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How Can EEG/MEG and fMRI/PET Data
Be Combined??
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In the last few years, the functional brain imaging
community has witnessed numerous efforts (and per-
haps even more discussion) directed at multimodality
data fusion: combining high-quality localization infor-
mation provided by the hemodynamic-based brain
imaging methods such as PET and fMRI with high-
quality temporal data generated by the electromag-
netic-based techniques such as EEG and MEG [Dale
and Halgren, 2001]. The article in this issue by Vitacco
et al. [2002] provides an interesting research effort
aimed at this problem, one that forces us to confront a
number of critical questions about the entire data fu-
sion enterprise.

Almost every neuroscientist, and certainly every
functional neuroimager, tries in one way or another to
combine data from multiple methods. Three distinct
approaches are used.

Converging evidence

Converging evidence is the most common method,
although it is, typically, not an explicit attempt at
combining data from different techniques. Results
from other analyses that support one’s findings are
brought forth in the discussion section of an article. A
standard sentence might look like: “The activation we
found in region X is consistent with studies in patients
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with focal lesions in region X and in ERP studies
where a latency in the Y component on task Z has been
observed during ....” Examples of this sort can be
found by looking at the articles in just about any issue
of this and similar journals, as well as at just about all
of our own publications, which humility prevents us
from listing in the bibliography. This kind of qualita-
tive approach has a number of well-known limita-
tions. Although the one most cited is selective attribu-
tion (i.e., not mentioning studies that don’t support
one’s findings), the main limitation is actually that the
complexity of the brain with its many interacting ele-
ments makes it extremely difficult to say whether or
not two findings obtained using methods with differ-
ent spatial and temporal features do or do not agree.
For example, because we do not have a solid under-
standing of the neural substrates of fMRI activations,
nor of specific EEG/MEG components, nor of the
effects of a focal lesion on how a neural network
behaves, it is far from trivial to suppose, for instance,
that a statistically significant Z-score in the left inferior
frontal gyrus and a large left anterior negativity at 200
msec after stimulus presentation correspond to the
same thing.

Converging evidence can, of course, be more for-
mally assessed by performing meta-analyses of data
that have been transformed into some canonical coor-
dinate system and evaluating to what extent there is
agreement across studies and recording modalities
[Fox et al., 1998]. One can implement the converging
evidence approach in one study by doing the same
experiment multiple times using different recording
techniques: the same subjects perform the same task
while undergoing, for example, fMRI in one session
and MEG in a separate session. Disbrow et al. [2001],
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for instance, took this approach in a study on the
somatosensory system testing whether bimanual (vs.
unimanual) stimulation has distinct spatial activation
patterns (fMRI) and is also associated with neurophys-
iological responses that differ in their timing, ampli-
tude, and spatial origin (MEG). Finally, in the clinical
domain, converging evidence across recording tech-
niques is of critical importance. For example, the pre-
surgical mapping carried out with fMRI or MEG that
might be provided to a neurosurgeon to aid in surgical
planning must agree closely with intracranial record-
ings.

Direct data fusion

In the direct data fusion approach, two data sets are
directly combined using some mathematical/statisti-
cal algorithm [George et al., 1995]. The Vitacco et al.
[2002] study presented in this issue illustrates this
method. The main assumption, as emphasized by Dale
and Halgren [2001], is that the critical signals gener-
ated by each method correspond to the same set of
underlying neural generators. The most common
method that has been employed to combine hemody-
namic and electromagnetic data assumes that there are
a few underlying equivalent current dipoles that gen-
erate the EEG/MEG data, and uses the local maxima
obtained by PET/fMRI as constraints on localizing
these EEG/MEG dipole sources [Ahlfors et al., 1999].
Other source estimation methods for EEG/MEG are
possible, however, such as assuming that the sources
of the EEG/MEG data are spatially distributed [loan-
nides et al., 1993; Sekihara et al., 2002], and these lead
to temporally continuous EEG/MEG values through-
out the brain (or, depending on the method, at the
cortical surface). The LORETA method [Pascual-Mar-
qui et al., 1994] used by Vitacco et al. [2002] is one such
distributed source modeling method (LORETA stands
for low-resolution, electric tomography algorithm; it
provides the smoothest possible 3D current distribu-
tion in the brain that can generate the observed scalp
field). One problem with all these source estimation
procedures is well-known [Dale and Halgren, 2001;
Hamalainen et al., 1993]: the inverse problem of de-
termining a unique set of sources that yield the sur-
face-recorded distribution of electromagnetic activity
is ill-posed; in the absence of constraints, there is no
unique solution. This lack of uniqueness obviously
affects any data fusion effort.

