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Abstract: Ensembles of coupled nonlinear systems represent natural candidates for the modeling of brain
dynamics. The objective of this study is to examine the complex signal produced by coupled chaotic
attractors, to discuss their potential relevance to distributed processes in the brain, and to illustrate a
method of detecting their contribution to human EEG morphology. Two measures of quantifying the
behavior of coupled nonlinear systems are presented: a measure of phase synchrony and a novel measure
of intermittent phase desynchronization. These are used to quantify the behavior of numerical examples
of coupled chaotic attractors. Experimental evidence of their contribution to the morphology of the human
alpha rhythm is then illustrated in a study of EEG recordings from 40 healthy human subjects. Amplitude-
adjusted phase-randomized surrogate data is used to test the null hypothesis that the observed patterns
of phase coherence can be described by purely linear methods. Statistical analysis reveals that this null
hypothesis can be robustly rejected in a small number (�4%) of EEG epochs. These findings are discussed
with reference to the adaptive function and complex dynamics of the brain. Hum. Brain Mapping 15:
175–198, 2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

The organization of the human brain is character-
ized by networks of coupled neural systems across
many scales of length [Nunez, 1995]. Local neural
circuits include cortical macrocolumns and subcortical
nuclei (such as the basal ganglia) and typically serve
functionally specific roles. They are constituted by
dense local interconnections between excitatory cells
and inhibitory interneurons. Coupling between these
local regions arises by virtue of sparse long-range

excitatory projections, such as cortico-cortical fibers.
This coupling facilitates large-scale integrative pro-
cesses involving coordination between specialized
networks [Friston et al., 1995]. Monoaminergic neu-
rons from ascending brain stem nuclei, utilizing sec-
ond messenger systems, regulate the functional syn-
aptic strength of these long-range connections, hence
modulating the strength of regional interdependence
[Cooper et al., 1991]. Finally, the voltage-dependant
nature of potassium and calcium channels in the neu-
ral membrane ensures that the dynamics within and
between these systems are highly nonlinear.

Coupled nonlinear dynamical systems thus serve as
natural candidates for models of neural dynamics.
This study overviews the behavior that occurs when
chaotic systems are coupled together and presents
experimental evidence for their contribution to the
EEG. Chaotic synchrony and intermittent desynchro-
nization are defined and illustrated with numerical
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examples. It is argued that both these processes may
play important and complimentary roles in brain
function. In particular, chaotic synchrony may facili-
tate integrative functions requiring co-operative pro-
cessing in different networks across the brain. Desyn-
chronization may allow the brain to switch flexibly
between one coherent state and another [Kelso et al.,
1992; Kwapieri et al., 1998]. Research into the role of
autonomous chaotic systems has been the focus of
much research in neuroscience [Basar, 1980; Pritchard
and Duke, 1992]. The theory of coupled nonlinear
systems may represent an important conceptual evo-
lution in this area [Friston, 2000].

Synchronization in nonlinear and neural systems

The role of synchronous activity in the cerebral cor-
tex of the brain is currently of special interest, because
the coherent firing of neurons and neural ensembles
has been proposed as a mechanism of ’binding’ the
activity in parallel networks during sensory percep-
tion and information processing [Gray et al., 1989;
Miltner et al., 1999; Rodriguez et al., 1999; Singer, 1995;
Stopfer et al., 1997). Thus far the majority of studies of
coherence in neuroscience data have employed linear
measures of interdependence, such as the coherence
function [Achermann and Borbely, 1998] and cross-
correlation [Gray et al., 1989; Stopfer et al., 1997].
Experiments suggesting that nonlinear dynamics play
a role in the firing patterns of individual neurons
[Faure and Korn, 1997], local cortical networks [Free-
man, 1990] and in the generation of the EEG [Pezard et
al., 1996; Rombouts et al., 1995; Stam et al., 1999],
however, motivate an investigation into synchronous
behavior between coupled chaotic systems.

Mathematically, an ensemble of coupled chaotic
subsystems take the form,

dxi

dt � Fa
i �xi, Hc�x��, (1)

where xi is the m-dimensional state space vector and Fi

the local nonlinear dynamics of the i-th subsystem.
H(x) is the function that introduces the global contri-
bution of coupling from all other nodes to the local
evolution of each node. Thus, a system of n-coupled
nodes is represented by the evolution of the state
space vector, x � {x1,…,xn} in the phase space, �nxm.
There are two parameters; C is the coupling strength
between nodes; a parameterizes the local dynamics
within each node, such as the density of a certain
membrane channel. The value of a is chosen so that in

the absence of coupling (C � 0) the local dynamics are
chaotic. If the local dynamics are all identical (Fi � Fj),
and the coupling symmetrical, then the system (equa-
tion 1) leaves the symmetry manifold (xi � xj) invariant.
That is, orbits within this manifold remain there for all
time. It is common to distinguish between the dynam-
ics tangential (within) and transverse (normal) to this
manifold. Similarly, one can distinguish between the
tangential and transverse Lyapunov exponents [Ashwin
et al., 1999]. The latter describe the growth or decay of
perturbations in the direction transverse to the invari-
ant manifold.

Pecora and Carroll [1990] initially reported synchro-
nization between two identical chaotic systems cou-
pled to a common signal. When this occurs the Eu-
clidean distance between the two chaotic systems
approaches zero. Thus, orbits of equation (1) approach
a chaotic attractor supported by the m-dimensional
symmetry manifold. Such systems are said to be in
identical synchronization (IS). If the transverse Lya-
punov exponents for this manifold are all negative
then the state of synchronized chaos is stable to de-
synchronizing perturbations.

If the system (equation 1) is deformed in any way
such that the perfect symmetry of the local dynamics
(Fi � Fj) or the coupling is destroyed, then the sym-
metry manifold is no longer invariant under the action
of equation (1) and thus IS is not achievable. Other
forms of synchrony between the coupled systems,
however, are still possible. Afraimovich et al. [1986]
first described ‘almost complete coincidence’ of the
orbits of coupled non-identical chaotic oscillators.
Rulkov et al. [1995] described this phenomenon,
where there is a predictable, but not identical, relation-
ship between each local node as generalized synchroni-
zation (GS) Rosenblum et al. [] have also demonstrated
chaotic phase synchrony (PS) between coupled non-
identical chaotic systems. Two systems are said to be
phase synchronized if their phases, �1(t) and �2(t)
satisfy,

��1�t� � �2�t�� � constant. (2)

That is, the phase difference between the systems does
not grow with time. This may occur even if the am-
plitudes of the systems remain uncorrelated. Phase
synchronization has been illustrated between cardiac
and respiratory rhythms [Schaffer et al., 1998] and in
microscopic neural system [Makarenko and Llinas,
1998]. We will refer to the phase synchronization mani-
fold as that subregion of phase space to which orbits of
equation (1) are confined when equation (2) is satis-
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fied. It is important to note that the nature and exis-
tence of this manifold has not yet been rigorously
studied.

