free
EEG and MEG measurements were used for each sub-
ject, to derive averaged movement related responses.
Due to artifacts, the EEG and MEG data from seven
electric and magnetic sensors were removed in both
subjects. Covariance matrices of noise for the EEG and
MEG modalities were estimated by computing the
average of inter-sensor covariance across all the arti-
fact-free single trials of the sample covariance matri-
ces. These sample covariance matrices were estimated
at the rest period occurring from 3 to 2 sec premove-
ment. Finally, the EEG and MEG artifact free single
trials were averaged separately and served as inputs
for the linear inverse source estimate.

RESULTS

Similar recorded EEG/MEG data and linear inverse
source solutions were obtained in both subjects. This
was valuable for the topography of the main EEG/
MEG peaks and for the time course of the current
density waveforms estimated at the regions of interest.
Therefore, we always refer to the results of one of
them (Subject 1) in the present section. Figure 2 plots

the mean MEG (lower diagram) and EEG (upper dia-
gram) wave forms, recorded in Subject 1 from two
selected magnetic (M1 and M2); this is not to be con-
fused with acronyms of cortical areas) and electric (E1
and E2) sensors in the hemisphere contralateral to the
finger movement. With the MEG wave forms, the RF
was represented by a slow magnetic shift, starting at
about 20.5 sec before the movement onset (zero time)
and peaking close to zerotime (RFp). The RF showed
contralateral lateral-frontal positivity (outward field
flow)/medial-parietal negativity (inward field flow)
and ipsilateral lateral-frontal negativity/medial-pari-
etal positivity. The MEF1 was represented by transient
magnetic shifts peaking at about 1105 msec (MEF1p).
With respect to the RF-MF, the MEF1 presented high
amplitude and reversed polarity over the contralateral
hemisphere as well as low amplitude and non-re-
versed polarity over the ipsilateral hemisphere. The
EEG wave forms were characterized by a bilateral
parietal slow negative shift (RP) starting earlier than
RF. The RP was followed by a bilateral frontoparietal
transient shift (MRR1) after zerotime. The RP and
MRR1 peak at about 290 msec and 190 msec, respec-
tively. Due to the strong head volume conduction
effects, the contralateral preponderance of the RP and
MRR1 was modest in amplitude.

Figure 3 reports the mean values of DLE, SDis and
RI indexes computed from the linear inverse source
estimates of EEG, MEG and combined EEG-MEG
data, for each ROI and for the whole source space
(All). In particular, the index values were computed
by surface data relative to 43 magnetic sensors, 61
electric sensors, 104 sensors (61 electric and 43 mag-
netic ones), 121 electric sensors and 164 (121 electric
and 43 magnetic) sensors. For each ROI and for the
whole source space, the lowest DLE and SDis values
were observed with 164 sensors (121 electric and 43
magnetic ones) and 104 sensors (61 electric and 43
magnetic ones). Importantly, the DLE and SDis values
computed from these 104 sensors were statistically (P
, 0.05) lower than those obtained with 121 electric
sensors. Accordingly, the RI values were greater (P
, 0.05) with 164 sensors (121 electric and 43 magnetic
ones) and 104 sensors (61 electric and 43 magnetic
ones) than with 121 and 61 electric sensors. This was
true for each ROI and all source space.

