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Abstract: In this study, a computational optimal system for the generation of curves on triangulated
surfaces representing 3D brains is described. The algorithm is based on optimally computing geodesics on
the triangulated surfaces following Kimmel and Sethian ([1998]: Proc Natl Acad Sci 95:15). The system can
be used to compute geodesic curves for accurate distance measurements as well as to detect sulci and gyri.
These curves are defined based on local surface curvatures that are computed following a novel approach
presented in this study. The corresponding software is available to the research community. Hum. Brain
Mapping 14:1–15, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

The need to work with three dimensional (3D) rep-
resentations of the brain has been demonstrated in
many areas of computational neuroscience [Grenander
and Miller, 1998; Thompson et al., 2000; Van Essen et
al., 1998]. Applications that use this representation
include brain flattening for visualization [Angenent et
al., 1998; Wandell et al., in press; 1996; Zigelman et al.,
2000], brain warping [Toga, 1998], activity detection
with anatomical constraints [Faugeras et al., 1999;

Kiebel and Friston, 2000], and signal detection [Sapiro,
2001]. In these applications, geometric computations
are done on the surface. For example, many of the
techniques for brain flattening require accurate com-
putations of geodesic distances (that is, minimal dis-
tances while the traveling path is restricted to the
surface). Sulci extraction are needed in order, for ex-
ample, to impose boundary conditions to common
brain warping algorithms. Segmentation of informa-
tion defined on the 3D brain is needed in cases like
signal detection in fMRI. In this study, we describe a
system to computationally optimally (computations of
the order of the minimal theoretical bound) generate
weighted paths on triangulated surfaces. This system
is available for the research community at www.ece.
umn.edu/users/guille. Particular examples include
geodesic distances, sulci and gyri extremes, and seg-
mentation by tracing. We limit ourselves in this study
to work with triangulated representations of the brain,
being this is one of the most commonly found repre-
sentations in the computational neuroscience litera-
ture. Such triangulated representations can be ob-
tained with segmentation algorithms as those
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described in [Caselles et al., 1997; Joshi et al., 1999; Teo
et al., 1997; Yezzi et al., 1997]. The work can easily be
extended to more general polygonal representations.
To extend the work here presented to implicit repre-
sentations, we could use the techniques introduced in
[Bertalmio et al., 1999; Cheng et al., 2000; Memoli and
Sapiro, 2000]. Since many of the current state-of-the-
art brain segmentation algorithms obtain an implicit
representation, which is later triangulated, the exten-
sion of the work here reported to these implicit sur-
faces is of extreme significance and will be reported
elsewhere.

The basic idea of our system is to first use the
technique introduced in Kimmel and Sethian [1998]
for the fast computation of accurate weighted dis-
tances on triangulated surfaces. This is combined then
with the work in [Cohen and Kimmel, 1997; Khaneja et
al., 1998; Kimmel, 1999; Kimmel and Sethian, 1998]
and new developments here presented for computing
the corresponding path that achieves the minimal
weighted distance (geodesic curve), the specific
weight being dictated by the application (uniform for
intrinsic geodesics, surface curvature dependent for
sulci and gyri, and data dependent for segmentation).
The novelty in this study compared with the work of
Kimmel and Sethian [1998] is concentrated on the
specific applications and computations of the corre-
sponding weights and on slight modifications to the
original fast computation.

Optimal weighted distances on
triangulated surfaces

Curves such as sulci and gyri can be considered as
shortest weighted paths on the 3D surface representa-
tion of the brain. That is, given a specific weight dic-
tated by the application, these curves are paths of
minimal total ‘effort’. These paths are geodesics on the
surface (see Appendix A for a basic overview of 3D
differential geometry). Given the weight then, the
problem reduces to that of computation of geodesics
on a surface (we will later deal with how to compute
the weights for specific examples like sulci and gyri).
Following Kimmel and Sethian [1998] (see also Barth
and Sethian [1998] and Lafon and Osher [1996] for
related works on triangulated surfaces), we present
the technique used by our system to compute the
weighted distance between two points x1 and x2 on the
triangulated surface S‚ that approximates the regular
surface S. That is, given a seed point x1 [ S‚, for every
second point x2 [ S‚, we want to compute the dis-
tance dg(S‚) (x1,x2), where g(S‚) is a given weight de-
fined on the triangulated surface S‚. The weighted

distance between two points on the continuous sur-
face S is given by

dg(S)(x1, x2) :5 E
x1

x2

g(s)ds, (1)

where ds stands for the Euclidean arc-length (note that
for g(s) 5 1 we obtain, *x1

x2 ds, which is just the Euclid-
ean distance; see also Appendix A). All the measure-
ments are of course to be made intrinsically to the
surface. That is, ds is measured on the surface S and
the path that achieves the minimal distance will lay on
the surface as well. If S‚ approximates S, we are then
looking for an efficient computation of dg(S‚)(x1, x2), an
approximation of the true weighted distance dg(S)(x1, x2),
where x1, x2 are two arbitrary points on the surface
(not necessarily the vertices in S‚). Kimmel and
Sethian [1998] have devised a computationally opti-
mal algorithm for doing exactly this, which we briefly
describe below. Note that in this section we are just
discussing the computation of the distance, not the
exact path (geodesic curve) that achieves the mini-
mum. This will be addressed in the following section.