Desynchronization in nonlinear
and neural systems

Desynchronization is also observed in a wide range
of biological phenomena, particularly neural systems.
For example, it is well established that the amplitude
of synchronized alpha activity (8–13 Hz) in human
electroencephalographic (EEG) recordings decreases
when subjects open their eyes or process visual stim-
uli. This process, called event-related desynchronization,
correlates with a variety of physiological, behavioral
and cognitive parameters [Boiten et al., 1992; Clochon
et al., 1996; Klimesch et al., 1997; Pfurtscheller, 1977;
Sergeant et al., 1987; Stam and Tavy Keunen, 1993;
Van Winsum et al., 1984]. The term desynchroniza-
tion, however, has typically been applied to measures
of alpha power, not to the alpha phase coherence.
Desynchronization is inferred from visual inspections
of EEG recordings that display fast, irregular and dis-
cordant behavior when alpha power diminishes [Ste-
riade et al., 1990]. This methodological problem has
only recently been addressed [Haig and Gordon, 1998]
and is rigorously defined here.

Desynchronization in coupled nonlinear systems
have been shown to occur in a variety of contexts,
typically as excursions away from the state of IS. With
linear coupling between identical systems, desynchro-
nization is observed near the stability boundary of
robust synchronization. This occurs because periodic
orbits, dense on the supporting synchronization man-
ifold, lose transverse stability as the coupling strength
is diminished [Heagy et al., 1998; Pikovsky and Grass-
berger, 1991]. Although the transverse Lyapunov ex-
ponents for the synchronized state are negative when
averaged over long time intervals, they are briefly
(locally) positive whenever the orbits pass close to a
transversally unstable orbit [Maistrenko et al., 1998;
Rulkov and Sushchik, 1997]. This leads to finite excur-
sions away from the synchronization manifold, corre-
sponding to intermittent bursts of desynchronization.
Patterns of desynchronization have been studied in
large assemblies of coupled nonlinear systems [Heagy
et al., 1995; Kapitaniak and Chua, 1994; Marino et al.,
1998; Pecora 1998]. Although these arrays synchronize
with weak coupling, desynchronizing bifurcations oc-
cur when either the coupling strength or the number
of systems in the array exceeds a critical threshold.
Desynchronization in these arrays is also due to trans-
versely unstable periodic orbits and, by breaking sym-

metry, leads to the appearance of macroscopic struc-
ture. Thus desynchronization occurs in both temporal
and spatial domains.

The focus of this study is on the phenomena of
chaotic phase synchronization and intermittent phase
desynchronization, and their potential contribution to
the EEG alpha rhythm.

EXPERIMENTAL TECHNIQUES

Nonlinear data analysis

We are interested in quantifying the cooperative
and complex behavior between two discretely sam-
pled systems, generating the bivariate time series;

x1�t�, x2�t�, t � 0, 1, 2, . . . , n � 1

Where each time series arises from a local multivariate
process, and between which there is possibly a mutual
interdependence. Initially, we use numerical data
from coupled chaotic attractors where the equations
are set in advance. Subsequently EEG data is used, in
which case the time series reflect neuronal field poten-
tials summed over several square centimeters of cor-
tex. We now describe the method by which these time
series were analyzed.

Phase synchronization entropy

As with [Rosenblum et al., 1996, 1997] the Hilbert
transform was used to extract the phase from each of
the time series. If

Xj�t� �
1
� �

� �

� xj�	�

t � 	
d	, (3)

is the Hilbert transform of the j-th time series, then the
analytic signal


j�t� � xj�t� � iXj�t� � Aj�t�ei�j�t�, (4)

uniquely determines the amplitude Aj(t) and phase
�j(t). Subtraction of the phases yields the relative
phase

�n,m�t� � �n�1�t� � m�2�t�mod 2�. (5)

If this remains constant for some integers, n and m,
then we have n:m phase-locking (we only examine the
case n � m). Because this is a circular measure, its
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temporal evolution is contained on a cylindrical phase
space. Following Tass et al. [1998], an index based on
the Shannon entropy was employed to characterize
the distribution of the relative phase. Thus,

� � S/Smax, (6)

with

S � � �
k � 1

N

pkln�pk�, (7)

and

Smax � ln�N�, (8)

where the interval � � [0,2�] is partitioned into N
regular bins and pk is the measured probability of the
relative phase �(t) falling into bin k. Normalized in
this way, � corresponds the relative Shannon entropy
of the distribution of �(t). Maximum entropy, a uni-
form distribution, corresponds to � � 1 (no phase
synchronization) and minimum entropy (perfect
phase locking) corresponds to � � 0. The choice of N
in equation (8) is arbitrary although � does converge
with increasing N, allowing accuracy limits to be cho-
sen. Figure 1 shows an example of the convergence of
� with increasing N for a typical time series produced
by one of the numerical systems defined below.

Index of intermittent phase desynchronization

The total entropy of a signal can be reduced by two
mechanisms; divergence of individual events from
equiprobability, and divergence of successive events from
independence [Gatlin, 1972]. The Shannon entropy only
measures the probability distribution of individual
events, and is thus only sensitive to the first of these
mechanisms. Yet the information capacity of a signal
(the potential to store useful information) is most ef-
ficiently increased by utilizing both mechanisms [Gat-
lin, 1972]. To measure the reduction of entropy due to
dependence between events, high-order conditional
entropies based on transition probabilities between
events must be incorporated [Freund and Rateitschak,
1998]. For long signals and a finely partitioned event
space, this rapidly becomes computationally prohibi-
tive. The presence of large transient deviations of the
Shannon entropy from its asymptotic mean is an index
of long-range event interdependence, however, and
therefore correlates closely with information capacity.
We employed a computationally simple measure that
detects this phenomenon.

The time series are divided into n regular intervals and
the Shannon subentropy �i is calculated for each of the
subintervals. A new measure �n is then introduced,

�n � � 1
n � 1 �

i � 1

n

��i � �� �2 (9)

where,

�� �
1
n �

i � 1

n

�i (10)

Thus �n is the standard deviation of the phase entropy
across n-subdivisions. To avoid an arbitrary choice of
subdivision duration, the range that � takes can be
examined across different orders of time. For a fixed
length of time series data, this is achieved by varying
n. This may permit a natural time scale to be defined
as the length of the subintervals that maximizes �.

To examine the relationship between � and long-
range interdependence, consider an ergodic source.
Subintervals of n consecutive data points produced by
this source are known as n-tuples (n-tuples commenc-
ing with event xi are ni-tuples). For a source with no
memory (zero-order), the average Shannon entropy of
all ni-tuples in the signal will be equivalent, because
the probability spectrum of all events in any n-tuple is

Figure 1.
Phase entropy, � vs. N � number of partitions in equations (7)
and (8).
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the same as probability spectrum of the source. If the
source has order n, however, then xi biases the prob-
ability spectrum of the remainder of that n-tuple.
Therefore the average entropy of all the ni-tuples will
not equal the average entropy of all the nj-tuples (i �
j). The stronger the probability interdependence, the
more dissimilar will be these entropies and hence the
greater the standard deviation of measured n-block
entropies in the signal. On the other hand, events
occurring subsequent to the n-tuple are, by construc-
tion, not biased by xi and have the same probability
spectrum as the source. Thus, if m � n, then the
m-tuples will all have similar entropy, which will ap-
proximate the entropy of the source. Thus the vari-
ability of the Shannon entropy amongst the m-tuples
will approach zero. This is illustrated formally in the
Appendix.

The existence of significant variations in � (and thus
high �) over several orders of magnitude therefore
implies a complex signal with interdependence across
several time scales. This optimizes the balance be-
tween reliability/error detectability and message vari-
ability and therefore the information capacity of the
signal [Ebeling 1995; Freund and Rateitschak, 1998;
Gatlin, 1972].