Figure 4 shows amplitude color 3-D maps of linear
inverse source estimates from recorded EEG, MEG,
and EEG-MEG data. The linear inverse source esti-
mate of MRR1 peak (EEG data) was characterized by
a bilateral large frontal negativity and a slight centro-
parietal positivity across the central sulcus of the con-
tralateral side. The linear inverse source estimate of
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MEF1 peak (MEG data) modeled a more restricted and
contralaterally preponderant negativity over M1-S1s.
The linear inverse source estimate of combined MRR1-
MEF1 peaks modeled also multiple restricted negative
foci located mainly in the SMA and contralateral M1-
S1. Meanwhile, this estimate modeled moderate pos-
itivity values (blue colors) across the whole sensori-
motor cortex, in relation to those obtained in the EEG
and MEG estimates considered separately. It is worth
noting that the most frontal positivity found in the
only EEG solution could be explained as a large re-
cruitment of frontal equivalent dipoles, to explain the
scalp potentials that are expected to be generated
mainly by the central sensorimotor cortex [Urbano et
al., 1998]. Indeed, this would indicate a considerable
DLE and SDis. Consistently, the frontal positivity was
completely absent in the combined EEG-MEG solu-
tions, which were proved to present low DLE and
SDis values (see Fig. 3)

Figure 5 plots the estimated time courses of each ROI
during the preparation and execution of movement.

These estimates were based on the potentials/fields re-
corded from EEG (121 sensors), MEG (43 sensors) and
combined EEG-MEG data. The RP or RF started simul-
taneously in all ROIs. The RP (EEG solution) was earlier
in latency than the RF (MEG solution). Furthermore, the
RP was relatively stronger in amplitude than the RF in
all ROIs, especially the SMA-ROI. Consistently, the con-
tralateral MEF1 was much larger in amplitude than that
of the RF (MEG solutions). The ipsilateral MRR1 ampli-
tude (EEG solution) was larger than that of the ipsilateral
MEF1 (MEG solution). Finally, the linear inverse source
estimates of combined EEG-MEG data included the
main features obtained from EEG and MEG data con-
sidered separately. In particular, a strong MRR1-MEF1
was observed on the modeled contralateral M1 and S1
and a marked RP-RF was reconstructed on the modeled
SMA. It is worth noting that there was no discrimination
in time between the activity of modeled S1 and M1. This
would be due to the limited spatial resolution of the
data: in fact, the MRR1-MEF1 peaks of the modeled
contralateral M1 and S1 had the same latencies even if

Figure 2.
Disposition of the electric (up) and magnetic (bottom) sensors for
the recording of EEG and MEG data related to unilateral unaimed
right-middle finger voluntary movements (separate recording ses-
sions). Averaged MEG and EEG time-series (wave forms) recorded

from two selected magnetic (M1 and M2) and electric (E1 and E2)
sensors are shown on the right of the figure. These sensors
overlay the primary sensorimotor cortex contralateral to the
movement.
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the most direct and quick anatomical connections be-
tween the peripheral somatosensory receptors and cor-
tex (i.e., medial lemniscal system) impinge S1.

DISCUSSION

This study presents performances of a method for
the modeling of human event-related cortical activity

from combined EEG-MEG data. This method uses
realistic MR-constructed subject’s head models and
linear inverse source estimate. Performances of the
source estimation method were evaluated by resolu-
tion matrix indexes from simulated high resolution
EEG-MEG data. It is notable that resolution matrix
indexes were based on both impulse responses (DLE
and SDis) and resolution kernels (RI), which are reli-
able yardsticks for the evaluation of the mathematical
quality of linear inverse source solutions [Grave de
Peralta et al., 1997; Menke, 1989; Pascual-Marqui,
1995]. Simulation results suggest that the linear in-
verse source estimates are mathematically more accu-
rate from EEG-MEG data than from EEG and MEG
data considered separately. This is true for all ROIs
considered separately as well as for the whole mod-
eled cortical source space.

It may be argued that lambda term can be chosen in
accordance with an optimal value of the indexes used
(such as the DLE or SDis). This would be a true
optimal choice for the hyperparameter and could be
more natural rather than plotting these indices a pos-
teriori on the base of the lambda values. A computa-
tional problem would arise, however, because many
resolution matrices R (whose dimensions are N 3 N,
with N 5 5,000 or 7,000 in our case) have to be com-
puted to obtain an accurate description of the evolu-
tion of the hyperparameter lambda.

