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Abstract: Independent component analysis (ICA) has been demonstrated to be an effective data-driven
method for analyzing fMRI data. However, a method for objective differentiation of task-related compo-
nents from those that are artifactually non-relevant is needed. We propose a method of constant-cycle
(periodic) fMRI task paradigm combined with ranking of spatial ICA components by the magnitude
contribution of their temporal aspects to the fundamental task frequency. Power spectrum ranking shares
some similarity to correlation with an a priori hemodynamic response, but without a need to presume an
exact timing or duration of the fMRI response. When applied to a complex motor task paradigm with
auditory cues, multiple task-related activations are successfully identified and separated from artifactual
components. These activations include sensorimotor, auditory, and superior parietal areas. Comparisons
of task-related component time courses indicate the temporal relationship of fMRI responses in function-
ally involved regions. Results indicate the sensitivity of ICA to short-duration hemodynamics, and the
efficacy of a power spectrum ranking method for identification of task-related components. Hum. Brain
Mapping 18:111–122, 2003. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Experimental designs for functional MRI (fMRI)
paradigms are intended to demonstrate an elicited
hemodynamic response from either a stimulus or task
[Bandettini et al., 1992; Kwong et al., 1992; Ogawa et

al., 1992]. The efficacy of these attempts depends on a
multitude of factors, i.e., acquisition hardware, pulse
sequence, paradigm design, subject performance, and
preserved autoregulation of the hemodynamic re-
sponse. The resulting fMRI data depend on the choice
of post-processing analysis methodology [Bandettini
et al., 1993; Friston et al., 1995a,b; Lange and Zeger,
1997; Marchini and Ripley, 2000; Mitra and Pesaran,
1999; Worsley and Friston, 1995; Zarahn et al., 1997]
with differing analyses yielding varying sensitivity
and specificity to fMRI activations [Lange et al., 1999].
The issue of analysis methodology may be divided
into general categories of hypothesis-driven and data-
driven techniques [Friston, 1998; McKeown and
Sejnowski, 1998]. The former represent methods that
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combine a priori knowledge of brain function with
presumed modeling of hemodynamic response to
yield fMRI mapping. While these methods have
proven efficacious, it is difficult to hypothesize a
model that encompasses all possible responses [Lange
et al., 1999; McKeown et al., 1998a,b], especially those
that may be unanticipated. The latter category of data-
driven analysis attempts to address this concern
through methods that do not rely on prior constraints
of either hypothetical assumptions or parametric mod-
eling. Because no single fMRI analysis method ap-
pears optimized for all situations, it is important to
understand both the limits and optimization of appli-
cability for each method [Lange, 1999; Petersson et al.,
1999].

Independent component analysis (ICA) is a data-
driven method that has been successfully applied to
spatial analysis of block-paradigm fMRI datasets
[Biswal and Ulmer, 1999; McKeown et al., 1998a,b].
When applied to whole-brain data, ICA has a demon-
strated sensitivity to multiple task activations and
event-related hemodynamics [Moritz et al., 2000a]. A
limitation of purely data-driven analysis is a reliance
on presumptions of brain function to retrospectively
identify significant fMRI activation patterns from
those that are deemed artifactual. A hybrid method of
ICA [McKeown, 2000] has been proposed attempting
to address the twin issues of 1) separating consistently
task-relevant components from those that are non-
relevant (and presumably due to artifactual sources
such as physiologic noise or motion); and 2) statistical
basis for ICA hypothesis testing. This hybrid method
has demonstrated utility toward solving both these
issues, but it requires the use of an a priori hypothesis
to guide the analysis. Thus, the selection of task-
related components is limited by the relative timing
constraints of a hypothetical response expectation,
and the data-driven analysis advantage to delineate
unexpected response patterns is compromised.

In an attempt to retain more of the unbiased data-
driven sensitivity of ICA, we applied a method of 1) a
periodic brief-stimulus fMRI paradigm with constant
rates for both stimulus presentation and cued task; 2)
spatial ICA analysis of the fMRI data; 3) a Fourier
transform of each ICA component time course; and 4)
retrospective ranking of the time course for each of the
spatial ICA components by their magnitude contribu-
tion to the fundamental task frequency. By assuming a
periodic paradigm design, the components of variance
attributable to the hemodynamic response can be ex-
pected to occur at a few discrete frequencies in the
spectral domain, these being the fundamental fre-
quency of the activation and its harmonics. Shape,

exact timing, and duration of each response need not
be modeled [Marchini and Ripley, 2000]. The periodic
constancy of the paradigm timing permits each ICA
component to be power spectrum rank-ordered at a
similar frequency for all task-related activations.