Computing minimal weighted distances and paths
in graphs is an old problem that has been optimally
solved by Dijkstra [1959]. Dijkstra showed an algo-
rithm for computing the path in O(n log n) operations,
where n is the number of nodes in the graph. The
weights are given on the connecting edges between
the graph nodes, and the algorithm is computationally
optimal. Previously we described Dijkstra’s algorithm
using nodes in a graph. In the case of a triangulation,
if we consider the vertices as nodes and edges as the
connections between them, we can apply the same
algorithm to compute the distances. The problem is
that this algorithm is limited to travel on the graph
edges, giving only a first approximation of the true
distance. Let’s illustrate this problem with a simple
example. Assume we have a planar graph with three
nodes located at the coordinates (0,1), (1,0), and (0,0);
see Figure 1. Assume that we have only two edges,
one from (1,0) to (0,0) and an additional edge from
(0,1) to (0,0). Assume also that both edges have weight
equal to one. If we use Dijkstra algorithm, we will get
that the distance between (1,0) and (0,1) is 2. But we
know that the distance is =2, and this is a very sig-
nificant error. The problem here was that we were
forced to travel only through the existent edges, and
there is no edge between (1,0) and (0,1). The same
problem happens in more elaborated graphs, includ-
ing triangulated surfaces (the path from a vertex to the
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middle of the opposite side on a given triangle will be
wrongly computed for example). One algorithmic
way of solving this problem is to add nodes and
edges, or to heuristically add weights to the edges.
This will both increase the complexity of the algorithm
and will actually not converge to the true continuous
weighted Euclidean distance when the resolution goes
to infinity (in other words, dg(S‚)(x1, x2) will not con-
verge to dg(S)(x1, x2)). That is, Dijkstra is not a consis-
tent algorithm [Mitchell, 1988; Mitchell et al., 1987].
Moreover, because Dijkstra is limited to travel graph
edges, multiple minimal paths can appear. This is
eliminated with the increased accuracy provided by
the algorithm discussed here.

The solution to this problem with Dijkstra, limited
to Cartesian grids, was developed in Helmsen et al.
[1996], Sethian [1996a,b], Tsitsiklis [1995], and recently
extended in Osher and Fedkiw [2000]. Tsitsiklis [1995]
first described an optimal-control type of approach,
whereas independently Sethian [1996b] and Helmsen
et al. [1996] developed techniques based on upwind
numerical schemes (see below). The solution pre-
sented by these authors is consistent and converges to
the true distance [Rouy and Tourin, 1992; Tsitsiklis,
1995], while keeping the same optimal complexity of
O(n log n). This work was later extended in Kimmel
and Sethian [1998] for triangulated surfaces, which we
describe below.

The basic idea behind the optimal techniques for
finding accurate weighted distances is to note that the
distance function holds the following Hamilton-Jacobi
partial differential equation (PDE), e.g., Bruckstein
[1988], Kimmel [1999], Osher [1993], Osher and
Sethian [1988], and Sethian [1996b]:

u¹du 5 g, (2)

where d is the distance from a given seed point to the
rest of the space (recall that g is known, it is the given

weight). Intuitively, the smaller the weight g, the
larger the intrinsic distance we can travel without
significantly changing the weighted distance d, mak-
ing its gradient small. So we can transform the prob-
lem of optimal distance computation into the problem
of solving a Hamilton-Jacobi PDE. We now describe
an O(n log n) technique for solving this PDE.

Solving the Hamilton-Jacobi zƒdz 5 g
on a triangulated surface

The main idea to obtain a computationally efficient
solution to equation (2), the so-called Eikonal equation,
rests on building the solution outwards from lower
distance values to higher ones, marching the solution
in an upwind direction. This is simply imitating the
Dijkstra technique for minimal paths on graphs. Ini-
tially we specify a seed set (in our case this is just a
point, x1), that will have zero distance value. The
distance function is then computed in a growing fash-
ion, starting from the seed point, and progressively
computing the distances for closest points first. The
procedure stops when the whole domain has been
covered.

The first part of the global distance computation is
then how to locally propagate the distance inside a
given triangle, when some of the vertices of this tri-
angle have already been assigned a distance and some
not. Consider the triangle ABC, as shown in Figure 2.
Here we want to update the distance value at vertex C.
The idea is to fit a plane over the triangle, given the
distance values at the other two vertices d (A) and d (B),

Figure 1.
Dijkstra’s distance approximation is restricted to travel on graph
edges. In this simple example we will get that distance from (1, 0)
to (0, 1) is 2, but we know that it is =2.