An important source of variance in the linear in-
verse source analysis of combined EEG-MEG data
might be caused by the non-simultaneous recording of
these data sets, when attentional, learning and emo-
tional variables are unpaired across the recording
blocks. Regarding the present experiments, it must be
stressed that movement-related potentials/fields are
very stable across experimental sessions performed in
different days. Furthermore, the participating subjects
were firstly trained to stabilize a simple motor perfor-
mance in which learning, attentive and emotional con-
comitants seem to be negligible. Finally, the possibility
of combining MEG and EEG data recorded in different
experimental sessions can disclose many occasions of
scientific and clinical cooperation. In contrast, the use
of simultaneous multimodal EEG-MEG recordings is
nowadays possible only in a very few laboratories.

In our experiments, the improved quality of the
linear inverse source solutions depended not only on
the amount of spatial samples (EEG or MEG sensors)
used as an input, but also on the combination of
EEG-MEG data per se. In fact, the resolution matrix
indexes improved not only using 121 rather than 61
EEG sensors, but also using 104 multi-modal sensors
(61 electric and 43 magnetic ones) rather than 121

Figure 3.
Mean values of DLE (upper diagram), SDis (central diagram) and RI
(lower diagram) indexes computed from the linear inverse source
estimates of EEG, MEG and combined EEG-MEG data, for each
ROI (left and right M1 and S1) as well as for the whole cortical
source space (All). In particular, the index values were computed
by surface data relative to 43 magnetic sensors, 61 electric sen-
sors, 104 sensors (61 electric and 43 magnetic ones), 121 electric
sensors and 164 sensors (121 electric and 43 magnetic ones).
Acronyms: S1, primary somatosensory area; M1, primary motor
area; SMA, supplementary motor area.
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electric sensors. A reasonable explanation is that the
EEG and MEG data would provide independent spa-
tial source information, whereas the spatial informa-
tion conveyed by sensors of a single modality would
be highly correlated. These results extend previous
evidence based on dipole source localization [Stok et
al., 1987] and on the solution of the inverse problem
from experimental [Fuchs et al., 1998] and simulated
data [Baillet et al., 1999]. It is noteworthy that, com-
pared to previous evidence, the present results were
obtained by MR-based realistic head and cortical mod-
els with simulated EEG and MEG data and an appli-
cation to empirical highly sampled EEG and MEG
data was furnished.

Recently, it has been argued that resolution matrix
indexes founded on resolution kernels could be at
least in part affected by a bias, if the modeled source
space fits the entire brain volume [Pascual-Marqui,
1999]. If this is the case, sources nearest to the sensors
would be favored in the linear inverse solutions. We
used no tomographic source space (i.e., source space
filling the entire volume of the brain compartment).

Instead, we used a source space closely distributed on
the surface of the modeled realistic cortical envelope.
Thus, the problem was strongly reduced, and would
consider only the minority of dipoles belonging to the
crowns of the modeled cortical surface. They would be
favored with respect to those buried into the cortical
sulci. On the whole, the reliability of our results is
supported by the fact that the values of resolution
matrix indexes based on the impulse responses (i.e.,
not affected by such a bias) are fully in agreement with
those based on the resolution kernels.

An extensive analysis of cortical responses to vol-
untary movements was beyond the scope of the
present study. Therefore, only two subjects were used
for the data collection, given that MR-based realistic
head modeling is a very time-consuming procedures.
The converging results, however, obtained in the two
subjects seem to be of interest from a physiological
point of view. There are at least four points of interest.
First, with combined EEG-MEG data, a maximum cor-
tical activation was modeled in the contralateral pri-
mary sensorimotor areas (M1-S1) and in the mesial