Surrogate data construction

As discussed above, the numerical data sets are
generated by nonlinear equations set in advance. In
the experimental situation, the properties of the un-
derlying system are partially understood, but the ex-
act mechanisms generating the EEG are still far from
being fully elucidated. More specifically, although the
existence of long-range interdependence in the brain is
to be expected due to the underlying anatomy, it is
possible that only linear interdependence appears in
the EEG. Finite length data sets, measurement noise,
digital filtering, and 1/f power-frequency distribu-
tions, such as occurs in the EEG, are all known to give
rise to spurious identification of nonlinearity [Osborne
and Provencale, 1989; Rapp et al., 1993; Ruelle, 1990].
To control for these, surrogate data sets were con-
structed. These share the linear properties of the ex-
perimental data (amplitude distribution, spectral den-
sity function and cross-spectral density) but are
altered so as to destroy nonlinear structure. The non-
linear measures, � and �, are extracted from these data
sets. If these are statistically different from their ex-
perimental counterparts, then it is possible to reject the
null hypothesis that the experimental data comes from
a purely linear process.

An algorithm combining an amplitude-adjusted
[Theiler et al., 1992] and multivariate [Pritchard and
Theiler, 1994; Rombouts et al., 1995] technique was em-
ployed. The technique is as follows. The first step is to
generate two independent Gaussian time series, z1(t) and
z2(t), from a pseudorandom number generator with the
same length as the original data. Next, the sequence of
each Gaussian time series is re-ordered to match the rank
of the corresponding original time series. That is, if x1(t)
is the n-th smallest of all the x1’s, then z1(t) is the n-th
smallest of the z1’s. The same is done for the z2’s. The
re-ordered z’s are said ‘to follow’ the x’s. Then F, the
discrete Fourier transform operator is applied to the
re-ordered z’s to obtain

F�zj�t�� � Aj�f�ei�j�f� � �
n � 0

N � 1

zj�tn�e2�ifn�t, (11)

for j � 1,2. Two modified phase randomized trans-
forms are then obtained by rotating the phase at each
frequency by a random variable, �j(f), where �j is
chosen independently from the interval [0,2�]. This is
achieved by multiplying the complex amplitude at
each frequency by ei�(f), giving

F̂�zj�t�� � Aj�f�ei�j�f� � �j�f�, j � 1, 2. (12)

Two constraints are necessary at this step. To guar-
antee that the inverse Fourier transform will be real,
the phases are chosen such that �j(�f) � ��j(f). Sec-
ond, to preserve the cross-correlations between the
surrogate time series, both transforms must be rotated
by the same random variable at each frequency,
�1(f) � �2(f) for all f. An inverse Fourier transform is
then taken of each modified transform. This produces
a surrogate time series, z

˜ j(t) for each Gaussian time
series, zj(t). Finally, the original time series, x1(t) and
x2(t), are each re-ordered to follow the ranks of the
corresponding z

˜j(t). This produces bivariate surrogate
time series, x

˜1(t) and x
˜2(t), which share the same am-

plitude distribution, autocorrelation function and
cross-spectral density functions as x1(t) and x2(t). In
practice, there is some distortion of the spectrum to-
ward white noise, due to finite precision arithmetic.

Numerical examples of coupled chaotic attractors

The behavior of coupled nonlinear systems, and
their quantification by means of these measures is
illustrated here using numerical examples of coupled
Lorenz attractors. These are chosen because they have
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been widely studied and their properties are well
known. Unstable periodic orbits are dense on the at-
tracting manifold, which is critical to the phenomenon
of desynchronization. The effects of both symmetric
and asymmetric coupling were examined because of
the importance of both in modeling brain region in-
teractions, which are generally mutually, but asym-
metrically, interconnected. Linear and nonlinear cou-
pling were also investigated, as this has recently been
proposed as an important distinction in neural sys-
tems [Friston, 2000]. These coupled systems are not
intended to exactly model the dynamics of the brain,
but rather to exemplify the type of dynamic interac-
tions thought to be relevant to understanding the be-
havior of the cortex.

The Lorenz system is a set of three ordinary differ-
ential equations derived as an approximation for con-
vection flow limited to two dimensions [Lorenz, 1963].
For linear coupling, the following systems are consid-
ered,

dx1,2

dt � �Ax1,2 � Ay1,2,

dy1,2

dt � �x1,2z1,2 � R1,2�x1,2 � Cx1,2� � y1,2,

dz1,2

dt � �x1,2y1,2 � Bz1,2, (13)

with control parameters R1,2, and coupling parameter
0 � C � 1. With A � 10, B � 8/3 and R � 26 the

system has a chaotic attractor; two ‘wings’ each
around a repelling spiral, separated by an unstable
saddle point. In the autonomous (uncoupled) system,
orbits switch between each wing after a series of ex-
panding rotations take them close to the unstable
manifold of the saddle point. The unstable fixed points
and a typical orbit of the Lorenz attractor are illus-
trated in Figure 2. The saddle point makes the dynam-
ics considerably complex with multiple unstable man-
ifolds. All results in this study are for A � 10, B � 8/3,
R1,2 � 28 unless stated. Thus, these are identical and
symmetrically coupled and the symmetry manifold is
invariant. For nonlinear coupling the following sys-
tems are considered,

dx1,2

dt � �Ax1,2 � Ay1,2,

dy1,2

dt � �x1,2z1,2 � R1,2x1,2 � y1,2,

dz1,2

dt � y1,2�x1,2 � Cx2,1� � Bz1,2. (14)

Finally, asymmetric coupling is analyzed by modify-
ing the differential equation for z with the addition of
a single nonlinear term to one attractor only. Hence,
we consider,

dx1,2

dt � �Ax1,2 � Ay1,2,

Figure 2.
Orbits on the Lorenz attractor and the
three hyperbolic fixed points. Two un-
stable spiral points (dots) each with a
single attracting inset (W�s and W�s) are
separated by an unstable saddle point at
the origin (diamond) with a stable pla-
nar inset (Ws � 2) and single repelling
outset (Wu). Axes are the dependant
variables in equation (13) with C � 0.
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dy1,2

dt � �x1,2z1,2 � R1,2x1,2 � y1,2,

dz1

dt � y1,2�x1,2 � Cx2� � Cy2y4 � Bz1,2,

dz2

dt � y1,2�x1,2 � Cx1� � Bz1,2. (15)

By breaking the symmetry of the coupling, this term
destroys the invariance of the symmetry manifold.
Numerical integrations were carried in MatLab using
a Runge-Kutta technique.

Human EEG data

Subjects and data acquisition

Subjects were 40 adults (age 20–54) who disavowed
psychiatric or neurological illness. An electrode cap
was used to acquire data from the International 10-20
System of scalp sites. Linked earlobes served as the
reference. Skin resistance at each site was �5 k�. Data
was digitized and collected at a rate of 250 Hz. Arti-
facts caused by eye movement were corrected offline.
Data was collected from each subject during 130 sec of
a resting eyes-open paradigm, and 130 sec during a
resting eyes-closed paradigm [for further details, see
Haig and Gordon, 1998].

