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Abstract: An automated method for segmenting magnetic resonance head images into brain and non-
brain has been developed. It is very robust and accurate and has been tested on thousands of data sets
from a wide variety of scanners and taken with a wide variety of MR sequences. The method, Brain
Extraction Tool (BET), uses a deformable model that evolves to fit the brain’s surface by the application
of a set of locally adaptive model forces. The method is very fast and requires no preregistration or other
pre-processing before being applied. We describe the new method and give examples of results and the
results of extensive quantitative testing against “gold-standard” hand segmentations, and two other

popular automated methods. Hum. Brain Mapping 17:143-155, 2002.
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INTRODUCTION

There are many applications related to brain imag-
ing that either require, or benefit from, the ability to
accurately segment brain from non-brain tissue. For
example, in the registration of functional images to
high resolution magnetic resonance (MR) images, both
fMRI and positron emission tomographic (PET) func-
tional images often contain little non-brain tissue be-
cause of the nature of the imaging, whereas the high
resolution MR image will probably contain a consid-
erable amount, eyeballs, skin, fat, muscle, etc., and
thus registration robustness is improved if these non-
brain parts of the image can be automatically removed
before registration. A second example application of
brain/non-brain segmentation is as the first stage in
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cortical flattening procedures. A third example is in
brain atrophy estimation in diseased subjects; after
brain/non-brain segmentation, brain volume is mea-
sured at a single time point with respect to some
normalizing volume such as skull or head size; alter-
natively, images from two or more time points are
compared, to estimate how the brain has changed over
time [Smith et al., 2001, 2002]. Note that in this appli-
cation, tissue-type segmentation is also used to help
disambiguate brain tissue from other parts of the im-
age such as CSF [Zhang et al., 2001]. A fourth appli-
cation is the removal of strong ghosting effects that
can occur in functional MRI (e.g., with echo planar
imaging [EPI]). These artefacts can confound motion
correction, global intensity normalization, and regis-
tration to a high-resolution image. They can have an
intensity as high as the “true” brain image, preventing
the use of simple thresholding to eliminate the arte-
facts, whereas the geometric approach presented here
can remove the effects (though only from outside of
the brain).

This article describes a complete method for achiev-
ing automated brain/non-brain segmentation. The
method described here does not attempt to model the
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brain surface at the finest level, for example, following
sulci and gyri, or separating cortex from cerebellum.
This finer modeling would be a later stage, if required,
after the brain/non-brain segmentation.

After a brief review of brain extraction, the brain
extraction algorithm is described in detail, followed by
a description of an addition that attempts to find the
exterior surface of the skull. Example qualitative re-
sults are presented, followed by the results of exten-
sive quantitative evaluation against 45 gold-standard
hand segmentations and comparisons, using this data,
with two other popular automated methods.

REVIEW

To date, there have been three main methods pro-
posed for achieving brain/non-brain segmentation;
manual, thresholding-with-morphology, and surface-
model-based. We briefly describe and compare these
methods.

The problem of brain/non-brain segmentation is a
subset of structural segmentation, which aims, for ex-
ample, to segment the major brain structures such as
cerebellum, cortex and ventricles. It is an image-pro-
cessing problem where a semiglobal understanding of
the image is required as well as a local understanding.
This is often more difficult than situations where
purely local or purely global solutions are appropri-
ate. For an example of the difference between local
and semiglobal operations, take the finding of “cor-
ners” in images. In clean images with clean sharp
corners, a good solution may be found by applying
small locally acting operators to the image. In the
presence of large amounts of noise, or if it is required
to find less sharp corners, however, a larger-scale view
must be taken. For example, two edges must be de-
fined over a larger area, and their position of intersec-
tion found.