Figure 2.
Update procedure for triangle ABC. We want to compute the
distance value at C, fitting a plane over the triangle, based on A and
B distances, and the desired plane slope g. For simplicity, we
assume d(A) 5 0.
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and the slope g (corresponding to the right hand side
of the Eikonal equation). Details on how this plane
fitting, and therefore the propagation, is done are
given in Appendix B.

For monotonicity reasons we require the triangula-
tion to be acute. This is so that any front (growing
boundary in the distance construction method) enter-
ing the side of a triangle has two points to provide
values before the third one is computed. This way we
restrict the update to come from within the triangle.
To see this, consider the situation in Figure 3, where
we have considered an obtuse triangle ABC, and the
arrows show the direction of the advancing front. In
this case, the front would first reach point A, then
point C, and finally point B. So, point C is supported
only by point A, which means that the actual direction
of the coming front can not be recovered.

Non-acute triangles thus require a special treatment
in which every obtuse angle is split up into two acute
ones. To do this we introduce a fourth vertex, T [ S‚,
so we now have two triangles: ATC and BTC (see Fig.
4). The procedure to find T involves its search in the
unfolded adjacent triangles (this means that triangles
in the surface are recursively unfolded into a plane),
where the search is restricted to a limited section of
incoming fronts (shaded region in Fig. 4 [right]). This
limited section, obtained between the perpendiculars
to both sides of the obtuse angle, guarantees that each
resulting triangle would be acute, as required. Once
we have the two new triangles, we apply the usual
update procedure (described in Appendix B) to each
of them.

The construction procedure described above intro-
duces a new neighboring relation between vertex C

(where the obtuse angle occurs) and vertex T. As we
will see, this causes the need of special handling pro-
cedures (and slight modifications to the original algo-
rithm) in both constructing the distance function and
obtaining the exact geodesic path from the back prop-
agating algorithm described in the following section.
These special procedures are only needed when we
have non-uniform weights (i.e., g is not constant), as in
our case.

The nature of the upwind operators used by the
algorithm guarantee that the solution is build in a
monotonous fashion, i.e., from lower distance values
to higher ones. Nonetheless, the previously mentioned
splitting strategy for obtuse triangles can lead to situ-
ations in which the marching procedure suddenly
finds a smaller distance value than a previously com-
puted one. Aspects regarding this issue and its solu-
tion are further explained in Appendix C.1.

Once the distance function has been adapted in a
single triangle, we have to extend this to the rest of the
triangulated surface. If we consider each point neigh-
bors in the triangulation we obtain for every vertex a
situation similar to that shown in Figure 5. To com-
pute the appropriate distance value at the given vertex
(central point in Fig. 5), we should consider the pos-
sible contribution of every triangle sharing that point
as a common vertex. Accordingly, only the neighbor-
ing triangle that produces the smallest new distance
value is considered. The contribution from each trian-
gle (after adequately splitting obtuse ones) is the result
of the local triangle propagation as fully described in
Appendix B.

Finally, the complete algorithm to compute dg(S‚)

(x1, x2) starts by initially letting d (x1) 5 0, and then
marching the solution upwards (using the procedure
just described) until we reach x2.

Figure 4.
Handling procedure for obtuse triangles. Triangle ABC is divided
into two acute triangles, ATC and BTC. Left: Triangulated surface
in 3D space. Right: Unfolded surface in the plane. The shaded
region shows the limited section of incoming fronts for vertex C.

Figure 3.
Obtuse triangles in distance computations. Arrows show the
growing direction of the distance (i.e., it’s negative gradient direc-
tion). The front would first reach point A, then C, and finally B.
Therefore, C is only supported by A so we can not recover the
actual direction of the front. As we restrict the update to come
from within the triangle (that is, the gradient direction must lay
within the angle ACB̂), a situation like this can only occur if ACB̂
is obtuse.
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Optimal weighted paths on triangulated surfaces

We have just described how to compute the
weighted distance dg(S‚)(x1, x2) between two points on
a triangulated surface. Moreover, because we have
done this for all points on the triangulated surface
outgrowing from x1 until we reached x2, we have the
value of dg(S‚)(x1, xp) for every xp in the possible path
between x1 and x2. We now describe how to compute
the exact path (geodesic) that achieves this minimal
distance dg(S‚)(x1, x2). The basic idea is once again to
show that the geodesic curve C(s) holds [see Kimmel,
1999; Sethian, 1996c]:

]C(s)
]s 52¹d. (3)

In order then to compute the geodesic curve we have
to back propagate from x2 in the direction given by
2ƒd. Following and improving on [Kimmel, 1999], we
now describe a technique for numerically implement-
ing this back propagation.