Data processing

EEG data was filtered into the alpha range using a
high-order finite impulse response digital band-pass
filter (8–13 Hz). To avoid confounding of inter-elec-
trode coherence by the effects of a common reference
electrode [Fein et al., 1988], bi-electrode derivations
were used. Four pairs of derivations were used to
study: 1) posterior inter-hemispheric (O1-P3/O2-P4);
2) anterior interhemispheric (F3-C3/F4-C4); and (3,4)
fronto-posterior intrahemispheric interactions (O1-
P3/F3-C3 and O2-P4/F4-C4). These derivatives were
obtained by simply subtracting one measured poten-
tial from the other in each electrode pair before further
analysis. The EEG was studied in epochs of 4.096 sec
(29 epochs/subject). For each epoch, a single (overall)
value of � was calculated for further analysis. The
index of desynchronization, �, was derived from 4, 8,
and 16 subdivisions, representing timescales of 1,024
msec, 512 msec, and 256 msec respectively.

Statistical analysis

In each subject, 19 realizations of surrogate data
were generated, each from a randomly chosen 4.096
second interval of experimental data. The surrogate
data was then filtered and subject to the same analysis
as the experimental data. Hence, for each subject, an
ensemble of surrogate measures were derived,

��surr
i ,. �surr

i �

for i � 1,2,…19. These were used to generate a mean and
SD for each measure in each subject. This permitted
calculation of the z-score for testing of the null hypoth-
esis in each EEG epoch. Generating 19 surrogate data
sets allows confidence intervals to be set at 95% (P �
0.05). To account for repeated calculation of the same
measures, a Bonferroni correction was made. Therefore,

pcorrected � 1 � �1 � p�1/n, (16)

is the corrected P-value after n repeated observations.
Thus, for each subject, a P-value of 1.8 � 10�3 (n � 29
epochs) was set for rejection of the null hypothesis for
each measure in any epoch, whereas P � 4.4 � 10�4

(n � 29 � 4 indices) was set for the rejection of any
measure in any epoch. For the whole data set the
corresponding values were P � 4.4 � 10�5 (n � 29 �
40 subjects) for each measure in each epoch, and P �
1.1 � 10�5 (n � 40 � 29 � 4) for any measure in each
epoch. Epochs where the null hypothesis was rejected
were visually inspected to ensure that they were arti-
fact-free.

Finally, to calibrate the approximate number of false
positive rejections of the null hypothesis, a surrogate
data set was used as an experimental time series [Thei-
ler and Prichard, 1997]. That is, the amplitude-ad-
justed algorithm was applied to the raw EEG. This
served as a pseudo-experimental test series, and was
statistically compared to ‘surrogate surrogate’ data.
Clearly, any rejections of the null hypothesis reflect
methodological limitations, and not nonlinearity in
the surrogate time series, which has been removed.

RESULTS

Numerical simulations

Chaotic phase synchronization with linear coupling

The behavior of two identical Lorenz attractors with
linear coupling (equation 13) exhibits a transition from
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disordered behavior to robust PS with increasing cou-
pling strength. An example of equation (13) with C �
0.15 is presented in Figure 3. Figure 3a shows both
attractors, Figure 3b shows the time series of x1(t) and
x2(t). The phase difference � (Fig. 3c) and the entropy
� (Fig. 3d) reveal the transition to phase locking after
an initial unstable transient. Figure 3e shows the rela-
tionship between phase entropy and coupling
strength with the transition to robust PS evident as the
rapid decrease of phase entropy at C � 0.12.

Phase synchrony and desynchronization with
nonlinear coupling (equations 14, 15)

In the ‘undercoupled’ case (C � 0) the two Lorenz
systems show no phase synchrony and their phases
vary chaotically even if identical (R1 � R2) and started
in phase. Thus the cylindrical space of the phase dif-
ference evolution is almost uniformly covered and � is
close to 1. As the coupling is increased (C � 0.1),
epochs of synchronous behavior appear. An example
of this is illustrated in Figure 4. In Figure 4b, an epoch
of phase synchronized behavior is evident from t � 50
to t � 70. The two systems occupy opposite wings of
their attractors during this epoch. In Figure 4c, this
epoch manifests as a restriction of the relative phase to
one partition of the interval � � [0,2�], typically at �
phase difference, �(t) � �. This results in a distinct but
brief lowering of �, apparent in Figure 4d.

When the coupling is increased further (C � 0.4),
these synchronous epochs are longer and more or-
dered, resulting in more frequent epochs of low �.
Between these epochs the dynamics are characterized
by bursts of high amplitude desynchronized behavior
as illustrated in Figure 5. There causes irregular
switching between epochs of low � and bursts of high
� as evident if Figure 5d. The bursts correspond to
long excursions in phase space that subsequently re-
turn around the inset of one of the unstable spirals.
These excursions are have much greater amplitude
than those that occur close to the stability boundary in
the linearly coupled system. This is due to the contri-

Figure 3.
Timeseries and phase entropy for linearly coupled Lorenz systems
(equation 13) for coupling strength C � 0.13. (a) Coupled chaotic
attractors, with second attractor offset to the right for graphical
clarity. (b) Chaotic timeseries for x1 (top) and x2 (lower). (c)
Temporal evolution of the phase difference with axes of sin�,
cos� and time. (d) Temporal evolution of the phase entropy, with
timeseries divided into 16 subintervals. (e) Phase entropy as a
function of linear coupling strength.
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Figure 4.
Exemplar synchronous epoch between coupled
Lorenz systems (equation 14) with weak nonlinear
coupling, C � 0.1. Axes and panels are as for Figure
3a–d.
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Figure 5.
With moderate nonlinear coupling (C � 0.4) high
amplitude excursions appear, corresponding to de-
synchronous bursts. A this point, phase entropy has
approached its global minimum (� � 0.6) for these
non-linearly coupled systems (equation 14). Axes and
panels are as for Figure 3a–d.
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bution of the nonlinear coupling term to the escape
orbit dynamics.

If the coupling is increased further the desynchro-
nous bursts appear more frequently, occasionally re-
sulting in orbits that escape well away from the region
of the autonomous attractors as evident in Figure 6a.
In the ‘overcoupled’ case (C � 0.8) these desynchro-
nized orbits dominate phase space causing entropy to
rise again. In the asymmetrically coupled case these
orbits leave the vicinity of the unstable fixed points
once C � 0.75 and our numerical computation time
diverges. In the symmetric case phase entropy ap-
proaches its maximum value as C � 1. Figure 7 shows
the overall relationship between phase entropy and
nonlinear coupling. Both symmetric (solid) and asym-
metric coupling (dashed) are associated with a global
minimum of �. This is in contrast with the linearly
coupled system (equation 13), where � falls and re-
mains at zero above a critical threshold.

The irregular nature of the phase desynchroniza-
tions is illustrated by the index �. The value of this
index against the strength of nonlinear coupling
across the time-scale of t � 5 (32 subdivisions of t �
160) is illustrated in Figure 8. Note that the irregular
switching rises to a plateau, and slowly drops off once
the desynchronized behavior begins to dominate the
behavior of the systems. In Figure 9 is presented the
value of this index across two orders of magnitude of
time-scales. Weak, moderate and strong nonlinear
coupling have been calculated and compared to two
white noise signals. Note the strong maximum in ir-
regular desynchronization at the scale of t � 5. This is
the time-scale at which visual inspection of the time
series exhibits the greatest amount of complex behav-
ior.

In summary, nonlinear coupling induces complex
behavior involving both chaotic phase synchroniza-
tion and desynchronous bursting. Unlike linear cou-
pling, however, increasing the coupling strength does
not inhibit the bursting, but instead causes high am-
plitude excursions. This leads to a global minimum of
entropy and maximum of the index of information
capacity, �, at intermediate coupling strengths.