SUBJECTS AND METHODS

Scan Protocol

Seven normal, right-handed volunteers (4 male, 3
female; ages 22–35; mean 27.1 years) were enrolled in
the study after first obtaining their informed consent.
Additionally, 10 right-handed pre-surgical patients
(4 male, 6 female; ages 11–55 years; mean 33 years)
performed the task as part of their fMRI mapping
protocol. Functional MRI scanning was performed on
a 1.5T General Electric Signa LX scanner (GE Medical
Systems, Waukesha, WI) equipped with 40 mT/m
gradients, using a standard quadrature RF head coil.
Foam padding was provided for head support and to
help minimize motion. Each subject was fitted with
combination earplugs and pneumatic earphones, both
to attenuate ambient scanner noise and to provide
auditory cues for the complex motor task. Immedi-
ately prior to the functional scans, a series of co-
registered anatomical images were obtained, includ-
ing a T1 weighted high-resolution whole-brain
volume (3D SPGR; TR/TE 21/7 msec; FA 40 degrees;
FOV 24 cm; matrix 256 � 128; 124 1.2-mm contiguous
slice locations). BOLD-weighted fMRI was acquired
using a single-shot, gradient-recalled EPI sequence
(TR/TE 2,000/40 msec; FA 85 degrees; FOV 24 cm;
matrix 64 � 64; 21 coronal slice locations 6-mm thick/
skip 1 mm; receiver bandwidth 125 kHz).

The complex motor task paradigm consisted of
fourteen 10-sec task cycles. The auditory cues for this
paradigm were produced using Cool Edit 96 software
(Syntrillium Software Corporation, Phoenix, AZ), re-
corded to a CD-ROM, and presented to the subjects
inside the scanner via pneumatic stereo hardware.
Each task cycle began with the auditory presentation
of a set of sinusoidal tones at a fundamental frequency
of 600 Hz. The subjects were instructed that during
each task cycle, they would first hear a series of audi-
tory tones, followed by an auditory direction of either
right or left hand. Their task was to carefully monitor
the number, rhythm, and duration of the tonal set, and
then to firmly press the index finger to the thumb of
the directed hand, one press for each tone in the series,
attempting to closely match the duration and temporal
pattern of the tone series. The number, rhythm, and
duration of these tones varied for each task cycle; each
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series of tones lasted approximately 3 sec (timings are
approximate, since the tonal pattern varied for each
stimulus cycle). Approximately 1 sec after the end of
each tonal series, an auditory direction was given of
either “right hand“ or “left hand.” The order of right
or left hand directions was pseudo-randomized, and
evenly divided, with a total of seven cycles for each
hand. After the instruction for hand performance, the
remainder of the 10-sec task cycle provided no addi-
tional auditory cues. During this interval the subject
was to perform the finger-tapping task, and then relax
briefly in preparation for the beginning of the next
task cycle. Each task cycle followed contiguously, so
that presentation of the auditory cues was equally
spaced at 10-sec intervals. Combined with the time
interval to either listen to each auditory cue or per-
form each motor task, this resulted in an inter-stimu-
lus-interval (ISI) of approximately 6 sec for either au-
ditory stimulus or motor task. The 14 contiguous task
cycles were book-ended by acquisitions of 24 sec of
rest before the task began and 16 sec following the end
of the last task cycle; no rest intervals were included
during the contiguous task performance cycles. A total
of 89 EPI scan repetitions were acquired; the 2 sec TR
resulted in a scan duration of 2 min, 58 sec.

Prior to the scan, the task was explained and briefly
practiced with each subject to ensure their comprehen-
sion and ability to perform the task. It was explained
that the task was similar to hearing and copying
Morse code, that each series of tones would be a
different pattern, and the hand instructions would be
unpredictable. Each subject was directed to keep their
eyes closed during the duration of the scan, to con-
centrate on performing the task, and to relax their
hands when not performing the finger tapping. Sub-
jects were visually monitored by the investigator dur-
ing the fMRI scan to confirm their correct task perfor-
mance.