There exist many numerical methods to integrate
the path resulting from equation (3). The first step is to
construct an approximation for the distance function
over every triangle. Based on this approximation we
compute the gradient direction that gives the direction
to follow in the minimizing path. The simplest ap-
proximation uses a linear interpolation, i.e., the dis-
tance function over each triangle is approximated by a
plane determined by the distance values at its vertices.
Standing at certain point P1 over the perimeter of a
triangle, we compute the line segment along the gra-
dient direction obtaining P2, the next point of the path
(Fig. 6, left). When we are standing precisely at a

vertex, as shown in Figure 6 (right), we have an esti-
mate of the gradient direction for each neighboring
triangle. In this case, we choose the one that gives the
maximum gradient value in the downward direction,
thus following the correct path.

Better approximations for the optimal path can be
obtained using higher order approximations of the
distance map. For example, in Kimmel [1999] a second
order approximation (Heun’s method) is given. Al-
though it gives more accurate results, if the triangles
are small enough, we have found that the first order
approximation described above is sufficient.

As in the distance building algorithm, obtuse trian-
gles must also be specially handled when finding geo-
desic paths. In this case, the distance function may
present local minima causing the back propagation
algorithm to stop prematurely. This problem is related
to the introduction of the neighboring relation as pre-
viously mentioned. Issues regarding this problem and
its solution are presented in Appendix C.2.

Having described the method for obtaining the geo-
desic path that achieves the minimum distance be-
tween two points, we now concentrate on the actual
applications of these techniques.

Sulci and gyri detection

To detect sulci and gyri, we follow Khaneja et al.
[1998] and search for valleys and crests on the 3D
brain. Clearly, we will detect this by the search of
paths minimizing

E
x1

x2

f(k1, k2)ds,

Figure 5.
Local neighborhood defined around a given vertex. The contribu-
tion of every neighboring triangle must be considered in the
distance update procedure.

Figure 6.
Building the path using a first order approximation of the distance
function. Left: Situation when we are standing over one side of
the triangle. Right: If we are standing precisely at a vertex (C), we
have one gradient direction (dotted lines) for each neighboring
triangle. We choose the one that gives the maximum gradient
value in the downward direction.
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where f(z, z) is a (positive) function of the surface
principal curvatures k1, k2. For this, we use the tech-
nique described above (g 4 f ).

For example, to detect sulci, we search the deepest
paths in the valleys, called the fund beds. Khaneja et
al. [1998] do this by selecting

f(k1, k2) 5 (kmax 2 _)2,

where kmax is the maximal absolute principal curva-
ture, and _ is the largest maximal curvature of the
surface. Crests are similarly detected. In our case, we
proceed differently and choose f to be a decreasing
function of a certain creaseness/valleyness measure. This
measure, inspired by the work of López et al. [1999]
for Euclidean grids, is partially extended here to arbi-
trary triangulated domains.

López et al. [1999] classified and reviewed the most
widespread crease and valley characterizations that
have been proposed in literature. To determine the
validity of the different characterizations, they de-
vised a set of desirable properties referring to the clean
and robust extraction of salient creases and valleys.
Accordingly, they introduce a new creaseness/valley-
ness measure, which was shown to outperform exist-
ing ones. We now show the main idea and its exten-
sion to the 3D case at hand.

Instead of looking at maximal principal curvatures,
we take the mean curvature value H as a creaseness/
valleyness measure. As the mean curvature is an av-
erage of the principal curvatures, it should be more
robust to noise. Over creases or valleys where one of
the principal curvatures is locally maximum, its value
will predominate in the averaging and this measure
will caught the most relevant creaseness of the surface.

We are left then to the computation of the mean cur-
vature, described in the rest of this section.

Computations of any intrinsic geometrical proper-
ties from polygonal datasets require derivatives esti-
mations to be computed from the given data. Several
approaches can be taken in this respect. Approxima-
tion by an analytic surface is the most usual approach.
In this case, an analytic surface is locally fitted to the
input points, and the derivatives are computed for this
approximating surface. Quadratic [Joshi et al., 1995;
Khaneja et al., 1998; Taubin, 1995] and cubic [Samson
and Mallet, 1997] patches were mostly used in the
literature.

Another approach uses discrete estimation methods
that are applied directly to the triangulated data and
are based on polyhedral metrics. In this case, estimates
for the mean and Gaussian curvatures are constructed

Figure 7.
Left: Triangulated data for brain 1. The surface contains 63000 triangles and 31500 points. Center: Geodesic curve obtained with g
5 1. Right: Distance values rendered over the surface. Color values range from red (zero distance) to blue (largest distance values).
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 8.
Crease extraction for brain 1. Left: Crease line shown over the
original surface. Right: Crease line shown over the curvature-
weighted distance function rendered over the surface. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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directly from the given vertices [Desbrun et at., 1999;
Krsek et al., 1998].