Idiosyncratic almost-periodic attractors

Of additional interest is the localized appearance of
almost-periodic attractors not seen in the autonomous
state. An example of these is shown in Figure 10. In the
symmetric case (equation 14) the attractors appear at
C � 0.72, and in the asymmetric case (equation 15),
C � 0.54. They account for the deep local minima of �
and � at these values in Figures 7 and 8. They are

stable to a constant 10% white noise perturbation ap-
plied to the dependent variables, and also are stable to
small perturbations in coupling strength and the con-
trol parameter, R. Hence they appear to occur in a
large region of parameter values. They occur after a
transient of variable length. For coupling strengths of
C � 0.69 and C � 0.73 in equation (14) and C � 0.51
and C � 0.57 in equation (15) these attractors are
themselves unstable transients. The existence of such
(orderly) transients, however, still cause local reduc-
tions in � and � at these values of C. These attractors
are ‘idiosyncratic’ in that they arise by virtue of sud-
den stabilization of desynchronized orbits, and not as
gradual transformations of the autonomous attractors.
Variants occur with many other types of nonlinear
coupling, arguing that they may be ‘typical’ for non-
linearly coupled chaotic attractors.

Symmetry manifold and the phase
synchronization manifold

In this section we examine the relationship of the
phase synchronization manifold to the symmetry
manifold. This is achieved by viewing the orbits in the
phase space spanned by (X � x1–x2, Y � y1–y2, Z �
z1–z2), with the symmetry manifold thus located at the
origin. Figure 11 illustrates an example of chaotic
phase synchrony due to strong linear coupling, (equa-
tion 13) between identical attractors. In this case,
phase synchronization is associated with an asymp-
totic approach to the origin in this projection, as
shown in Figure 11. In Figure 11a and 11b, it can be
seen that this occurs as an attracting spiral inset. Fig-
ure 11c shows the Euclidean distance of these orbits
from the origin against time on a log-linear axis, re-
vealing that this orbit approaches the symmetry man-
ifold exponentially (with the decay rate determined by
the transverse Lyapunov exponents). This same asso-
ciation between phase synchrony and an approach to
the symmetry manifold also occurs with symmetric
nonlinear coupling. Thus, in these systems, with sym-
metric coupling and identical parameters, PS occurs
by virtue of the more restrictive IS. In these symmet-
rical cases the phase synchronization manifold is sup-
ported on the symmetry manifold.

With nonidentical attractors in equation (13) or
equation (14) or asymmetric nonlinear coupling (equa-
tion 15), the orbits approach a complex manifold in the
vicinity of the symmetry manifold, but not the sym-
metry manifold itself, during epochs of phase syn-
chrony. During these epochs orbits spiral outwards
from two repelling points located symmetrically be-
side the symmetry manifold in the X,Y-plane. Figure
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Figure 6.
With strong nonlinear coupling the desynchronous
excursions are increasingly long and disorganized.
Axes and panels are as for Figure 3a–d. This example
is with asymmetric coupling, C � 0.6.
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12a displays an example of one such orbit, with the
entrance and exit trajectories to this region shown.
Figure 12b illustrates the temporal behavior of one
such transient, showing that the system switches be-

tween the two repelling spirals during phase syn-
chrony. Figure 12c displays three of these epochs,
separated by desynchronous bursts. The phase syn-
chronization manifold appears to be an invariant set in
the vicinity of the symmetry manifold with a fractal
structure, consistent with observations of the structure
of the generalized synchronization manifold [Hunt et
al., 1997]. Phase desynchronizations correspond to
bursts away from this complex synchronization man-
ifold. Whilst the geometry is more complex, the inter-
mittent behavior of phase desynchronization is similar
to its counterpart in symmetrical systems.

In summary, the introduction of asymmetry into the
coupled Lorenz systems acts to ‘pull’ the manifold of
phase synchronization away from the symmetry man-
ifold, creating a more complex manifold. This is im-
portant as it shows that chaotic PS is robust to sym-
metry-breaking perturbations, as can be expected to
occur in neural systems.

Impact of phase-randomization on phase
synchronization

Numerical simulations also allow examination of
the phase-randomization algorithm and the specificity
and sensitivity to nonlinearity of the two measures of
phase dynamics. Time series data from system (equa-

Figure 7.
The relationship between phase entropy and coupling strength for
the coupled Lorenz systems with nonlinear, symmetrical coupling
(solid) and non-linear asymmetric coupling (dot-dot). Results are
the average of 20 runs at each coupling strength with t � 160� and
exclusion of an initial transient of t � 160�.

Figure 8.
Shannon entropy irregularity � versus nonlinear coupling strength
for the systems (equation 14) and (equation 15). Irregularity here
is measured for 32 subdivisions across a timescale of 160� after
exclusion of an initial transient of 160�. The results shown are the
averages of twenty runs at each coupling strength. Due to pro-
hibitive computation time, results for system (equation 15) were
only calculated up to C � 0.75.

Figure 9.
Entropy irregularity across increasing lengths of temporal subdivi-
sions for the coupled Lorenz system (equation 3). Lower axis is
length scale of subdivisions and vertical axis is the standard devi-
ation of phase entropy � across that scale. Four representative
averages are plotted. 1. Phase difference between two white noise
signals, 2. Weak non-linear coupling, C � 0.03, 3. Strong non-linear
coupling, C � 0.97. 4. Moderate nonlinear coupling C � 0.48. 5.
Initial transients have been excluded.
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tion 14) with C � 0.35 is compared to surrogate data.
The original time series and its nonlinear and linear
properties are shown in Figure 13a–e. The corre-
sponding surrogate analysis are illustrated in Figure
13f–j. The time series (Fig. 13a,f), relative phase evo-
lution (Fig. 13b,g) and phase complexity (Fig. 13c,h)
are markedly different. The variation of phase entropy
is also markedly decreased, as is evident in panels
(Fig. 13c) and (Fig. 13h). This occurs because the high
frequency components of the Fourier transform asso-
ciated with the desynchronous bursts are spread
throughout the time series. The spectral density func-
tion (Fig. 13d,i) and cross-spectral density (Fig. 13e,j),
however, are almost identical. As remarked before,
there is some distortion of the spectrum toward white
noise, due to rounding error. Thus, although the linear
properties are almost identical, the nonlinear structure
is clearly destroyed. Calculating the nonlinear indices
for surrogate data sets constructed from equation (14)
with varying coupling strength yields mean values of
� � 9855 and � � 0.0625 with no dependence on C.
Thus, for example, the null hypothesis of linear corre-
lations only between X1 and X2 for the time series in
Fig. 11 can be rejected with P � 3 � 10�75! In contrast,
with C � 0 the null hypothesis could not be rejected
(P � 0.9067). Linearly correlated nonlinear time series,
constructed by summation of uncoupled time series
(e.g., X1 � 0.6X1 � 0.4X2, X2 � 0.4X1 � 0.6X2) were
also tested against surrogate data. Once again, the null
hypothesis could not be rejected.

Thus the surrogate data algorithm preserves the
linear properties of the bivariate time series but de-
stroys the nonlinear interdependencies in the presence
of nonlinear desynchronizations.