Image Reconstruction and Preprocessing

Raw EPI data were filtered in the spatial frequency
domain by use of a low-pass Hamming filter to in-
crease the signal-to-noise ratio [Lowe et al., 1997], and
then reconstructed into individual slice-location im-
ages. Signal intensities for each image were time-cor-
rected with a 3-point Hanning window shifted to cor-
respond to the temporal offset of the slice acquisition
within each 2-sec TR [McKeown et al, 1998b]. A min-
imum signal threshold was applied to exclude voxels
from outside the brain. To minimize pulsation effects
from cerebrospinal fluid, all voxels with signal inten-
sity exceeding the average of brain tissue by 2 stan-

dard deviations in the first (unsaturated) image of the
EPI series were masked from further analysis. A sig-
nal-to-noise ratio map (signal to temporal noise) was
calculated from the remaining voxels, and those with
SNR less than 2 standard deviations below the mean
were excluded to minimize physiologic noise contri-
butions from presumed large blood vessels. The AFNI
[Cox, 1996] 3D registration algorithm was performed
on the datasets to correct for linear motion in six
planes; each dataset was coregistered to its own tem-
plate and structural volume. After discarding the first
4 acquisitions to allow for magnetization steady-state,
the resulting matrices from each multislice fMRI data-
set had dimensions of 85 timepoints by approximately
10,000 voxels.

Analysis

ICA as formulated by Bell and Sejnowski [1995] was
applied to separate the preprocessed images into 85
spatially independent components. Each of these ICA-
derived components had an associative spatial map-
ping, Z-score threshold, and corresponding time se-
ries. It should be noted that the Z-score computed for
each individual component merely represent how far
the voxel intensities differ from the mean voxel inten-
sity. Moreover, Z-score in this context are descriptive
measures that correspond to no statistical test. A Fou-
rier transform was applied to each of the component
time courses to obtain a frequency power spectrum.
These power spectra were ranked in descending order
by their magnitude contributions at the fundamental
frequency of the task cycles (0.1 Hz). Spatial mappings
for each component were thresholded at Z � 2.5 and
viewed with the AFNI display program overlaid on
the coregistered MRI structural volumes. Spatial and
temporal patterns of all the resulting components
were then inspected for confirmation of patterns rele-
vant to the task performance. ICA components that
demonstrated 1) power spectrum characteristics that
matched the task frequency; 2) signal changes tempo-
rally correlated to the task; and 3) spatial mappings to
relevant areas of activation, were tabulated for their
spatial mapping(s) and rank order for each subject.

The ICA components that were identified as being
task-related were then further analyzed to assess a
measure of significance in the power spectra. First, the
independent component time series were linearly de-
trended to remove low frequency artifacts. Periodo-
grams of the de-trended component time series were
estimated and smoothed with a bandwidth of 0.00424
Hz in the R statistical package (available online at
http://www.r-project.org). The significance of the
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0.1-Hz peaks was tested under the null hypothesis of
white noise, and a threshold value of P � 0.05 was
considered significant.

For comparison purposes to a standard statistical
test, the datasets from the seven normal subjects were
submitted to a regression analysis with sine and co-
sine waves at the fundamental 0.1-Hz task frequency.
Like ICA, this analysis design does not make assump-
tions of either phase or shape of the hemodynamic
response. The program SPM99 [Friston et al., 1995a]
was used to perform an F-test on the two regressors
simultaneously, which was thresholded at P � 0.001
(uncorrected). The resulting statistical maps were in-
spected and compared to spatial ICA maps previously
identified as being task-relevant.

RESULTS

All of the subjects were visually observed to have
performed the task accurately, and head motion was
minimal for most subjects. For each of these 17 sub-
jects, singular ICA components were identified that
were specific to 1) right hand motor activation areas of
left sensorimotor cortex [Brodman’s areas (BA) 1, 3,
and 4], left supplementary motor area (BA 6), and
right superior cerebellum; 2) left hand motor activa-
tion areas of right sensorimotor cortex (BA 1, 3, and 4),
right supplementary motor area (BA 6), and left supe-
rior cerebellum (Fig. 1A,B). Time courses for these
motor activation components indicated their corre-
spondence to the right and left hand task activation
cycles (Fig. 2A, row 1). For 14 of the 17 subjects, ICA
produced a separate component that was specific to
bilateral primary and secondary auditory cortex (BA
41 and 42) (Fig. 1C); time courses were synchronous
with the auditory cues (Fig. 2A, row 2). For 8 of the 17
subjects, a component was identified that mapped to
bilateral areas of the superior parietal gyrus (BA 7)
(Fig. 1D). The time course of this component indicated
a slight signal increase that frequently occurred be-
tween the cued auditory response and the initiation of
the finger task cycles (Fig. 2A, row 3). In six of these
eight subjects, the same bilateral superior parietal
component also mapped to an area of either right, left,
or bilateral middle frontal gyrus. In 5 of the 17 sub-
jects, a separate component was identified that
mapped to areas of bilateral putamen (Fig. 1E). The
time courses of these putamen-specific components
were inconsistently synchronized with the task timing
(Fig. 2A, row 4). The time courses for all these spatial
ICA components demonstrated a hemodynamic delay
of approximately 6 sec to signal peak, as distinguished
by the 2-sec TR.