We have found that none of the above methods
provide suitable approximations for arbitrary triangu-
lation, so, inspired by the work of López et al. [1999]
for Euclidean grids, we developed an alternative way
to compute H on triangulated surfaces. The specific
computation we propose is presented in Appendix D.

Having an adequate mean curvature estimation H
(that we use as a creaseness/valleyness measure), we
now select a particular weight function f, namely

f(x) 5 w 1 ~x 2 M)2 (4)

where w is a positive constant, x is the creaseness/
valleyness measure, and M 5 maxS‚

{x}. As f is a
decreasing function of x, it gives priority for advanc-
ing over high curvature zones (i.e., valleys or creases),
and penalizes advancing over flat (low curvature) re-
gions. Specifically, to search for creases we let x 5 H,
prioritizing the advance over high positive curvature
zones. For valleys we set x 5 2H, thus preferring high
negative curvature values that correspond to deep
valleys in the brain surface. Following the work by
Cohen and Kimmel [1997], we can obtain an upper
bound for the curvature of the resulting geodesic that
is inversely proportional to the constant w. Therefore,
if we want to control the regularity of the geodesic
path (i.e., bound its maximum curvature value), we
have to increase the constant w. Intuitively, if we
increase w we are reducing the effect of the second
term in the weight function f, that is, we are prioritiz-
ing the usual Euclidean distance term over the
weighted one. This may avoid distance variations as-
sociated to the curvature dependent term giving a
regularized geodesic path.

Boundary extraction

In this section, we briefly introduce another applica-
tion of the techniques presented in this study: boundary

Figure 9.
Additional examples of crease extraction for brain 1. The last figure shows the crease line over the triangulated mesh. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 10.
Valley extraction for brain 1. Left: Valley line shown over the
original surface. Right: Valley line shown over the curvature-
weighted distance function rendered over the surface. Color ref-
erence as before. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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detection of images defined over surfaces. This is a sim-
ple extension of the work in Cohen and Kimmel [1997],
and is also available in our public domain software
package. To detect edges, we must use weight values
based on local image properties. As an example, we can
choose as weights any decreasing function of the image
gradient, which should take bigger values over flat re-
gions (null gradient), and smaller values over high gra-
dient zones. This way, the resulting path obtained from
the back propagation algorithm should follow image
boundaries as required.

Proceeding in the same manner as in the crease/
valley extraction problem, we manually specify the
start and end points along the boundary we want to
extract. We compute the distance function starting
at the first point, and applying the back propagation
algorithm we found the geodesic curve joining the
start and end points. The path thus obtained cor-
responds to the image boundary we are interested in.

Examples

We now present a number of results for our algo-
rithm. As previously mentioned, the corresponding
software package is available to the research commu-
nity at www.ece.umn.edu/users/guille. The color fig-
ures presented here can be viewed in the online issue
available at the Wiley InterScience site.

Figure 7 presents the first brain used in our ex-
amples (left), and a geodesic curve with its corre-
sponding distance. Here we used g [ 1. The geode-
sic distance provides the true distance between the
two marked points and the geodesic curve the path to
be traveled on the surface to achieve this minimal geo-
desic distance.

Figure 8 shows the first example of the detection of
sulci and gyri with the approach here presented. In
this case, a crease (gyri) is shown. Additional exam-
ples are given in Figure 9.

Figure 11.
Additional examples of valley extraction for brain 1.

Figure 12.
Left: Triangulated data for brain 2. The surface contains 7700 triangles and 3800 points. Center: Geodesic curve obtained with g 5
1. Right: Distance values rendered over the surface. Color reference as before. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]
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In Figure 10 we show the computation of valleys
(bottom of sulci). Additional examples are given in
Figure 11.

The following set of the figures in this study repeats
this for additional, lower resolution, brain data ob-
tained from Khaneja et al. [1998].

DISCUSSION

In this study, we have described a public domain
software package for the computationally optimal
generation of curves on 3D brain surfaces. The system
can be used for a number of applications in computa-
tional neuroscience, including brain flattening and
brain warping. The package concentrates on triangu-
lated surfaces, whereas its extension to implicit sur-
faces will be reported elsewhere.

Other works have been reported in the literature on
automatic computation of important 3D curves on
brain surfaces. We review a few representative works
and compare them with our approach presented here.

The interested reader is referred to the works men-
tioned below for additional details and further litera-
ture on the subject.

As mentioned before, many authors use Dijkstra
and variations of it to compute geodesics on triangu-
lated surfaces, and the problems with this approach
were already described. As also stated above, our
work is inspired by Khaneja et al. [1998], which simi-
larly to our approach, requires the user to mark the
two end points of the curve of interest. A number of
works for fully automatic detection (and modeling) of
sulci regions and other curves of interest in 3D brain
images have been reported [Thirion and Gourdon,
1993; Vaillant et al., 1996; Le Goualher et al., 1998,
1999; Manceaux-Demiau et al., 1998].