Experimental data

Statistical results

A total of 1,160 (29 � 40) 4.096 sec epochs of EEG
were analyzed in each paradigm (eyes open and eyes
closed) and for each electrode pairing. The results of
the statistical analysis of these epochs are presented in
Tables I and II. The results for the posterior interhemi-

Figure 10.
Idiosyncratic almost-periodic attractors (a) with non-linear cou-
pling, C�0.54 in (3) The first system is offset to the right for
graphical clarity. The behavior of these systems in the time domain
(b), (c) produces high amplitude spike and waveforms. (d) The
relationship in phase space between the Lorenz attractor and an
idiosyncratic attractor. The Lorenz attractor is now a chaotic ruin
(an initial transient).
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spheric bipolar derivations (O1-P3/O2-P4) in the eyes-
open recordings are discussed in the following para-
graphs, then compared to the other electrode pairs
and the results for the eyes closed recordings.

Figure 11.
(a) Behavior near the synchronization manifold for the linearly
coupled Lorenz system (equation 13) with C � 0.128 in the
X,Y-plane. The SM is the red diamond. (b) Temporal evolution of
this orbit around the SM. (c) D � Euclidean distance to the
manifold over a longer time interval, shows an exponential ap-
proach to the SM.

Figure 12.
(a) Behavior near the synchronization manifold for the Lorenz
system with asymmetric nonlinear coupling (equation 4) and C �
0.35 in the X,Y-plane, (b) Temporal evolution of this orbit. (c)
Longer time interval with two synchronous epochs and two long
desynchronizations.

� Nonlinear Desynchronization in Human EEG �

� 189 �



Figure 13.



Results for eyes open, posterior inter-hemispheric
recordings

Across all of the epochs studied, the rejection of the
null hypothesis occurred significantly more often than
expected by chance (5%), and more often for the phase
entropy measure, � than for each of the �’s. Thus the
null hypothesis could be rejected in 16.5% of cases for
�, and in 10.9%, 9.8%, and 9.0% for � at the scale of
1024 msec, 512 msec, and 256 msec respectively (with
P � 0.05). When corrected for repeating the analysis of
all epochs in each subject the statistics fell accordingly.
Thus, the null hypothesis could be rejected on average
for 8.1% of epochs for �, and 2.8%, 2.5%, and 1.1% for
� at each respective scale in each subject. Once again,
these are higher than the expected values (0.17%).
When corrected further for repeating the measures
across the whole database, the null hypothesis could
be rejected in 6.2% of all epochs for �, and in 1.4%,
1.5%, and 0.86% for � at the scale of 1,024 msec, 512
msec, and 256 msec respectively. Thus the null hy-
pothesis could be rejected in some epochs for all of the
indices, although most often for �.

The results for determining the presence of nonlin-
ear phase interdependence were calculating after fur-
ther correcting these statistics for repeating the four
different measures on each epoch. The null hypothesis
was rejected in those artifact-free epochs containing at
least one measure outside the corrected confidence
intervals. In each subject, an average of 2.5 of the 29
epochs (8.7%) were thus found to be outside the con-
fidence intervals for the null hypothesis. There was
considerable variety between subjects. Ten of the sub-
jects contained no such epochs. The others contained
on average 3.3 epochs each (range � 1–23). For the
entire database, a total of 53 (4.5%) of the 1,160 epochs
of EEG yielded at least one nonlinear index outside
the corrected confidence intervals. Inspection of these
epochs revealed that the experimental � values were
less than their surrogate counterparts, whereas the
experimental � values were greater. This is consistent
with the rejection of the null hypothesis in the direc-
tion of the predicted hypothesis of nonlinear phase
desynchronization.

Results for ‘surrogate surrogate’ data

The rate of null hypothesis rejection for surrogate
data should be equivalent to the chosen alpha
power, 5%. The actual rate of rejection was slightly
higher, 7.9%. There was no significant difference
between any of the indices. Using the same criteria
as above, 7 epochs from the data set of 1,160 (0.60%)
allowed rejection of the null hypothesis. This repre-
sents the rate of false positives on the whole data
set.

TABLE II. Experimental results for all recordings.
Values are the number of epochs containing at least

one index outside the confidence intervals for the null
hypothesis (p < 1.1 � 10�5). Electrode placement 1.

O1-P3/O2-P4, 2. O1-P3/C3-F3, 3. O2-P4/C4-F4,
4. C3-F3/C4-F4.

Recording
Electrode
placement

Total epochs
n (%)

Eyes open 1 53 (4.6%)
2 32 (2.7%)
3 33 (2.8%)
4 29 (2.5%)

Eyes closed 1 49 (4.2%)
2 37 (3.2%)
3 33 (2.8%)
4 39 (3.4%)

Figure 13.
Linear and nonlinear analysis of coupled nonlinear system and
surrogate data. (a) Time series calculated from equation (14) with
C � 0.35. (f) Surrogate data constructed from (a). (b,g) Evolution
of relative phase from each of these time series. (c,h) Phase
entropy calculated from each of these. (d,i) Spectral density func-
tions of the original and surrogate time series. (e,j) Cross-spectral
density functions of the original and surrogate time series. Non-
linear indices are � � 0.53, �8 � 0.30, �16 � 0.32 for the original
time series and � � 0.99, �8 � 0.03, �16 � 0.06 for the surrogate
data.

TABLE I. Experimental results for posterior eletrode
pairs, O1-P3/O2-P4, eyes open and eyes closed

recordings. Results are the percentage of times each of
the indices were outside the confidence intervals for the

null hypothesis. A: Uncorrected (p � 0.05). B:
Corrected within each subject (p � 1.7 � 10�3). C:

Corrected for entire database (p � 4.3 � 10�5).

� �4 �8 �16

Eyes open
A 16.47 10.95 9.83 8.97
B 8.10 2.76 2.50 1.10
C 6.21 1.38 1.47 0.86

Eyes closed
A 25.90 13.10 10.00 6.03
B 10.69 3.10 1.64 0.86
C 7.84 1.90 0.86 0.26
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Comparison of electrode locations, and with eyes
open or closed

Similar analysis of the other bipolar pairings re-
vealed that the posterior sites contained the largest
number of nonlinear epochs during both eyes open
and eyes closed recordings. The difference between
the posterior sites and the other sites was most
marked during the eyes open recording. In these re-
cordings, these figures were 4.6% (O1-P3/O2-P4),
2.7% (O1-P3/C3-F3), 2.8% (O2-P4/C4-F4), 2.5% (C3-
F3/C4-F4). In the eyes closed recordings, the corre-
sponding results were 4.2%, 3.2%, 2.8% and 3.4% re-
spectively.

Analysis of epochs for which the null hypothesis
could be rejected

Inspection of the raw EEG of the epochs identified
as nonlinear generally revealed short episodes of co-
herent alpha activity of irregular intervals, separated
by variable length low-amplitude, high-frequency ac-
tivity. Two exemplar epochs are illustrated in Figures
14 and 15. All nonlinear indices for both these epochs
were outside the corrected confidence intervals for the
null hypothesis (P � 4.3 � 10�5). The epoch in Figure
14 shows a distinct interval of phase synchronization
that is similar to the numerical example of weak non-
linear coupling in Figure 4. By comparison, Figure 15
illustrates several epochs of phase synchronization
separated irregularly by desynchronous bursts, and is
similar to the numerical example of moderate nonlin-
ear coupling in Figure 5.

Linear coherence analysis of the epochs identified as
‘nonlinear’ reveals a large peak in the alpha range,
which is completely absent in the database as a whole.
This is shown in Figure 16.