Power spectrum ordering of the Fourier transform
of each ICA component time course by its contribution
at the fundamental 0.1-Hz task frequency ranked each
of the identified task-related components within the
first ten. None of the task-related components was
ranked higher than 10th (out of 85), and often the first
few ranked components were task-related (Table I).
The average power spectrum rank for the identified
task-related components was 2.36 for bilateral audi-
tory; 2.71 for right hand motor; 3.41 for left hand
motor; 4.6 for bilateral putamen; and 6.0 for superior
parietal. Fourier transform plots of each component
time course revealed the spectral peak at 0.1 Hz for

Figure 2.
Time courses and Fourier transform plots of spectral ranked
ICA-identified task-related components. Shown are representa-
tive signal vs. time time course graphs (A) and their respective
Fourier transform plots (B) for combined right and left hand
motor activations (row one); bilateral auditory (row 2); superior
parietal (row 3); and bilateral putamen (row 4). Vertical line
spacings in the time course graphs indicate initiation, without
allowance for hemodynamic delay, of each motor paradigm task
cycle. R � right hand; L � left hand; T � auditory cue. These plots
correspond to the same ICA component spatial maps shown in
Figure 1.

Figure 1.
Spectral ranked ICA-identified task-related spatial maps. Shown
are representative singular ICA task-relevant component maps
for: (A) Primary sensorimotor and supplementary motor area
activations for left hand finger task; (B) Primary sensorimotor and
supplementary motor area activations for right hand finger task;
(C) Bilateral auditory activations for auditory task cues; (D) Bilat-
eral superior parietal and left middle frontal gyrus regions; (E)
Bilateral anterior putamen. Note: all figures are radiologic con-
vention. Color scales for Z-score values are red � 2.5–3.5; orange
� 3.5–4.5; yellow � 4.5.
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each of the task-related independent components (Fig.
2B). When these time series were linearly de-trended
and their periodograms smoothed, all task-related
components surpassed a P � 0.05 significance test
under the null hypothesis of white noise. Notably, the
0.1-Hz power spectrum ranking for the right and left
hand sensorimotor components was effective even
though the task timing for each individual hand did
not have the same frequency of occurrence as the
overall task timing. Examination of the spatial ICA-
derived sensorimotor component time courses re-
vealed a shared ipsi- and contralateral response to
each of the 14 task cycles (Fig. 2A, row 1). As expected,
the contralateral sensorimotor response was greater
than the ipsilateral response. The lesser ipsilateral sen-
sorimotor responses were sufficient to contribute to-
ward these components’ magnitude frequency contri-
bution at the overall task rate of 0.1 Hz.

Comparison results of the conventional regression
analysis using the sine/cosine waves at 0.1 Hz on the
seven normal subjects yielded a consistent pattern. All
seven datasets demonstrated fMRI mapping to bilat-
eral auditory regions (BA 41 and 42), and five of the
seven also showed supplementary motor area re-

sponse (BA 6), at the F-test threshold of P � 0.001
(uncorrected). However, only one dataset showed a
suprathreshold fMRI mapping to a region of primary
sensorimotor cortex (BA 1, 3, and 4) with this analysis.
With frequency-ranked ICA, bilateral auditory re-
sponse was seen in six of these seven, and bilateral
primary and supplementary motor area responses
were identified in all seven of these datasets (Table I,
Subjects 1–7). fMRI mappings to areas of superior
parietal and putamen, which were seen inconsistently
with ICA, were not identified with this method of
simple sine/cosine regression.