Thirion and Gourdon [1993] present a very interest-
ing approach where the crest lines are computed as
the intersection of two iso-surfaces, one defining the
3D surface of the brain and a second one defining a
measurement of creaseness. In contrast with ours, this
technique is fully automatic, though due to the lack of

Figure 13.
Crease extraction for brain 2. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

Figure 14.
Valley extraction for brain 2. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]
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user control, it might result in spurious curves or
non-connected ones.

Le Goualher et al. [1998, 1999] propose a series of
very efficient geometric operations to detect the sulci
median surface, also without user intervention. First,
they combine morphological filtering for closing sulci
walls, together with analysis of the curvature sign.
They assume that the sulci are convex entities, which
is not always the case for high resolution data, and
then they can not be precisely defined just by the sign
of curvature, as suggested by the authors. A thinning
algorithm is then applied, followed by active surfaces.
These steps can not automatically guarantee that the
detected curves and surfaces are topologically correct.
A related approach is described in Vaillant et al.
[1996]. Note that these studies are not just interested in
finding the sulci bed, but on modeling the folds and
the complete sulci, a goal beyond the one in this study.
Using their approach modeling can also be done after
the detection performed with our technique.

In general, automatic procedures like those men-
tioned above has the advantage of eliminating the user
intervention. On the other hand, as expected, they are
less robust. Robustness is traded-off by automatiza-
tion. Moreover, as explained before, the technique
proposed here is computationally optimal. The selec-
tion of the specific technique depends on the applica-
tion. First, note that our technique is robust to errors in
the selected end points, meaning that small errors in
their position do not significantly affect the geodesic
path. Second, in a number of applications the end
points can be easily detected, like in brain flattening,
where all the grid points are to be used. Third, in

applications like brain warping, many users prefer to
have control on the selection of the sulci and gyri used
for boundary conditions of their differential maps,
and the tool here presented brings a step forward from
the current fully manual tracing technique being used.
Nevertheless, extending the technique presented here
to a fully automatic procedure will bring the best of
both worlds and is of great interest. The basic direc-
tion is to automatically select two or more points that
belong to the same crest or valley, and then apply the
algorithm here discussed to connect between them.
The search for these points can, for example, be done
based on the automatic techniques just discussed. This
is the subject of current research.
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Figure 15.
Additional valley extraction example for brain 2. Left: Valley line shown over the original surface. Center: Corresponding weighted
distance values are rendered over the surface. Right: The distance function is only computed until we reach the selected end point,
thereby further improving the computational time. [Color figure can be viewed in the online issue, which is available at www.inter-
science.wiley.com]
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APPENDIX A

Basic differential geometry

For completeness, we present the basic definitions
of 3D curvatures and geodesic curves; for an extensive
treatment of 3D differential geometry, see Do Carmo
[1959]. We consider regular surfaces S(u, v) 5 (x(u, v),
y(u, v), z(u, v)): IR2 3 IR3 that are homeomorphisms,
for which each one of the coordinates have continuous
partial derivatives, and such that the differential map
is one-to-one. These regularity conditions avoid self-
intersections unexpected in 3D data of the brain. We
define the tangent vectors (subscripts indicate deriva-
tives)

Su :5 ~xu, yu, zu), Sv :5 ~xv, yv, zv).

Any vector tangent to the surface S defines the tangent
plane, and can be obtained as a linear combination of
these two vectors. Every vector in the tangent plane it
is the tangent to a parametrized curve C(p) [ S(u(p),
v(p)) going through the point P (p is an arbitrary
parametrization); see Figure 16.

The unit normal to the surface is given by

1W 5
Su3Sv

iSu3Svi
,

where (z 3 z) stands for the vector obtained by the
exterior product of two vectors (Fig. 16).

Let C be a curve on S passing through P, k the cur-
vature of C at P, and cos u 5 ^nW , 1W & where nW is the
normal to the curve and 1W as before the normal to the
surface (both at the point P) (Fig. 16). The number kn 5
k cos u is called the normal curvature of C at P. The
normal curvature is basically the length of the projec-
tion of knW over the surface normal. All curves lying on
the surface and having at a given point the same
tangent, have the same normal curvature, meaning
that the normal curvature is a property intrinsic to the
surface and not to the specific curve.

From the results above, we can talk about the nor-
mal curvature at a given direction. We can then con-
sider all possible directions, and obtain the maximal
and minimal normal curvatures k1 and k2, respec-
tively. These are the principal curvatures of the sur-
face and the corresponding directions are the principal
directions. This leads to the definition of the Gaussian
curvature:

K :5 k1k2,

and the mean curvature

H :5
k1 1 k2

2 .