Manual brain/non-brain segmentation methods
are, as a result of the complex information under-
standing involved, probably more accurate than fully
automated methods are ever likely to achieve. This is
the level in image processing where this is most true.
At the lowest, most localized, level (for example, noise
reduction or tissue-type segmentation), humans often
cannot improve on the numerical accuracy and objec-
tivity of a computational approach. The same also
often holds at the highest, most global level; for exam-
ple, in image registration, humans cannot in general
take in enough of the whole-image information to
improve on the overall fit that a good registration
program can achieve. With brain segmentation, how-
ever, the appropriate size of the image “neighbor-

hood” that is considered when outlining the brain
surface is ideally suited to manual processing. For
example, when following the external contours of
gyri, differentiating between cerebellum and neigh-
boring veins, cutting out optic nerves, or taking into
account unusual pathology, semiglobal contextual in-
formation is crucial in helping the human optimally
identify the correct brain surface.

There are serious enough problems with manual
segmentation to prevent it from being a viable solu-
tion in most applications. The first problem is time
cost. Manual brain/non-brain segmentation typically
takes between 15 min and 2 hr per 3D volume. The
second is the requirement for sufficient training, and
care during segmentation, that subjectivity is reduced
to an acceptable level. For example, even a clinical
researcher who has not been explicitly trained will be
likely to make a mistake in the differentiation between
lower cerebellum and neighboring veins.

The second class of brain segmentation methods is
thresholding-with-morphology [Hohne and Hanson,
1992]. An initial segmentation into foreground/back-
ground is achieved using simple intensity threshold-
ing. Lower and upper thresholds are determined that
aim to separate the image into very bright parts (e.g.,
eyeballs and parts of the scalp), less bright parts (e.g.,
brain tissue), and the dark parts (including air and
skull). Thus, a binary image is produced. In the sim-
plest cases, the brain can now be determined by find-
ing the largest single contiguous non-background
cluster. A binary brain mask then results; this can be
applied to the original image. The brain cluster, how-
ever, is almost always connected, often via fairly thin
strands of bright voxels, to non-brain tissue such as
the eyeballs or scalp. For example, this “bridge” can be
caused either by the optic nerve, or simply at points
around the brain where the dark skull gap is very
narrow. Before the largest single cluster is used, it
must be disconnected from the non-brain bright tis-
sue. This is normally achieved by morphological fil-
tering; the bright regions in the binary image are
eroded away until any links between brain and non-
brain are eliminated, the largest single cluster is then
chosen, and this is then dilated by the same extent as
the erosion, hopefully resulting in an accurate brain
mask.

Thresholding-with-morphology methods are mostly
only semi-automated; the user is normally involved
in helping choose the threshold(s) used in the initial
segmentation. It is often necessary to try the full
algorithm out with a variety of starting thresholds
until a good output is achieved. A second problem is
that it is very hard to produce a general algorithm for
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the morphology stage that will successfully separate
brain from non-brain tissue; it has proved difficult to
automatically cope with a range of MR sequences and
resolutions. In general, results need some final hand
editing. In part, this is due to the fact that it is hard to
implement situation-specific logical constraints (e.g.,
prior knowledge about head images) with this ap-
proach.

A more sophisticated version of the above approach
is given in [Lemieux et al., 1999]. A series of thresh-
olding and morphology steps are applied, with each
step carefully tuned to overcome specific problems,
such as the thin strands joining brain to non-brain
after thresholding. Although the results presented are
impressive, this method is highly tuned to a narrow
range of image sequence types. A second related ex-
ample is presented in [Sandor and Leahy, 1997]. Edge
detection is used instead of thresholding, to separate
different image regions. Next, morphology is used to
process these regions, to separate the large region
associated with the brain from non-brain regions. The
resulting algorithm can therefore be more robust than
some of the thresholding-with-morphology methods;
this method (BSE) is used in the quantitative testing
presented below. A third example is that implemented
in AENI [Cox; Ward, 1999]. A Gaussian mixture model
across the different image tissue types is fitted to the
intensity histogram to estimate thresholds for the fol-
lowing slice-by-slice segmentation. This is followed by
a surface-model-based surface smoothing, and finally
with morphological “cleaning-up.” This technique is
used in the quantitative testing presented below. Yet
another example is [Atkins and Mackiewich, 1998],
where head/non-head segmentation is first carried
out, using thresholding and morphology. Next, aniso-
tropic diffusion is applied, to reduce noise and “dark-
en” some non-brain regions, followed by further
thresholding and morphology, along with a heuristic
method for identifying and removing the eyes. The
final surface is modelled with a “snake” [Kass et al.,
1987]. Further examples can be found in [Bomans et
al., 1990; Brummer et al., 1993; Kruggel and von Cra-
men, 1999].