The spatial ICA components that were not identi-
fied as being consistently task-related were presumed
to represent signal sources such as physiologic noise
or motion artifact. The combined criteria of 1) power
spectrum magnitude at the 0.1-Hz task frequency; 2)
synchrony with the timing of the periodic task cycles;
and 3) spatial mappings corresponding to likely pat-
terns of fMRI task response, were applied to the in-
spection of these non task-related components. Spatial
mappings that were discounted included those with
no recognizable functional pattern, such as signal ap-
pearing strictly in one coronal slice location, or signal
appearing at the periphery of the head and likely
arising from motion artifact. All of the non-consis-
tently task-related components failed to demonstrate a
match to these three criteria, and were discounted
from tabulation. A representative example of how
signal contributions from a pulsatile venous flow ICA
component are lower ranked with the power spectrum
ranking method is shown in Figures 3A and 4A,B. The
time course from the artifactual pulsatile component,
which mapped to the region of straight sinus, demon-
strated a signal pattern that often matched the task
timing cycles. Power spectrum ranking indicated a
frequency peak at .09 Hz for this pulsatile component

TABLE I. Power spectrum ICA ranking results of 5
identified task-relevant components*

Subject
no.

Identified task-related components

Right-hand
motor

Left-hand
motor

Bilateral
auditory

Superior
parietal

Bilateral
putamen

1 4 10 1 9 —
2 2 7 1 6 —
3 3 2 1 — —
4 3 1 — 4 2
5 2 5 1 — 3
6 1 2 4 7 —
7 3 1 2 10 —
8 3 5 1 7 —
9 1 2 4 — 6

10 3 2 1 — 4
11 1 6 7 — —
12 10 4 1 — —
13 2 1 4 3 —
14 2 1 4 — 7
15 1 2 — — —
16 2 1 — — —
17 3 6 1 2 —

* Ranking numbers are in descending order out of 85 total ICA
components, with lower numbers indicating a higher ranking. Sub-
jects 1–7 were the normal controls; Subjects 8–17 were the pre-
surgical fMRI mapping patients. Dashes indicate that this compo-
nent was not found.

Figure 3.
Spatial mappings of spectral-ranked ICA-derived artifactual com-
ponents. A: Pulsatile venous flow artifact in straight sinus. B: Head
motion artifact in frontal pole.
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that was close, but did not match the task frequency.
For this subject, power spectrum ranking listed the
left- and right-hand motor components as 1st and 2nd,
respectively, while the pulsatile artifact component
was ranked 15th. Similarly, Figures 3B and 4A,B show
an example of a frontal head motion artifact. The time
course of this spatial ICA-defined motion artifact was
closely correlated with the task timing, and had a
0.1-Hz power spectrum ranking of 4th for this subject.
Auditory, right- and left-hand components were
ranked 1st, 2nd, and 5th for this subject. The artifac-
tual nature of this spatial ICA component was readily
identified by its specific spatial mapping to region of
prefrontal pole, an area of the brain that is sensitive to
a common “nodding” motion artifact along the pitch

axis. Otherwise, this task-related motion artifact was
highly ranked by power spectrum ordering, and pre-
sumably would have also been observed with a linear
regression analysis.

When the time courses associated with each of the
task-related spatial ICA components were overlaid, it
was possible to deduce a direct comparison of the
temporal responses in each activated region. This
comparison included the temporal relationship of
identified fMRI response across regions, but due to
unique scaling factors in the ICA algorithm caused by
limitations on the uniqueness of solutions to the blind
source separation problem [Comon, 1994], it was not
possible to directly compare the magnitude of re-
sponses across different ICA components. Figure 2A

Figure 4.
Time courses and Fourier transform plots of spectral-ranked
ICA-derived artifactual components. Time-course plots in column
A correspond to Fourier plots in column B. Shown in row 1 is the
pulsatile flow artifact that mapped to straight sinus, the same
component as mapped in Figure 3A. The Fourier graph of this

pulsatile artifact component has been overlaid with the task-
relevant right and left hand finger motor components from the
same subject for comparison of their spectral peaks. Row 2 shows
the task-correlated head motion artifactual component that is
mapped in Figure 3B.
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(row 1) and Figure 5 show examples of comparative
temporal responses from identified ICA components
from right and left sensorimotor, bilateral auditory,
and superior parietal gyri. The temporal relationship
of these separate components demonstrated an audi-
tory response early in each task cycle, followed by a
brief response in superior parietal regions and the
sensorimotor response for the appropriate hand acti-
vation. These comparative time courses were derived
from each of the associated spatial ICA components,
and did not involve averaging or grouping across task
cycles. The transient ICA-delineated hemodynamic re-

sponses to each of the 14 individual task cycle events
can be directly compared. The relative magnitude of
response across task cycles can be observed when the
comparison is limited to a single ICA component time-
course.