Vitacco and colleagues [2002] asked the following
question: for a semantic monitoring task (silent word
reading coupled with indicating by a button press
whether each presented word belonged to the cate-

gory of food; the control task was looking at a fixation
cross), do the brain regions that show large activations
by fMRI also show large LORETA values? To deal
with the different spatiotemporal resolutions of the
two methods, they averaged their LORETA values
across all temporal epochs, and attempted to identify
each LORETA local maximum with its nearest fMRI
local maximum in a statistically meaningful manner.
They found that this could be done for group mean
data, but on an individual basis, only half of the sub-
jects showed significant correspondence between the
fMRI and LORETA patterns. That the authors were
able to obtain good results for the group data is en-
couraging for the advocates of direct data fusion. With
a more constrained experimental design, or improve-
ment in data acquisition and analysis, it is possible
that agreement in more individual subjects can be
obtained. It is worth noting, as the authors do, that the
idea behind his approach is that once the correspon-
dence between important local maxima for each data
type has been made, one can then perform multimodal
integration at the full spatial and temporal resolutions
of each method.

Nonetheless, several critical issues remain unre-
solved by this approach, and these will need to be
addressed by future research. First, in collapsing the
electromagnetic data over time, are the local maxima
so produced somewhat artificial creations? Second,
the local maxima obtained from fMRI/PET data gen-
erally correspond to the case where two or more con-
ditions are contrasted against one another (the sub-
traction paradigm; see Horwitz et al. [1999] for a
discussion of both the subtraction and covariance par-
adigms). This can result in important nodes in the
neural network under study being missed, because
such a node may be as active during one condition as
during another; what changes between conditions is
the interregional functional connectivity. The net ef-
fect is that attempting a correspondence between local
maxima would miss such “unactivated” nodes. Once
again we are confronted with the serious issue of how
to relate the sources of the signals between the two
data types [Nunez and Silberstein, 2000].

The extent to which a multimodal imaging ap-
proach can incorporate temporal information is itself
highly problematic. There are neurophysiological phe-
nomena that simply do not (cannot) show up in a
meaningful way in hemodynamic signals. These phe-
nomena include 1) the fact that timing (latency) vari-
ation of particular response peaks is behaviorally rel-
evant (e.g., 30 msec latency variation of the major
auditory response, N1, is associated with different
perceptual attributes); 2) that some of the peaks are
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small and transient and will not show up as hemody-
namic activation peaks (as Vitacco et al. [2002] also
point out); and 3) that oscillatory or spectral changes
are implicated as relevant for neural representation
but are not reflected in hemodynamic signals in any
obvious way.

Computational neural modeling

The third way by which diverse data can be “com-
pared” is through the use of computational neural
models that can simulate the different data types
[Horwitz et al., 1999, 2000]. The idea here is to con-
struct a large-scale biologically realistic neural net-
work model that can perform the cognitive tasks un-
der investigation. The model would be constructed so
as to be able to generate simulated fMRI/PET data
and simulated EEG/MEG data that can be compared
to experimentally observed values. The critical notion
is that data types with different spatiotemporal prop-
erties are not compared directly to one another, but
are compared inside a neural model that incorporates
specific hypotheses about how particular cognitive
operations are mediated neurally. That is, the assump-
tions one makes are about how macroscopically-mea-
sured data are related to neuronal physiology, not
about how these data are related to each other. The
major disadvantage of this approach is that modeling
is meant to simplify what actually is going on, and thus
it is hard to know if lack of agreement between com-
putational and experimental results means the model
and its corresponding hypotheses are too simple, or
just wrong. The other major limitation of this ap-
proach is that no such model has been constructed;
there are dynamic recurrent network models that re-
late neuronal electrophysiological data to fMRI/PET
[Arbib et al., 1995; Corchs and Deco, 2002; Tagamets
and Horwitz, 1998], as well as models that relate neu-
ronal data to EEG/MEG signals [Nunez and Silber-
stein, 2000; Vaughan and Arezzo, 1988; Wood and
Allison, 1981], but to our knowledge, no model yet
exists that can simulate both types of data, although
the construction of such models is underway.

Efforts at direct data fusion will continue, as will ef-
forts at constructing large-scale neural models that can
simulate both hemodynamic and electromagnetic data.
It will likely be the case that the difficulties and limita-
tions that each approach encounters will actually
strengthen our knowledge through mutual feedback as
to how to proceed to multimodality integration.
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