The third class of methods uses deformable surface
models; for example, see Dale et al. [1999] and Kele-
men et al. [1999]. A surface model is defined, for
example, a tessellated mesh of triangles. This model is
then “fitted” to the brain surface in the image. Nor-
mally there are two main constraints to the fitting, a
part that enforces some form of smoothness on the
surface (both to keep the surface well-conditioned and
to match the physical smoothness of the actual brain
surface) and a part that fits the model to the correct

part of the image, in this case, the brain surface. The
fitting is usually achieved by iteratively deforming the
surface from its starting position until an optimal so-
lution is found. This type of method has the advan-
tages that it is relatively easy to impose physically
based constraints on the surface, and that the surface
model achieves integration of information from a rel-
atively large neighborhood around any particular
point of interest; this is therefore using semiglobal
processing, as described above. In general this kind of
approach seems to be more robust, and easier to suc-
cessfully automate, than the thresholding-with-mor-
phology methods.

MATERIALS AND METHODS
Overview of the brain extraction method

The intensity histogram is processed to find “ro-
bust” lower and upper intensity values for the image,
and a rough brain/non-brain threshold. The centre-of-
gravity of the head image is found, along with the
rough size of the head in the image. A triangular
tessellation of a sphere’s surface is initialized inside
the brain and allowed to slowly deform, one vertex at
a time, following forces that keep the surface well-
spaced and smooth, while attempting to move toward
the brain’s edge. If a suitably clean solution is not
arrived at then this process is re-run with a higher
smoothness constraint. Finally, if required, the outer
surface of the skull is estimated. A graphical overview
is shown in Figure 1.

Estimation of basic image and brain parameters

The first processing that is carried out is the estima-
tion of a few simple image parameters, to be used at
various stages in subsequent analysis.

First, the robust image intensity minimum and max-
imum are found. Robust means the effective intensity
extrema, calculated ignoring small numbers of voxels
that have widely different values from the rest of the
image. These are calculated by looking at the intensity
histogram, and ignoring long low tails at each end.
Thus, the intensity “minimum”, referred to as t, is the
intensity below which lies 2% of the cumulative his-
togram. Similarly, tog is found. It is often important for
the latter threshold to be calculated robustly, as it is
quite common for brain images to contain a few high
intensity “outlier” voxels; for example, the DC spike
from image reconstruction, or arteries, which often
appear much brighter than the rest of the image. Fi-
nally, a roughly chosen threshold is calculated that
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Figure 1.
BET processing flowchart.

attempts to distinguish between brain matter and
background (because bone appears dark in most MR
images, “background” is taken to include bone). This
t is simply set to lie 10% of the way between t, and tqg.

The brain/background threshold ¢ is used to
roughly estimate the position of the centre of gravity
(COQG) of the brain/head in the image. For all voxels
with intensity greater than ¢, their intensity (“mass”) is

used in a standard weighted sum of positions. Inten-
sity values are upper limited at tog, so that extremely
bright voxels do not skew the position of the COG.
Next, the mean “radius” of the brain/head in the
image is estimated. There is no distinction made here
between estimating the radius of the brain and the
head, this estimate is very rough, and simply used to
get an idea of the size of the brain in the image; it is
used for initializing the brain surface model. All vox-
els with intensity greater than f are counted, and a
radius is found, taking into account voxel volume,
assuming a spherical brain. Finally, the median inten-
sity of all points within a sphere of the estimated
radius and centered on the estimated COG is found

(tm)-
Surface model and initialization

The brain surface is modeled by a surface tessella-
tion using connected triangles. The initial model is a
tessellated sphere, generated by starting with an ico-
sahedron and iteratively subdividing each triangle
into four smaller triangles, while adjusting each ver-
tex’s distance from the centre to form as spherical a
surface as possible. This is a common tessellation of
the sphere. Each vertex has five or six neighbors,
according to its position relative to the original icosa-
hedron.