DISCUSSION

This exploratory study demonstrates the utility of a
power spectrum domain ranking of spatial ICA-de-
rived fMRI components applied to a periodic motor
paradigm of short duration task cycles and interstimu-

Figure 5.
Time course overlays of ICA task-related compo-
nents. Signal vs. time plots comparing ICA com-
ponent temporal hemodynamic responses for (A)
bilateral auditory and right hand motor compo-
nents; (B) bilateral auditory and left hand motor
components; (C) bilateral auditory and superior
parietal components. Figure 2A features a similar
overlay comparing right and left hand motor com-
ponents. All comparison plot overlays are from
the same subject. Vertical line spacings in the time
course plots indicate initiation, without allowance
for hemodynamic delay, of each motor paradigm
task cycle. R � right hand; L � left hand; T
� auditory cue.
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lus delays. Multiple task-related fMRI activation maps
were identified and highly ranked among the 85 total
components. The power spectrum ordering of the ICA
components generally ranked non task-related com-
ponents lower than those that were task-related. This
ranking method, combined with retrospective inspec-
tion of component time courses and spatial maps,
effectively separated artifact and noise from fMRI ac-
tivation.

The task-related components accurately mapped to
expected areas of sensorimotor and auditory activa-
tion, as well as bilateral superior parietal lobes, middle
frontal gyrus, and anterior putamen. The sensorimo-
tor, auditory, and putamen activation maps were sim-
ilar to previous whole-brain ICA results from a block
fMRI motor paradigm [Moritz et al., 2000a]. The task
paradigm and ICA were particularly effective in dem-
onstrating supplementary motor area mapping, with
the robust supplementary motor area BOLD response
presumably due to the complexity and varying itera-
tions of the motor task. The spatially independent
components from eight of the subjects that mapped to
superior parietal and frontal lobes are similar to re-
gions that have been implicated in previous fMRI
studies for activity related to visual-spatial orientation
of motor function [Villar et al., 1999; Wexlar et al.,
1997]. The varying complexity of this motor paradigm,
and its randomization of right and left functions,
would be expected to involve similar cognitive areas.
It is not known why these activation patterns were not
detected more frequently in this study group. Further
research would be needed to determine if these acti-
vation patterns were not observed more frequently
due to factors of BOLD response, ICA sensitivity, par-
adigm design, and/or subject performance. Similarly,
the putamen-specific activation was only seen in 5 of
17 subjects. This detection ratio is similar to spatial
ICA results from a block motor paradigm [Moritz et
al., 2000a], but a lower detection ratio than with a t-test
using a brief-stimulus response function timed to task
initiation in a block motor paradigm [Moritz et al.,
2000b]. The paradigm design, with slight delay be-
tween cued auditory stimulus and performance of
hand task, would be expected to involve cognitive
networks of working memory. For unknown reasons,
spatial ICA did not consistently define a working
memory cognitive response pattern. However, 6 of the
8 subjects that had an identified task-related compo-
nent mapping to superior parietal areas showed a
mapping in frontal regions within the same spatial
component. These regions of dorsolateral prefrontal
cortex might putatively be involved with a working
memory cognitive response, but the inconsistency of

identified response within these structures does not
adequately define a working memory activation.

Thresholding effects of ICA spatial overlays differ
from thresholding of regression analysis maps. Each
ICA component map represents a distribution of vox-
els that have a varying contribution to the spatial
independence criteria for that unique component.
Varying the threshold will demonstrate the contribu-
tion of suprathreshold voxels to that individual com-
ponent, but this represents only a fraction of the total
image data. The Z � 2.5 threshold applied in this
study was chosen as a reasonable representation of the
spatial configuration for each component. A higher
threshold might yield an increased spatial specificity
to the maps, but a lower threshold would not be
expected to yield different activation patterns that are
not already apparent. Thus, the response patterns for
activations in auditory, putamen, and parietal regions
that were not seen in the ICA of all subjects would not
be expected at lower threshold display levels.

