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Abstract: Recently, Everitt and Bullmore [1999] proposed a mixture model for a test statistic for activation
in fMRI data. The distribution of the statistic was divided into two components; one for nonactivated
voxels and one for activated voxels. In this framework one can calculate a posterior probability for a voxel
being activated, which provides a more natural basis for thresholding the statistic image, than that based
on P-values. In this article, we extend the method of Everitt and Bullmore to account for spatial coherency
of activated regions. We achieve this by formulating a model for the activation in a small region of voxels
and using this spatial structure when calculating the posterior probability of a voxel being activated. We
have investigated several choices of spatial models but find that they all work equally well for brain
imaging data. We applied the model to synthetic data from statistical image analysis, a synthetic fMRI
data set and to visual stimulation data. Our conclusion is that the method improves the estimation of the
activation pattern significantly, compared to the nonspatial model and to smoothing the data with a kernel
of FWHM 3 voxels. The difference between FWHM 2 smoothing and our method were more modest.
Hum. Brain Mapping 11:233–248, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

In the literature on analysis of functional magnetic
resonance imaging (fMRI) data, the focus is primarily
on the temporal aspect. Perhaps the most common
analysis scheme is to treat voxel time series separately,
and estimate the activation level voxel by voxel. This
framework ranges from simple t-tests and correlation
methods to more detailed models for the haemody-
namic response, and models that account for corre-
lated noise. The latter encompasses generalized linear

models and time series models. A few articles that fall
in this category are Bandettini et al. [1993], Bullmore et
al. [1996], Worsley and Friston [1995], and Lange and
Zeger [1997], but we refer to an overview article such
as Lange et al. [1999] for the long list of references that
should be cited in this context.

The spatial properties of the data are rarely modeled
with the same care as is given the temporal ones:
Common approaches are either to assume spatial in-
dependence or to smooth data spatially with a Gauss-
ian kernel. The latter approach has been studied pri-
marily by Keith Worsley in a series of articles (see, e.g.,
Worsley et al., 1996). Smoothing the data spatially is in
fact equivalent to using a nonparametric model for the
spatial activation pattern, assuming only smoothness
of the latter [Müller, 1988]. It should hence be viewed
as an estimation procedure that is optimal in this
model, but there is no general statistical reason for
smoothing. On the contrary, smoothing may produce
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a biased estimate by displacing activation peaks and
underestimating the height of the latter [Descombes et
al., 1998; Hartvig, 1999].

Even if explicit spatial models are rare, the value of
including spatial information in the analysis has been
recognized for many years. Commonly this is
achieved by assessing significance of activation by the
size of suprathreshold clusters. This was first sug-
gested by Poline and Mazoyer [1993] and later studied
from a theoretical point of view [Friston et al., 1994;
Poline et al., 1997] using Monte Carlo methods [For-
man et al., 1995] and permutation methods [Bullmore
et al., 1999]. In our minds the important distinction
here is that of a spatial model and the inference made
in this. Even if cluster size is used as a measure of
significance, the estimated pattern is still a product of
the underlying model used to produce the clusters.
Also in this context, the nonparametric smoothing
model seems to be the typical choice.

Recently, Descombes et al. [1998] proposed a
Markov random field model for the spatio-temporal
activation pattern and used this for estimation of the
latter. Their assumption is that the activation pattern is
spatially coherent, yet may possess sharp boundaries
between different regions, and the model introduces
this explicitly in the estimation procedure. Assessment
of uncertainty and significance is not straightforward
in this framework as it requires simulations of the
posterior distribution of the spatio-temporal activa-
tion pattern. In principle this may be done with
Markov chain Monte Carlo (MCMC) techniques [Gilks
et al., 1996], but because the state space of the spatio-
temporal activation pattern is enormous, it is a time-
consuming and far from trivial task. Instead the au-
thors suggested to use the procedure only as a
preprocessing step, and did not use the model for
making explicit inference on the activation.

The dimensionality of the activation pattern is much
reduced in Hartvig [1999] where stronger assump-
tions are made. Specifically, the activation is modeled
as a collection of centres with Gaussian shape but with
unknown extent and height. This enables inclusion of
prior information directly in the model, and simula-
tion of the posterior distribution is possible by MCMC.
However, also in this context the need to perform
lengthy simulations is a limitation of the method.