Let’s now present a slightly different way of comput-
ing the mean curvature H that which is used in this
study. If we locally define the surface as a function z 5
f (x, y), then taking F(x, y, z) 5 z 2 f (x, y) 5 0, the mean
curvature can be obtained as

H 5 2divS ¹F
u¹FuD.

The surface normal can be expressed in terms of ƒF as

1W 5
¹F

u¹Fu ,

where 1W is the outward unit normal. Therefore, we
can compute the mean curvature as the divergence of
the normal vector:

Figure 16.
Basic 3D geometry and curvatures.
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H 5 2div 1W .

The last concept we want to introduce is the concept of
geodesic curvature. The geodesic curvature kg at a point
P of a curve C [ S is given by the projection of the
vector knW onto the tangent plane (this is the absolute
value). That is, the absolute value of the geodesic
curvature is equal to the length of the tangential com-
ponent of knW . From this, it is obvious that

k2 5 kg
2 1 kn

2.

A geodesic curve is a curve on the surface with zero
geodesic curvature. The minimal path between two
points on a surface is always a geodesic curve.

APPENDIX B

Update procedure for a single triangle

The first part of the global distance computation is
how to locally propagate the distance inside a given
triangle, when some of the vertices of this triangle
have already been assigned a distance and some not.
Consider the triangle ABC, as shown in Figure 17.
Here we want to update the distance value at vertex C.
The idea is to fit a plane over the triangle, given the

distance values at the other two vertices d(A) and d(B),
and the slope g (corresponding to the right hand side
of the Eikonal equation (2)). We assume without loss
of generality that d(A) 5 0.

We define the following quantities:

t :5 d(C) 2 d(A), u :5 d(B) 2 d(A),

a :5 BC, b :5 AC,

u :5 ACB̂, f :5 CBD̂,

h :5 a sin f

Then, we search for t that sets the slope of the plane to
be:

t2u
h 5 g.

Substituting h in the previous expression we obtain a
quadratic equation for t (see Kimmel and Sethian
[1998] and Sethian [1996c] for the exact derivation):

~a2 1 b2 2 2ab cos u)t2 1 2bu(a cos u 2 b)t

1 b2(u2 2 g2a2sin2u) 5 0. (5)

The solution t must be greater than u, and should be
updated from within the triangle, that is, h should lay
between edges CA and CB (Fig. 17). When h coincides
with CA we obtain the lower bound CD 5 a cos u.
Similarly, when h coincides with CB, we have the
upper bound CD 5

a

cos u
. By similarity, we have t/b 5

u/AD, so CD 5 b 2 AD 5 b 2 bu/t 5 b(t 2 u)/t.
Thus, the resulting restriction for the update to

come from inside the triangle becomes

a cos u ,
b(t 2 u)

t ,
a

cos u
. (6)

The update procedure for a vertex over one triangle is
then given by:

1. Compute t from equation (5).
2. If t . u and condition (6) is satisfied:

then d(C) 5 min{d(C), t 1 d(A)}
else d(C) 5 min{d(C), bg 1 d(A), ag 1 d(B)}

Figure 17.
Update procedure for triangle ABC. We want to compute the
distance value at C, fitting a plane over the triangle, based on A and
B distances, and the desired plane slope g. We require the solution
t to be greater than u, and to be updated from within the triangle,
that is, h should lay between edges CA and CB.
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APPENDIX C

C.1. Handling non-acute triangulations in the
distance algorithm

The nature of the upwind operators used by the
distance algorithm described in Appendix B guarantee
that the solution is built in a monotonous fashion.
Nonetheless, the splitting strategy for obtuse triangles
mentioned earlier can lead to situations in which the
marching procedure suddenly finds a smaller distance
value than a previously computed one. For example,
consider a simple situation like the one in Figure 18.

Suppose that the update procedure is approaching
by the lower-left side of the figure, where we have just
computed the final distance values for vertices T and
B, in that order (i.e., d (T) , d (B)). Assuming that B was
updated from T, we have d (B) 5 d (T) 1 TB (for
simplicity, we assume that the update comes directly
along the direction of BT). Next, we proceed to com-
pute the distance at C. As we have an obtuse angle at
C we must find the appropriate vertex in the unfolded
surface, corresponding to T (as seen earlier). If CT ,
BT we may find a value for d (C) satisfying d (C) ,
d (B), contrary to the upwind nature of the method. If
we have uniform weights, the value at B remains
correct, because the update of B from T (d (B) 5 d (T) 1
TB) is always smaller than the update of B from C
(d (B) 5 d (C) 1 CB 5 d (T) 1 TC 1 CB . d (T) 1 TB),
just using the triangular inequality TC 1 CB . TB. On
the other hand, if weights are non-uniform (as is our
case) the mentioned inequality does not hold any-
more, and we may find a smaller value for d (B) if its

update comes from vertex C. For example, suppose
that the cost to reach B is much higher than the one to
reach C. In this situation, it may be cheaper to reach B
via C, than going directly from T to B, thus obtaining
a smaller value for d(B).