It is notable that the combination of a complex mo-
tor paradigm and spatial ICA were successfully ap-
plied across a broad range of subjects, including a
clinical patient population with an age range from 11
to 55 years. When motion correction was applied to
these data sets, some of the patients demonstrated
head motion greater than 1 mm, occasionally corre-
lated with the task timing. In cases of task-correlated
head motion, the power spectrum ordering of the
spatial components assigned a high ranking to some
of these artifactual motion-related components. How-
ever, visual inspection of the motion-related spatial
maps demonstrated their artifactual character. In this
study, the spatial ICA algorithm segregated motion
artifact into separate independent components from
the multiple task-relevant activations in sensorimotor
and auditory regions. A more specific assessment of
ICA sensitivity to motion artifact may warrant further
research.

The power spectrum ranking of spatial ICA has
demonstrated sensitivity to hemodynamic response
patterns that are consistently task-related, even when
the relative timing and duration of these responses are
variable and of short duration. The ICA method effec-
tively delineated task responses of short duration (�4
sec) and short ISI (�6 sec) employed in this task
paradigm. The combination of brief stimuli and task
cycles, with brief ISIs, resulted in a relatively dense
fMRI paradigm that lasted less than 3 min. Previous
reports [Biswal and Ulmer, 1999; Calhoun et al., 2001;
McKeown et al., 1998a,b; Moritz et al, 2000a] have not
applied ICA to fMRI paradigms with short-epoch,
short-ISI design. Analysis methods that rely on a lin-
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ear modeling of the hemodynamic response would
predictably yield a low efficiency of detection and
estimation when applied to a single trial, periodic
paradigm of short duration and fixed ISI [Dale, 1999;
Liu et al., 2000a]. Event-related regression methods,
such as SPM, assume a fixed hemodynamic response
for each event, whereas ICA is sensitive to event vari-
ability. As demonstrated in this study, the data-driven
nature of spatial ICA, which does not rely on a linear
or non-linear BOLD model, is sufficiently sensitive to
short-duration, short-ISI hemodynamic response par-
adigm designs. Temporal ICA, which was not applied
in this study, can yield different sensitivities to para-
digm designs [Calhoun et al., 2001]. However, tempo-
ral ICA when applied to whole-brain fMRI data is
limited by computational demands [Friston, 1998].
Further investigation with varying task durations and
ISIs might yield more information about ICA sensitiv-
ity to BOLD hemodynamics.

Task relevance is an important consideration for the
interpretation of data-driven analysis. As stated by
McKeown [2000], purely data-driven techniques lack a
direct means for hypothesis testing. The significance
testing of the independent component spectral peaks
at the task frequency of 0.1 Hz does not in itself
confirm a task-relevance. The power spectrum rank-
ing was applied in this study not as a measure of
significance, but rather as a hierarchical ordering of
the independent components. Thus, for confirmation
purposes, we evaluated the component task-relevance
by inspection for spatial mappings to regions of
known activation and time course correlation. The
power spectrum ranking similarly applies an a priori
assumption of task frequency, but precludes a neces-
sity for precise modeling of response shape, duration,
or relative timing. An example of when the power
spectrum information might be efficacious could oc-
cur in a case where a consistent task-related response
is temporally delayed, and in an unexpected cortical
region. The power spectrum ordering shares some
similarity to simple correlation, but without phase
sensitivity. The lack of phase sensitivity, when applied
to this paradigm, allowed for identification of multiple
task responses that occurred within different temporal
phases of each task cycle. At least three separate ref-
erence function correlations would need to be per-
formed to obtain similar identification of the multiple
task-correlated components that were selectively
ranked at a single frequency. A caveat of designing
periodic paradigms for spectrum rank ordering might
be the avoidance of physiologic signals for cardiac and
respiratory cycles. These could occur in the range of
0.1–1.2 Hz for respiratory, and 0.6–1.2 Hz for cardiac

[Cordes et al, 2001], unless aliased by the TR sampling
rate.

Other methods have been proposed and applied
toward hierarchical ranking of fMRI ICA components.
As discussed, McKeown et al. [1998a, 2000] have ef-
fectively used correlation with a task-related reference
function to identify relevant components. However,
this a priori correlation compromises the purely data-
driven possibilities for discovering unexpected fMRI
responses. Other, more data-derived ranking method
attempts have been based on Z-score [Cordes et al.,
1999], entropy [Liu et al., 2000b], kurtosis, or cluster-
ing [Esposito et al., 2001]. These methods alone have
not been successful in their attempts toward a fully
automatic classification, since fMRI response distribu-
tions do not always match criteria for greatest vari-
ance, least spatial structure, “non-Gaussianity,” or
spatial extent.