The spherical tessellated surface is initially centered
on the COG, with its radius set to half of the estimated
brain/head radius, i.e., intentionally small. Allowing
the surface to grow to the optimal estimate gives
better results in general than setting the initial size to
be equal to (or larger than) the estimated brain size
(see Fig. 7). An example final surface mesh can be seen
in Figure 2.

The vertex positions are in real (floating point)
space, i.e., not constrained to the voxel grid points. A
major reason for this is that making incremental
(small) adjustments to vertex positions would not be
possible otherwise. Another obvious advantage is that
the image does not need to be pre-processed to be
made up of cubic voxels.

Figure 2.
Three views of a typical surface mesh, shown for clarity with
reduced mesh density.
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Main iterated loop

Each vertex in the tessellated surface is updated by
estimating where best that vertex should move to, to
improve the surface. To find an optimal solution, each
individual movement is small, with many (typically
1,000) iterations of each complete incremental surface
update. In this context, “small movement” means
small relative to the mean distance between neighbor-
ing vertices. Thus for each vertex, a small update
movement vector u is calculated, using the following
steps.

Local surface normal

First, the local unit vector surface normal f is found.
Each consecutive pair of [central vertex]-[neighbor A],
[central vertex] — [neighbor B] vectors is taken and
used to form the vector product (Fig. 3). The vector
sum of these vectors is scaled to unit length to create
f. By initially taking the sum of normal vectors before
rescaling to unity, the sum is made relatively robust;
the smaller a particular [central vertex]-[neighbor
Al-[neighbor B] triangle is, the more poorly condi-
tioned is the estimate of normal direction, but this
normal will contribute less toward the sum of nor-
mals.

Mean position of neighbors and difference vector

The next step is the calculation of the mean position
of all vertices neighboring the vertex in question. This
is used to find a difference vector s, the vector that
takes the current vertex to the mean position of its

I of the 5 pairs of ;
vectors from the ‘e'
central vertex to !

consecutive neighbouring vertices

Figure 3.
Creating local unit vector surface normal fi from all neighboring
vertices.

T central vertex
(previously calculated
local surface normal)

neighbouring neighbouring

by

vertex A veriex B
mean position 5
of A and B
Figure 4.

Decomposing the “perfect smoothness” vector s into components
normal and tangential to the local surface.

neighbors. If this vector were minimized for all verti-
ces (by positional updates), the surface would be
forced to be smooth and all vertices would be equally
spaced. Also, due to the fact that the surface is closed,
the surface would gradually shrink.

Next, s is decomposed into orthogonal components,
normal and tangential to the local surface;

s, = (s.A)fA (1)
and
S, =5 — S, (2)

For the 2D case, see Figure 4 (the extension to 3D is
conceptually trivial). It is these two orthogonal vectors
that form the basis for the three components of the
vertex’s movement vector u; these components will be
combined, with relative weightings, to create an up-
date vector u for every vertex in the surface. The three
components of u are now described.

Update component |:
within-surface vertex spacing

The simplest component of the update movement
vector u is u;, the component that is tangential to the
local surface. Its sole role is to keep all vertices in the
surface equally spaced, moving them only within the
surface. Thus, u, is directly derived from s,. To give
simple stability to the update algorithm, u, is not set
equal to s, but to s;/2; the current vertex is always
tending toward the position of perfect within-surface
spacing (as are all others).

Update component 2: surface smoothness control
The remaining two components of u act parallel to

the local surface normal. The first, u,, is derived di-
rectly from s, and acts to move the current vertex into
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line with its neighbors, thus increasing the smoothness
of the surface. A simple rule here would be to take a
constant fraction of s, in a manner equivalent to that
of the previous component u,:

u, = f;s,, (3)

where f, is the fractional update constant. Most other
methods of surface modelling have taken this ap-
proach. A great improvement can be made, however,
using a nonlinear function of s,. The primary aim is to
smooth high curvature in the surface model more
heavily than low curvature. The reason for this is that
although high curvature is undesirable in the brain
surface model, forcing surface smoothing to an extent
that gives stable and good results (in removing high
curvature) weights too heavily against successful fol-
lowing of the low curvature parts of the surface. To
keep the surface model sufficiently smooth for the
overall algorithm to proceed stably, the surface is
forced to be over-smooth, causing the underestima-
tion of curvature at certain parts, i.e., the “cutting of
corners.” It has been found that this problem is not
overcome by allowing f, to vary during the series of
iterations (this a natural improvement on a constant
update fraction). Instead, a nonlinear function is used,
starting by finding the local radius of curvature, r:

12

T s, @)

where [ is the mean distance from vertex to neighbor-
ing vertex across the whole surface (Fig. 5). Now, a
sigmoid function of r is applied, to find the update
fraction:

central vertex

Ill.!Lf_."J]['K"LIJ:I'IQ neighbouring
verlex vertex B
A
S,
cos B = L. |—"
2r I
|2
r=
2|8,/

Figure 5.
The relationship between local curvature r, vertex spacing | and
the perpendicular component of the difference vector, |s,|.

T
1

0.8
0.6

T
1

0.4
0.2 ™, i

T

Figure 6.
Smoothness update fraction vs. local radius of curvature, givenr,,,,,
=10 mm, r,,;, = 3.33 mm.
f,= (1 + tanh(F * (1/r — E)))/2, %)

where E and F control the scale and offset of the
sigmoid. These are derived from a minimum and max-
imum radius of curvature; below the minimum 7,
heavy smoothing takes place (i.e., the surface defor-
mation remains stable and highly curved features are
smoothed), whereas above the maximum 7, little sur-
face smoothing is carried out (i.e., “long slow” curves
are not over-smoothed). The empirically optimized
values for r,,, and r,,,, are suited for typical geome-
tries found in the human brain. Consideration of the
tanh function suggests:

E = (1/rmin + 1/rmax)/21 (6)
and
F:6/(1/rmin_ 1/rmax)' (7)

The resulting smoothness term (Fig. 6) gives much
better results than a constant update fraction, both in
ability to accurately model brain surface and in devel-
opmental stability during the many iterations.

Update component 3: brain surface selection term

The final update component, u;, is also parallel to
s, and is the term that actually interacts with the
image, attempting to force the surface model to fit to
the real brain surface. This term was originally in-
spired by the intensity term in [Dale et al., 1999]:

30

1l H max(or tal’lh(I(X - dn) - Ithresh))r (8)
d=1
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Figure 7.
Example of surface model devel-
opment as the main loop iter-
ates. The dark points within the
model outline are vertices.

where the limits on d control a search amongst all
image points x — dn along the surface normal pointing
inward from the current vertex at x, and taking the
product requires all intensities to be above a preset
threshold. Thus whilst the surface lies within the
brain, the resulting force is outward. As soon as the
surface moves outside of the brain (e.g., into CSF or
bone), one or more elements inside the product be-
come zero and the product becomes zero. One limita-
tion of this equation is that it can only push outward,
thus the resulting surface is forced to be convex. A
second limitation is the use of a single global intensity
threshold 1,,,.,,; ideally, this should be optimally var-
ied over the image.

Thus, instead of the above equation, a much simpler
core equation is used, embodying the same idea, but
this is then extended to give greater robustness in a
wider range of imaging sequences. First, along a line
pointing inward from the current vertex, minimum
and maximum intensities are found:

Imin = MAX(tZI MIN (tm/ I(O)/ I(l)r LRI I(dl)))/ (9)

Imux = MIN(tmr MAX (tr 1(0)/ I(l)r L4 I(dz)))/

(10)
where d; determines how far into the brain the mini-
mum intensity is searched for, and d2 determines how
far into the brain the maximum intensity is searched
for. Typically, d; = 20 mm and d, = d,/2 (this ratio is
empirically optimized, and reflects the relatively
larger spatial reliability of the search for maximum
intensity compared with the minimum). ¢, t,, and ¢
are used to limit the effect of very dark or very bright
voxels, and t is included in the maximum intensity
search to limit the effect of very bright voxels. Note
that the image positions where intensities are mea-
sured are in general between voxels as we are working
in real (floating point) space, thus intensity interpola-
tion needs to be used, interpolating between original
voxel intensities. It was found that nearest neighbor
interpolation gave better results than trilinear or
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higher order interpolations, presumably because it is
more important to have access to the original (un-
interpolated, and therefore “unblurred”) intensities
than that the values reflect optimal estimates of inten-
sities at the correct point in space.