DISCUSSION

In this article, we have studied the brain as an
ensemble of local nonlinear neural systems intercon-
nected by long-range nonlinear (cortico-cortical) cou-
pling. This is an extension of previous studies using
coupled nonlinear oscillators to model the brain that
have generally focused on synchronous periodic oscil-
lations [e.g., Frank et al., 2000]. Setting the local dy-
namics into the chaotic regime permits a greater vari-
ety of behavior, which has been the focus of this study.

With nonlinear coupling between chaotic attractors,
there exists a trade-off between epochs of chaotic
phase synchrony and bursts of increasingly long de-
synchronized excursions. This causes a global mini-

Figure 14.
Illustration of an epoch identified as containing nonlinear interde-
pendence. (a,b) Unfiltered recordings of bipolar derivations
O1-P3 and O2-P4 respectively. (c,d) Same signals after 8–13 Hz
bandpass filtering. (e) Evolution of their phase difference and (f)
shows phase entropy for 16 subdivisions of the time interval.
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mum of entropy and maximum of information capac-
ity at intermediate coupling strengths. Such an
optimum state is robust to changes in parameter val-
ues and coupling symmetry. Nonlinearly coupled
nonlinear systems thus represent a simple mechanism
to generate a complex signal that can be optimized by
tuning either local (nonlinear) or global (modulatory)
parameters. One of the fundamental properties of neu-
ral systems is their optimization according to environ-
mental requirements. According to the current per-
spective, this could be achieved through modulation
of cortico-cortical coupling by subcortical monoamine
neurons or resetting of local network sensitivity (non-
linear gain).

The appearance of ‘idiosyncratic’ periodic-like at-
tractors in small regions of parameter space punctu-
ates the trend toward a global optimum state. In par-
ticular, they produce sharp local minima in the index
of information capacity. The waveform of these attrac-
tors in the time-domain is similar to the appearance of
the EEG during petit-mal epilepsy convulsions. Dur-
ing such episodes, subjects are unable to process sen-
sory information or produce meaningful behaviors,
thus suggesting that the cortex has been transiently
compromised by a suboptimal dynamical state. This is
consistent with the nonlinear indices for these wave-
forms.

The construction of appropriate surrogate data sets
permits the statistical testing of the proposal that non-
linear phase dynamics are present in the EEG. We
tested the null hypothesis that the dynamic variations
in EEG alpha activity occur as random variations of
linearly correlated noise. This null hypothesis was

Figure 15.
Same as Figure 14, for a different EEG epoch.

Figure 16.
Coherence analysis of the epochs identified as containing nonlin-
ear interdependence (solid) compared to all epochs (dashed) in
the eyes open, posterior recordings obtained by a moving Welch
window technique.
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rejected in approximately 2–5% of the EEG epochs
studied, depending on the choice of electrode deriva-
tions and whether subjects’ eyes were open or close.
The rejection of this null hypothesis argues for the
existence of macroscopic nonlinear dynamics intermit-
tently determining EEG waveform and interdepen-
dences. Although the overall phase entropy � was the
most sensitive index, the � indices add information
concerning the scale of alpha desynchronizations.

There are several strengths of the present approach.
The phenomenon of volume conduction, which con-
founds the distinction between true neural interde-
pendence and the propagation of electrical fields from
their sources, amounts to linear superposition of elec-
trical signals, and is therefore controlled for by the use
of linearly correlated surrogate data sets. The employ-
ment of numerical simulations permits the explicit
pre-testing of the methodology, including the validity
of the surrogate algorithm and the sensitivity of the
nonlinear measures. The experimental findings can be
interpreted directly into a theoretical paradigm. Fi-
nally, the nonlinear algorithms are performed directly
on the scalar time series. This is in contrast with other
nonlinear techniques that begin with a time-delay em-
bedding of the time series. Central steps in this ap-
proach, such as the false-nearest neighbors test, are
not reliable in the presence of chaotic intermittency.
This may explain the slightly higher number of ‘non-
linear epochs’ found here than in Stam et al. [1999].

The findings in this study must be cautiously inter-
preted in the context of several methodological limi-
tations. For example, the numerical results are not
derived from equations incorporating neurophysiol-
ogy. Much of the behavior observed, however, does
not rely upon the evolution orbits of specific systems,
but on quite general properties of nonlinear systems,
such as a dense set of unstable periodic orbits on the
manifold supporting the chaotic attractor. It is possi-
ble to show that a local population of interacting ex-
citatory and inhibitory neurons can be robustly mod-
eled by a class of nonlinear systems with this property
[Breakspear, 2001; Wang, 1991]. We also observed that
much of the critical behavior was robust to other
changes, such as the type of coupling and the symme-
try of the attractors.

The experimental methodology also has some limi-
tations. For example, it was necessary to filter the raw
data into the alpha range to produce a signal with a
consistent phase. To some extent, the process of filter-
ing relies on an assumption that the alpha rhythm
reflects activity in specific neural networks [Nunez et
al., 2001]. The alpha rhythm was chosen because there
exists well-studied associations between alpha activity

and a variety of physiological, cognitive and behav-
ioral parameters. In addition, a recent study of the
alpha rhythm found strong evidence for occasional
instances of nonlinear dynamics [Stam et al., 1999].
Also, using a completely alternative technique of de-
tecting nonlinear interdependence in bivariate data it
is possible to illustrate that unfiltered EEG displaying
generalized synchronization has up to 50% more power
at the alpha peak than the rest of the EEG [Breakspear
and Terry, 2001a]. Several observations support the
use of filtering. Firstly, as noted above, visual inspec-
tion confirms that the filtered signal preserves the
phase of the alpha activity in the raw signal. Secondly,
linear coherence analysis reveals a strong peak in the
alpha range for the ‘nonlinear’ epochs, which is absent
in the database as a whole. This argues that the tech-
nique does focus on phase interdependence in alpha
activity, and does not produce an apparent alpha
phase through aliasing of faster frequencies.

Another limitation arises because the surrogate
techniques are imperfect and can lead to spurious
rejections of the null hypothesis [Rapp et al., 1994].
Testing the surrogate data itself for nonlinearity is a
way of detecting this and did yield a slightly higher
than expected rate of null rejections (7.9% rejected at
the 95% confidence level). At the level of the entire
data set, however, only seven (0.6%) epochs of surro-
gate EEG permitted false rejection of the null hypoth-
esis, in comparison to 53 epochs of the actual EEG.
Taking this (0.6%) as an estimate for the rate of false
positives, we are left with a true positive rejection rate
of 4.0% for the actual data. It must be noted, however,
that the null hypothesis is for linearly correlated sta-
tionary linear noise. Its rejection implies that the time
series are either nonlinear or nonstationary. Using the
current methods of nonlinear analysis, it is not possi-
ble to distinguish these two possibilities. On the one
hand, a ‘nonstationary’ stochastic process (with time-
dependent means, variance or spectral properties) vi-
olates the assumptions underlying the construction of
the surrogate data and increases the rate of false pos-
itives [Schreiber, 1999]. Conversely, a ‘nonstationary’
nonlinear process (with time-dependent state param-
eters) would ‘flood’ the nonlinear EEG epochs with
either strong phase synchronized or completely un-
synchronized dynamics. This would obscure the oc-
currence of intermittent phase desynchronization and
increase the rate of false negatives. The situation is
further complicated by the fact that a stationary non-
linear process exhibiting intermittent desynchroniza-
tion produces distinct dynamical behaviors (synchro-
nized and desynchronized), each with different
spectral properties. Therefore the problem cannot be
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adequately addressed by a simple test of nonstation-
arity, based on a Box-Jenkins approach. Several au-
thors have proposed that brain dynamics involve a
continual combination of both of nonlinearity and
nonstationarity [Breakspear and Friston, 2001b; Fris-
ton, 1997, 2001; Palus, 1996] so that an absolute dis-
tinction may not be appropriate. The problem is per-
haps best addressed by considering the results of
different nonlinear techniques together.