A limitation of the power spectrum ranking applied
in this study is that it is optimized for use with a
periodic fMRI paradigm, with the independent com-
ponents ranked according to their contribution at a
constant task frequency. This type of analysis would
be less efficacious if the subject’s response is erratic in
terms of the brain region being activated or the tem-
poral pattern of activation (failure to perform the task
consistently). The right and left hand task cycles in this
study’s fMRI paradigm did not have the same timing
rate, but some sensorimotor activation was shared
both ipsi- and contralaterally. Thus, the 0.1-Hz power
spectrum ranking at the fundamental frequency of the
overall task was effective for these sensorimotor com-
ponents. Cognitive tests that employ randomization of
events to minimize confounding performance effects
such as habituation or anticipation might not be ap-
plicable to this method. In such cases, a correlation of
spectral densities between the randomized paradigm
cycles and the spatial ICA-derived time courses might
provide a means of identifying consistently task-re-
lated BOLD responses. A correlation of spectral den-
sities is beyond the scope of this study.

Statistical inferences such as those drawn from
parametric testing of fMRI data [Friston et al., 1995a]
do not have an identical corollary with the non-para-
metric ICA. The methods employed by statistical para-
metric mapping for derivation of confidence values
for hypothesis testing (i.e., P values) are not available
for ICA results due to the absence of a null hypothesis
[Friston, 1998]. The spatial ICA fMRI maps in this
study do not have an associated P value that indicates
a confidence level asserting a hypothetical activation.
Application of a P � 0.05 threshold to the derived
Fourier transforms of the component time courses for
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the task frequency peak at 0.1 Hz indicated that all
task-related components surpassed this threshold.
However, the power spectrum ranking method did
not involve a level of confidence testing, and merely
relied on a value contribution at the task frequency.
The trade-off with non-parametric analysis is a com-
plementary data decomposition that is sensitive to
complex and unanticipated hemodynamic responses
[Friston, 1998; McKeown and Sejnowski, 1998]. The
dynamic nature of the human brain response requires
a matching level of statistical complexity [Lange,
1999]. In this study, the ICA-derived components
were selectively tested for task relevance by power
spectrum rank-order, and confirmed with time course
response timing and spatial mapping. A method for
comprehensively deriving a corresponding confidence
statistic from the combination of these observations
has not yet been defined.

Comparison to the conventional statistical analysis
with an effects-of-interest regression using the sine/
cosine waves at the fundamental task frequency of 0.1
Hz indicated that this SPM method is sensitive to the
auditory and supplementary motor area responses.
The regression analysis was less sensitive than ICA to
the primary sensorimotor responses for this task par-
adigm. This indication is reasonable, since the audi-
tory cues for the task paradigm were periodic while
the individual hand task performance cycles were not.
Presumably, the overlap in supplementary motor area
response from each hand task cycle provided suffi-
cient periodicity for this region to map in five of the
seven normal subjects with the sine/cosine regression.
This comparison to a simple hypothesis testing at the
fundamental task frequency demonstrates that the
combination of spatial ICA with frequency ranking
has greater sensitivity to multiple task-related re-
sponses from this complex motor paradigm. As stated
previously, multiple regressors would need to be ap-
plied to obtain a set of fMRI maps similar to those
derived with ICA. The voxel-wise task-related fre-
quency content alone does not provide sufficient spec-
ificity to derive the spatial localizations that were de-
lineated by ICA of this paradigm.

CONCLUSION

The aim of this study was to apply a power
spectrum ranked independent component analysis
method to a periodic fMRI complex motor paradigm.
The main conclusions are: 1) spatial ICA effectively
delineated multiple task-related components from the
raw fMRI data across all 17 subjects. 2) These task-
related components were separated from artifact and

physiologic noise, even though the stimuli and motor
responses were of short duration with short inter-
stimulus intervals. 3) Power spectrum ranking of the
spatial ICA components at the .1-Hz task frequency
generally gave a higher rank order to task-related
components than to those from artifactual or other
noise sources. This power spectrum ranking ICA
method does not rely on modeling of a presumed
hemodynamic response or phase information, and
thus may have utility toward the discovery of fMRI
responses with unexpected timing or duration.
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