Now, I, is used to create t;, a locally appropriate
intensity threshold that distinguishes between brain
and background:

t = (Ijnax = t2) * b + to. (11)
It lies a preset fraction of the way between the global
robust low intensity threshold ¢, and the local maxi-
mum intensity I,,,., according to fractional constant b,.
This preset constant is the main parameter that BET
can take as input. The default value of 0.5 has been
found to give excellent results for most input images.
For certain image intensity distributions it can be var-
ied (in the range 0-1) to give optimal results. The
necessity for this is rare, and for an MR sequence that
requires changing b,, one value normally works for all
other images taken with the same sequence (the only
other input parameter, and one that needs changing
from the default even less often than b,, for example, if
there is very strong vertical intensity inhomogeneity,
causes b, to vary linearly with Z in the image, causing
“tighter” brain estimation at the top of the brain, and

Figure 8.
Example brain surface generated
by BET.

“looser” estimation at the bottom, or vice versa). The
update “fraction” is then given by:

. 2(Imir\ - tl)

fy = , (12)

Imax - tZ

with the factor of 2 causing a range in values of f; of
roughly —1 to 1. If I,,,;,, is lower than local threshold ¢,
f3 is negative, causing the surface to move inward at
the current point. If it is higher, then the surface moves
outward.

The full update term is 0.05 f; I. The update fraction
is multiplied by a relative weighting constant, 0.05,
and the mean inter-vertex distance, I. The weighting
constant sets the balance between the smoothness
term and the intensity-based term, it is found empir-
ically, but because all terms in BET are invariant to
changes in image voxel size, image contrast, mesh
density, etc., this constant is not a “worked-once”
heuristic, it is always appropriate.

Final update equation
Thus the total update equation, for each vertex, is

u = 0.5s, + f,s, + 0.051,18,. (13)

Figure 9.
Example brain surface model
(left) and resulting brain surface
(right) generated by BET.
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Figure 10.
Example brain surface from a T2-
weighted image.

Second pass: increased smoothing

One obvious constraint on the brain surface model
is that it should not self-intersect. Although it would
be straightforward to force this constraint by adding
an appropriate term to the update equation, in prac-
tice this check is extremely computationally expensive
as it involves comparing the position of each vertex
with that of every other at every iteration. As it stands,
the algorithm already described rarely (around 5% of
images) results in self-intersection. A more feasible
alternative is to run the standard algorithm and then
perform a check for self-intersection. If the surface is
found to self-intersect, the algorithm is re-run, with
much higher smoothness constraint (applied to con-
cave parts of the surface only, it is not necessary for
the convex parts) for the first 75% of the iterations; the
smoothness weighting then linearly drops down to
the original level over the remaining iterations. This
results in preventing self-intersection in almost all
cases.

It has been suggested that there might be some
value in re-running BET on its own output. Although
areas incorrectly “left in” after a first run might get
removed on subsequent runs, it is our experience that
this is not in general successful, presumably because
the overall algorithm is not designed for this applica-
tion.

Exterior skull surface estimation

A few applications require the estimation of the
position of the skull in the image. A major example is
in the measurement of brain atrophy [Smith et al.,
2001]. Before brain change can be measured, two im-
ages of the brain, taken several months apart, have to

Figure I1.
Example brain surface from a
proton density image.

be registered. Clearly this registration cannot allow
rescaling, otherwise the overall atrophy will be under-
estimated. Because of possible changes in scanner ge-
ometry over time, however, it is necessary to hold the
scale constant somehow. This can be achieved using
the exterior skull surface, which is assumed to be
relatively constant in size, as a scaling constraint in the
registration.