The problems of the two last approaches perhaps
explain the lack of spatial models: 1) It is somewhat
difficult to formulate the general idea of coherency of
activated regions in a specific model, which is still
general enough to model the range of patterns ob-
served in brain data. 2) Most spatial models are ana-
lytically intractable, and statistical inference must rely

on simulation methods, which are time consuming
and often require a lot of user interaction. The latter
makes them less suitable for routine use. In this article
we try to bridge the gap between formulating a spatial
model, which has some realistic properties, and the
computational feasibility, which makes it applicable in
a routine analysis. The idea is to formulate the model
through the marginal distribution on a small grid of
voxels, for instance a 3 3 3 region in the slice.

Though the model may be used as the spatial part of
a spatio-temporal model, we will only consider the
problem of estimating the activation pattern based on
a single summary image (or volume) of voxel-wise
activation estimates, also known as a statistical para-
metric map (SPM). Let {xi} denote the latter, where i
indexes the voxels. Recently, Everitt and Bullmore
[1999] (henceforth denoted EB) suggested a marginal
analysis of such an image. Let Ai be the indicator for
voxel i being activated. The approach of EB is to
calculate the conditional probability P(Ai 5 1uxi) for
each voxel, and use the latter to estimate the activated
areas. In order to calculate this, they specify the dis-
tribution of activated and nonactivated voxels, i.e. the
conditional distributions p(xiuAi 5 1) and p(xiuAi 5 0),
as well as the probability P(Ai 5 1). The method does
not use any spatial properties of the data.

What we propose in this article is to keep the sim-
plicity of the approach in EB, but to extend it in such
a way that spatial interaction is partly taken into ac-
count. Instead of using P(Ai 5 1uxi) we suggest to use
P(Ai 5 1uxCi

), where Ci is voxel i together with the
neighbouring voxels. The idea is that activated areas
tend to constitute a group of at least a few voxels,
hence voxel i has a higher chance of being activated if
both voxel i and some of its neighbours have high
values. Conversely, the activation probability is small
if xi is high, but all the neighbours have small values.
The main problem in this approach becomes the spec-
ification of the marginal probabilities of the activation
ACi

in the region Ci. We propose three different models
for these probabilities, ranging from a very simple one
to a more realistic one. Common to all is that the
probability of a voxel being activated has a simple
expression, which can be easily calculated.

THEORY

In the two first subsections we present an overview
of the method and the spatial models for the activation
pattern. The third subsection is on estimation of pa-
rameters in the model and is more technical than the
two first. The reader who is most interested in the
general concept and examples of application of the
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model may skip this third subsection on a first read-
ing.

Overview of the mixture model

As mentioned in the introduction, we assume that a
statistical parametric map {xi} is given, and we wish to
derive a posterior probability that a voxel is activated
using this map. In the following we will describe how
a local model for the activation pattern around a voxel
i can be used to incorporate spatial information in the
posterior probability. In order to simplify notation we
will drop the voxel index i from the notation.

Suppose we consider k neighbours around voxel i.
Typically these would be the 8 neighbours in a 3 3 3
square in the slice or the 26 neighbours in a 3 3 3 3 3
cube in a volume of slices with voxel i in the centre.
We will let C denote the set of k 1 1 voxels given by
voxel i together with the k neighbours.

We will let A be an indicator for the event that voxel
i is activated, in the sense that A 5 0 means that there
is no activation in voxel i and A 5 1 means that the
voxel is activated. Likewise, we will let A1, . . . , Ak be
a vector of indicators for activation in the k neigh-
bours. We index the As by a superscript to avoid
confusion with the usual voxel subscript. Finally AC 5
(A, A1, . . . , Ak) is the vector of all activation indicators
in C. We will consider this as a vector of unobserved
stochastic variables and formulate a model for its dis-
tribution. Thus for each vector aC 5 {0, 1}k11 we spec-
ify the prior probability P(AC 5 aC) that the activation
configuration takes a particular value. Different
choices of models, which reflect the idea that activated
areas tend to constitute a cluster of voxels, are pro-
posed in the next section.

Rather than observing AC, we observe xC 5 (x,
x1, . . . , xk), the values of the test statistic for activation
in the different voxels. Like before x is the value for
voxel i, and x1, . . . , xk are the values for the neigh-
bours. The usual hypothesis testing approach assumes
a specific model for x given that the voxel is not
activated, for instance that this is a normal variable
with zero mean and unit variance. In our setup, we
require that one can also specify the alternative distri-
bution, i.e., the distribution of x given A 5 1. In EB the
statistics are fundamental power quotients (FPQ),
which have respectively a central and a noncentral
x2-distribution under the two activation states. In our
Example 3, the test statistics are the estimated activity
level from a regression analysis, and it is natural to
take (xuA 5 0) ; N(0, s2). When the voxel is activated,
A 5 1, it is not so clear what the proper distribution is.
We find that the range of different activation levels are

described well by a Gamma distribution, (xuA 5 1) ;
G(l, b). Denote the distribution of xC given AC 5 aC by
the density f(xCuaC).