Figure 4.
Cortical current source density estimates of EEG, MEG, and
combined EEG-MEG data. The estimates of the cortical current
strengths are represented on the realistic MR-constructed sub-
ject’s head model. Percent color scale is normalized with refer-

ence to the maximum amplitude calculated for each map. Maxi-
mum negativity (2100%) is coded in red and maximum positivity
(1100%) is coded in violet.
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frontal area (including SMA) during both the move-
ment preparation and execution. It is worth noting
that, the onset of preparatory cortical source activity
was earlier when computed from EEG than MEG data,
suggesting that the sources of the crown and surface

aspect of the cortical central areas are especially in-
volved in the motor planning. Remarkably, these
zones would process somatosensory proprioceptive
and motor information. Second, the similar onset la-
tency of the modeled activation agrees with a parallel
preparatory involvement of M1-S1 and SMA in the
motor planning. This does not support the idea that
SMA triggers M1 before the movement initiation
[Kornhuber and Deecke, 1985] and is in line with
previous subdural recordings in epilepsy patients
[Ikeda et al., 1995; Neshige et al., 1988]. Third, the
magnitude of the M1-S1 and SMA activation is larger
during the execution than the preparation of the
movement, which could plausibly be due to the con-
comitant cortical processing of the motor command
and peripheral reafferent input provoked by the on-
going motor performance. An augmented flux of cen-
tral and peripheral sensorimotor information would
account for this result. The involvement of the SMA in
the somatosensory information processing is consis-
tent with a detailed somatotopic somatosensory and
motor representation within this area [Allison et al.,
1996]. Furthermore, it was demonstrated that SMA
responds to passive movements and median nerve
stimulation [Hallet, 1994]. It can be speculated that the
cortical imaging techniques with low temporal reso-
lution (i.e., functional MR imaging) would return
mainly the cortical response to the reafferent informa-
tion processing concomitant with the ongoing move-
ment. This provides an insightful example of the im-
portance of combing the spatial resolution of
functional MR imaging with the excellent time reso-
lution of high resolution EEG-MEG techniques.
Fourth, a modest but perceivable activity was mod-
eled in the ipsilateral M1 and S1, during the move-
ment execution. This supports the idea of a distributed
bilateral organization of the cortical motor system
even for the execution of simple unilateral distal
movements [Wiesendanger et al., 1996]. The involve-
ment of both ipsilateral M1 and S1 during the move-
ment is controversial [Babiloni et al., 1999b; Cheyne et
al., 1997; Salmelin et al., 1995]. It would be mainly
induced by the movement-evoked somatosensory in-
formation supplied by double crossed and uncrossed
pathways. A putative double crossed pathway would
include dorsal-column lemniscal system and transcal-
losal M1-S1 connections. A putative uncrossed path-
way may comprise spinoreticular, spinomesence-
phalic and spinocerebellar connection systems. The
ipsilateral M1-S1 activation accompanying the move-
ment execution would subserve transcallosal inhibi-
tion of the small uncrossed pyramidal pathway orig-

Figure 5.
Time series of cortical current density estimates modeling activity
of each ROI during the movement preparation and execution.
These estimates reflect the potentials/fields recorded from EEG
(121 electric sensors; upper diagram), MEG (43 magnetic sensors;
central diagram) and EEG-MEG (121 electric and 43 magnetic
sensors, lower diagram) data. Time is relative to the onset (zero-
time) of the electromyographic (EMG) responses recorded from
the operating muscle. Each colored waveform refers to the time
varying current activity in a particular region of interest.
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inating from the contralateral M1-S1 or would be used
for a postural stabilization of the proximal muscles.

In conclusion, the present results suggest that the lin-
ear inverse source estimates of the combined EEG-MEG
data improve with respect to those of EEG or MEG data
considered separately. The methodological approach in-
cludes MR-based realistic head and cortical source mod-
eling, high spatial sampling of empirical EEG and MEG
data, and regularized linear inverse estimate mathemat-
ics (weighted minimum norm source estimate). The ap-
plication of this technology supports the hypothesis that
in humans the preparation and execution of one of the
simple unilateral volitional digit acts is subserved by a
distributed cortical system including SMA and contralat-
erally preponderant M1 and S1.
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