In most MR images, the skull appears very dark. In
T1-weighted images the internal surface of the skull is
largely indistinguishable from the cerebrospinal fluid
(CSF), which is also dark. Thus the exterior surface is
found. This also can be difficult to identify, even for
trained clinical experts, but the algorithm is largely
successful in its aim.

For each voxel lying on the brain surface found by
BET, a line perpendicular to the local surface, pointing
outward, is searched for the exterior surface of the
skull, according to the following algorithm:

« Search outward from the brain surface, a distance
of 30 mm, recording the maximum intensity and
its position, and the minimum intensity.

« If the maximum intensity is not higher than t,
assume that the skull is not measurable at this
point, as there is no bright signal (scalp) on the far
side of the skull. In this case do not proceed with
the search at this point in the image. This would
normally be due to signal loss at an image ex-
treme, for example, at the top of the head.

» Find the point at greatest distance from brain
surface d that has low intensity, according to max-
imization of the term d/30 — I(d)/(tss — t5). The

first part weighs in favor of increased distance,
the second part weighs in favor of low intensity.
The search is continued only out to the previously
found position of maximum intensity. The result-
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ing point should be close to the exterior surface of
the skull.

» Finally, search outward from the previous point
until the first maximum in intensity gradient is
found. This is the estimated position of the exte-
rior surface of the skull. This final stage gives a
more well-defined position for the surface, it does
not depend on the weightings in the maximized
term in the previous section, i.e., is more objective.
For example, if the skull/scalp boundary is at all
blurred, the final position will be less affected
than the previous stage.

This method has been quite successful, even when
fairly dark muscle lies between the skull and the
brighter skin and fat. It is also mainly successful in
ignoring the marrow within the bone, which some-
times is quite bright.

RESULTS
Example results

Figure 7 shows an example of surface model devel-
opment as the main loop iterates, with a T1-weighted
image as input, finishing with the estimation shown in
Figures 8 and 9. Figures 10-12 show example results
on T2-weighted, proton density, and echo planar im-
aging (EPI, widely used for FMRI) images. Figure 13
shows an example estimate of the exterior skull sur-
face.

Figure 12.
Example segmentation of an EPI
image.

Figure 14 shows the result of running BET on an EPI
FMRI image that is heavily affected by ghosting.
Clearly BET has worked well, both in removing the
(outside-brain) ghosting, and also in allowing regis-
tration (using FLIRT [Jenkinson and Smith, 2001]) to
succeed.

Quantitative testing against ‘“gold-standard” and
other methods

An extensive quantitative and objective test of BET
has been carried out. We used 45 MR images, taken
from 15 different scanners (mostly 1.5 T and some 3 T,
from 6 different manufacturers), using a wide range of
slice thicknesses (0.8—6 mm) and a variety of se-
quences (35 T1-weighted, 6 T2-weighted and 4 proton
density). Hand segmentation of these images into
brain/non-brain' was carried out. Thus, a simple bi-
nary mask was generated from each input image.
Some slices from a sample hand segmentation are
shown in the second column of Figure 15. BET and

1We defined cerebellum and internal CSF as “brain,” i.e., matching
the definitions used by the methods tested. Structures/tissues such
as sagittal sinus, optic nerves, external CSF, and dura are all ideally
eliminated by all the methods (as can be confirmed by their results
on “ideal” input images), and also by hand segmentation.

Figure 13.
Example exterior skull surface
generated by BET.
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Figure 14.
Left to right: the original FMRI
image; BET output from the
FMRI image; T|-weighted struc-
tural image; (failed) registration
without using BET; successful
registration if BET is used.

two other popular automated methods (“AFNI” and
“BSE”) were tested against the hand segmentations.”

The AFNI method [Cox, ; Ward, 1999], though
claiming to be fully automated, gave very poor results
on most images (off the scale on Fig. 16), due to the
failure of the initial histogram-based choice of thresh-
olds. Much better results were obtained by setting the
initial thresholds using the simpler but more robust
method described previously. The upper threshold
was set to tog and the lower threshold to 40% between
t, and tyg. The refined method is referred to below as
“AFNI*”.