There are two possible interpretations of the finding
that large-scale neuronal interactions only occasion-
ally exhibit nonlinear phase dynamics. Firstly, it may
be that most of the nonlinearity of the neuron does not
manifest at large spatial scales, so that macroscopic
neural systems typically operate in a ‘near-linear’
state. It has recently been shown that a linear approx-
imation of a nonlinear model of neocortical dynamics
is able to accurately reproduce the EEG spectrum
[Robinson et al., 2000]. From this perspective, macro-
scopic dynamics only become nonlinear at critical
junctures such as phase transitions. Although infre-
quent, such nonlinear phase transitions have been pro-
posed as being critical to normal brain function [Kelso
et al., 1992; Wright et al., 1985]. An alternative inter-
pretation is that the brain is constantly operating in a
highly nonlinear domain. This arises through transient
nonlinear and asynchronous coupling of neural as-
semblies that constitute the basic neural coding of
information [Friston, 1997]. According to this interpre-
tation, however, such transients are only occasionally
of the appropriate spatial magnitude, temporal scale
and cortical location to be mapped strongly in the
EEG. Although we have found evidence of occasional
nonlinearity at the scale of 4.096 sec, it may be that
shorter bursts of nonlinear interdependencies occur
very frequently across a range of spatial scales. The
central proposal of this study, that nonlinear desyn-
chronization facilitates the brain’s flexible and adap-
tive behavior, is compatible with both of these inter-
pretations. Further work is currently underway to
establish the cognitive significance of this phenome-
non.
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APPENDIX

Signals with a high information capacity balance the
opposing restraints of error detectability and message
variability by containing interdependencies between
individual events across many different scales [Gatlin,
1972]. These interdependencies can be detected by
calculating the higher order entropies based on tran-
sitional probabilities [Freund, 1998]. A long signal and
a finely partitioned event space, however, make the
computation of these prohibitive. In this appendix it is
shown that the existence of transitional probabilities
across a temporal scale of n causes a divergence of the
entropies calculated on blocks of n consecutive sym-
bols. This is detected as an increase in �, the standard
deviation of these entropies. The values of � across
several magnitudes of scale (Fig. 9) thus reflect the
information capacity of the signal.

Consider a source S that outputs a signal s(t) over an
event space s � [a,b] during a time interval t � [0,T].
We say that X is an N-partition of [a,b] if the elements
xi � X are N disjoint regions that cover [a,b]. A finite-
length signal s(t) of S and a partition X produce a finite
symbol sequence F � xi(1), xj(2),…, xk(T) where xi(t)
indicates which element of X contains s(t) at time t.
The probability spectrum of F is given by,

pF�xi� �
��xi�

T , for i � 1, 2, . . . , N, (A1)

where �(xi) is the number of times xi appears in F. The
probability spectrum of S is,

pS�xi� � lim
T3 �

�pF�xi�. (A2)

We will assume that our signal length is sufficient to
ensure that pF(xi) � pS(xi). In the numerical simula-
tions used to generate Figure 14, T � 50 000.

The conditional probability of event xi occurring at
time t � 	 given the occurrence of event xk at time t is,

pF�xi�t � 	��xk�t�� �
��xk, . . . , xi�

��xk�
, (A3)

where the sequence xk,…,xi is 	 � 1 symbols long. For
any sequence we must have,

�
k � 1

N

pF�xi�t � 	��xk�t��pF�xk�t�� � pF�xi�, (A4)

and,

�
k � 1

N

pF�xk� � 1. (A5)

We define an n-tuple to be any block of n-successive
symbols from F, and an nk-tuple to be any n-tuple with
initial symbol xk. The probability of symbol xi appear-
ing in an arbitrary position within an nk-tuple is given
by,

pnk�xi� �

�
	 � 0

n � 1

pF�xi�t � 	��xk�t��

n . (A6)

The entropy of a finite string, �F is given by substi-
tuting equation (A6) into equation (6) to equation (8).
That is,

�F � �

�
i � 1

N

pF�xi�ln�pF�xi��

ln�N�
. (A7)

The average entropy of all nk-tuples within F is
given by

�� nk � �

�
i � 1

N

pnk�xi�ln�pnk�xi��

ln�N�

� �

�
i � 1

N
�

	 � 0

n � 1

pF�xi�t � 	��xk�t��

n

ln� �
	 � 0

n � 1

pF�xi�t � 	��xk�t��

n
�

ln�N�
. (A8)
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If S is a zero-order Markov source then the elements
of F occur independently. That is,

pF�xi�t � 	��xk�t�� � pF�xi�, (A9)

For all t,	 � 0, with i,k � [1,N]. In this case equation
(A6) reduces to,

pnk�xi� �

�
	 � 0

n � 1

pF�xi�

n � pF�xi�, (A10)

and on substitution into equation (A8),

�� nk � �

�
i � 1

N

pnk�xi�.ln�pnk�xi��

ln�N�
� �

�
i � 1

N

pF�xi�.ln�pF�xi��

ln�N�

� �F. (A11)

Therefore the mean subentropies of all nk-tuples are
equal. Obviously there will be some variation of the
actual sub-entropies around this value. The size of this
variation depends upon the length of n, and ap-
proaches zero as n increases, as illustrated for the
white noise signal (equation 1) in Figure 9.

S is an n-th order Markov source if there is an
interdependence between individual events over the
length of n. That is, there exist i,k such that

pF�xi�t � 	��xk�t�� � pF�xi�t��, (A12)

for 	 � n. A more general condition is that this holds
true for all i,j and for all 	 � [0,n]. Substituting equa-

tion (A12) into equation (A4) and using equation (A5)
implies that there exists j � k such that,

pF�xi�t � 	��xj�t�� � pF�xi�t � 	��xk�t��, (A13)

for 	 � n. There is thus a divergence of the n-th order
transitions from equiprobability. Substituting equa-
tion (A13) into equation (A6) yields,

pnk�xi� � pnj�xi�, (A14)

and hence,

�� nk � �� nj. (A15)

Thus, for n-th order Markov sources, the mean sub-
entropies of the nk-tuples are not equal. The stronger
the event interdependence (the greater the differences
between the conditional probabilities), the greater the
difference between the average subentropies. There-
fore the actual subentropies will vary around different
mean values, and the standard deviation of all the
subentropies in F will be statistically higher than in the
zero order case.

In our case, S is a coupled nonlinear system chosen
from equation (13) to equation (15), s(t) � �(t) � [0,2�]
and X is an N-equipartition with bin size 2�/N. With
coupling strength, C, chosen such that phase-locking
occurs, equation (A7) holds most strongly for j � 1
and k � N. That is, when the phase difference is close
to zero, there exists a high probability that phase-
locking will occur over some time length 	 such that �
remains close to zero. Figure 9 therefore illustrates the
typical length of the laminar (synchronous) epochs for
these coupled systems.
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