Situations like this cause the algorithm to obtain
smaller distance values than previously computed
ones, in contradiction with the monotonous construc-
tion procedure intended by fast marching methods.
The cause of this problem is the previously mentioned
unilateral neighboring relationship that exists between C
and T; T is C’s neighbor, but C is not T’s neighbor. So,
when we update the neighbors of T, we do not con-
sider C, when we actually should.

In the implementation of the algorithm, any time a
situation like this arose, we recompute distances at all
vertices with greater distance values than the newly
computed one. Doing this, we guarantee monotony in
the construction procedure, as initially intended. In
practice, only immediate neighboring vertices can be
affected, and we have found enough and much faster
to recompute distances only at these vertices.

C.2. Handling non-acute triangulations in the back
propagation algorithm

If we consider the distance map dg(S‚)(x1, x2) for any
x1, x2 [ S‚, it should have only one minimum (global
minimum) corresponding to the point x1 having zero
distance. The splitting strategy for obtuse triangles
used in the construction procedure of the distance
function may produce local minima, however, causing
the back propagation algorithm to stop prematurely.
Kimmel (personal communication), pre-processes the
triangulated surface to eliminate all problems with
obtuse triangles, both the ones reported when build-

Figure 18.
Undesirable situation caused by splitting obtuse triangles. See text
for explanation.

Figure 19.
Handling obtuse triangles in the back propagation algorithm. Left:
Considering the shown neighborhood leads to the local minima
situation. Right: Neighborhood that gives the correct path
through the unfolded surface.
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ing distances and the ones discussed here. This pre-
processing is done to the whole surface, not just to the
triangles that will actually be used in the computation,
because this is not known a priori. We have opted for
the techniques here described that handles obtuse tri-
angles on the fly, as required by the computed path.

Such local minima does not actually exist, but we
may have situations like the one in Figure 19 where
we show a local neighborhood around vertex C. As
the angle ACB̂ is obtuse, we must consider the corre-
sponding vertex T in the unfolded surface.

Regarding Figure 19, suppose that d(C) is smaller than
any of its direct neighbors, and d(T) , d(C). It can be
easily proven that a situation like this can actually occur
as a result of the distance construction method. In this
situation, once we reach vertex C it appears as a local
minima (within its direct neighbors), and the back prop-
agating algorithm would fail (see Fig. 19, left). Instead,
we have to see further and consider the new neighboring
relationship existing between vertices C and T, leading to
the situation shown in Figure 19 (right), where two new
triangles are added as neighbors. This way, we now
follow the correct path, traversing through the unfolded
surface toward the minimum.

APPENDIX D

Computation of the mean curvature H

First (as described in Appendix A) we compute the
mean curvature as the divergence of the normal vector:

H 5 2div 1W (7)

where 1W is the outward unit surface normal.
Consider an oriented surface ! with closed bound-

ary d!; by the divergence theorem (see Lee [1997] for
example) we have

E
!

div 1W ds 5 E
d!

^1W , nW&dl

where nW is the outward unit normal to the curve d!,
whose length element is dl.

We now consider the following approximation for
the mean curvature

H 5 2div 1W 5 2 lim
!3 0

1
! E

d!

^1W , nW&dl. (8)

The discrete version of equation (8), when we have a
triangulated surface S‚, becomes

div 1W 5
1
A O

i51

p

^1W i, nW i&dli, (9)

where p is the number of neighbors of the current
vertex, and A is the local surface area, computed as the
sum of areas of all triangles sharing the central vertex
(Fig. 20).

The sum in equation (9) is computed along the
polygonal curve d!, as shown in Figure 20. Surface
normals 1W i are naturally associated to each vertex, and
are computed using common normal estimation pro-
cedures over triangulated surfaces. Curve normals nW i
are only defined along the sides of the polygonal
curve. To estimate its value at the vertices we average
the normals from both sides of the curve.

Intuitively, if all points in a local neighborhood are
coplanar, the products ^1W i, nW i& in equation (9) vanish
and we have H 5 0. Now, if we pull up the central
point in Figure 20 (as 1W i becomes closer to nW i) these
products start growing, giving higher values for H.

Note that the proposed approximation for the mean
curvature has a well defined dynamic range, namely,

uHu # supSD

¥
i51
n dli

A , which remains fixed once the

triangulation is given. This is a desirable property,
that avoids having outliers in the curvature values,
being particularly important when dealing with arbi-
trarily triangulated data.

Figure 20.
Three dimensional view of the triangulated surface element con-
sidered to compute the mean curvature using equation (9).
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