The results of the three methods were evaluated
using a simple % error formulation of 0.5 X 100 X vol-
ume (total nonintersection)/volume (hand mask). The
main results for the fully automated methods are
shown on the left in Figure 16; the mean % error over
the 45 images is shown for each method. The mean
error is more meaningful than any robust measure
(e.g., median) because outliers are considered rele-
vant, the methods needs to be robust as well as accu-
rate to be useful (though note that using median val-
ues instead gives the same relative results). The short
bars show the results for the 35 Tl-weighted input
images only. BET gives significantly better results than
the other two methods. Some slices of a typical BET
segmentation® are displayed in the third column of
Figure 15. The fourth column shows the hand mask
minus the BET mask; in general BET is slightly over-

2The versions of these algorithms were: BET v. 1.1 from FSL v. 1.3;
BSE v. 2.09; AFNI v. 2.29 (with modifications described in the text).
All are easily accessible on the internet; to the best of our knowl-
edge, these are the only freely available, widely used stand-alone
brain/non-brain segmentation algorithms.

*The chosen image gave an error close to BET’s mean error.

estimating the boundary (by approximately one voxel,
except in the more complicated inferior regions), and
smoothing across fine sulci.

It was also considered of interest to investigate the
same test if initial controlling parameters were “hand-
optimized” (i.e., making the methods only “nearly
fully optimized”). To carry this out in a reasonably
objective manner, the primary controlling parameter
for each method was varied over a wide range and the
best result (comparing output with hand segmenta-
tion) was recorded. Fortunately, each method has one
controlling parameter that has much greater effect on
output than others, so the choice of which parameter
to vary was simple.* The range over which each meth-
od’s principal controlling parameter was varied was
chosen by hand such that the extremes were just hav-
ing some useful effect in a few images. Each method
was then run with the controlling parameter at nine
different levels within the range specified. The results
are shown on the right in Figure 16. The methods all
improve to varying degrees. BET remains the best
method, just beating AFNI*. The most important mes-
sage from these results is that although BET is the
most accurate and robust method in both tests, it is
also the most successfully “fully automated.” Its re-
sults, when run fully-automated, are nearly as good as
those when it is “hand-optimized.”

*With BET, the parameter varied affects the setting of a local brain/
non-brain threshold; b, in equation (11) varied from 0.1-0.9. With
AFNT*, the setting of the lower intensity threshold was varied;
instead of using 40% between robust intensity limits as described
above, a range of 10-70% was used. With BSE, the “edge detection
sigma,” that controls the initial edge detection, varied from 0.5-1.5.
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All the above comments on the quantitative results
also hold when only the 35 Tl-weighted images are
considered.

In theory it might be possible to “hand-tune” a
method once for a given MR pulse sequence, and the
resulting parameters then work well for all images of
all subjects acquired using this sequence. If this were
the case, then possibly the results of AFNI* and BET
could be viewed as similarly successful (assuming that
our improvements to AFNI were implemented). This
is, however, not the case. There was found to be
significant variation in optimal controlling parameters
for AFNI* (within-sequence type).

Figure 15.
Left to right: example original
whole-head MR image; hand seg-
mentation; fully automatic BET
masking; hand mask minus BET
mask.

Finally, note that results from a brain extraction
algorithm may improve if the image is pre-processed
in certain ways, such as with an intensity inhomoge-
neity reduction algorithm. It is our experience, how-
ever, that the best intensity inhomogeneity reduction
methods require brain extraction to have already been
carried out.

CONCLUSION

An automated method for segmenting MR head
images into brain and non-brain has been developed.
It is very robust and accurate and has been tested on
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Figure 16.

Mean % error over 45 MR images for three brain extraction
methods, compared to hand segmentation; on the left are the
results of testing the fully-automated methods, on the right are the
“hand-optimized” results. The short bars show the results over
only the 35 Tl-weighted images.

thousands of data sets from a wide variety of scanners
and taken with a wide variety of MR sequences. BET
takes about 5-20 sec to run on a modern desktop
computer and is freely available, as a standalone pro-
gram that can be run from the command line or from
a simple GUI, as part of FSL (FMRIB Software Library:
www.fmrib.ox.ac.uk/fsl).
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