When these two parts of the model are specified it is
straightforward to calculate the posterior probability
of an activation configuration aC given the data xC,
since, by Bayes rule, this is given by

P~AC 5 aCuxC! } f~xCuaC!P~AC 5 aC!.

Thus the posterior probability that the activation pat-
tern AC equals aC is simply proportional to the likeli-
hood of observing xC given AC 5 aC times the prior
probability of AC 5 aC. In particular, one may calculate
the probability that voxel i is active or not, irrespec-
tively of the neighbours, by summing over the neigh-
bouring states,

P~A 5 auxC! } O
a150

1

· · · O
ak50

1

f~xCuaC!P~AC 5 aC!, (1)

where aC 5 (a, a1, . . . , ak). The constant of proportion-
ality can be determined from the fact that the proba-
bilities P(A 5 0uxC) and P(A 5 1uxC) must sum to one.

The problem with using this approach in practice is
the calculation of the sum in (1), which has 2k terms. In
the situation with a 3 3 3 3 3 neighbourhood cube, the
sum thus has 226 or about 67 million terms, and since
we must calculate this for each voxel in the volume,
we are facing an order of 1013 iterations. Even though
the computations may be performed in parallel, this is
of course hopelessly too many in practice. The main
contribution of our method is that we propose models
for P(AC 5 aC), which are able to model clustered
activation, but where the sum may be calculated ana-
lytically. Thus we obtain a simple, closed form expres-
sion for the posterior probability that a voxel is acti-
vated, which may be calculated almost instantly.
These are given for each of the three models in the
following sections, see equations (4), (16), and (19).

We will assume in the following that the statistics xC

are independent given the true activation pattern AC.
Thus the density of xC given AC can be written as,

f~xCuAC 5 aC! 5 f~xua! P
j51

k

f~xjuaj!,

where f(xua) is the density of x given A 5 a.
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Models for the marginal probabilities

In this section we give three choices for the marginal
probabilities P(AC 5 aC), aC 5 (a, a1, . . . , ak) [ {0, 1}k11.
For an activation configuration aC, we will let s 5 a 1
a1 1 . . . ak, that is the number of ones in aC.

Model 1

Perhaps the most simple choice is to take

P~AC 5 aC! 5 H q0 if s 5 0,
q1 if s . 0. (2)

Since there are 2k11 values of aC we must have q0 5
1 2 (2k11 2 1)q1 in order that the probabilities sum to
one. Thus this distribution has only one parameter
and a natural way of interpreting this parameter is
through the probability p of a voxel being activated.
This gives p 5 q12k or

q1 5 p2 2 k and q0 5 1 2 ~2 2 2 2 k!p. (3)

Notice that in the model there is equal probability of
observing a configuration with all ones and one with
only ones in a corner of the region C, for instance. If
we expected the activated areas to be large coherent
regions, the former probability should be larger than
the second, whereas if we expected the areas to be of
moderate size but with long boundaries, the second
probability should be larger than the first. The above
model hence represents the situation that we neither
believe that activated regions consist of single voxels
nor that they are very large.

We will illustrate in this simple situation how the
posterior probability in (1) may be calculated. We shall
be using the equality

O
a150

1

· · · O
ak50

1 SP
j51

k

f~xjuaj!D 5 P
j51

k

$ f~xju0! 1 f~xju1!%.

Let h denote the above product. When a 5 0 the
expression in (1) is

P~A 5 0uxC!

} f~xu0! O
a150

1

· · · O
ak50

1 SP
j51

k

f~xjuaj!D P~AC 5 aC!

5 f~xu0! Sq1h 1 ~q0 2 q1! P
j51

k

f~xju0!D ,

and when a 5 1 we simply get

P~A 5 1uxC! } f~xu1!q1h.

Since the two probabilities must sum to one, we find,

P~A 5 1uxC!

5
f~xu1!q1h

f~xu1!q1h 1 f~xu0!Sq1h 1 ~q0 2 q1! P
j51

k

f~xju0!D
5 H1 1

1
v F1 1 Sq0

q1
2 1D SP

j51

k

~1 1 v j!D 2 1GJ 2 1

,

(4)

where

v 5
f~xu1!

f~xu0!
, v j 5

f~xju1!

f~xju0!
j 5 1, . . . , k. (5)

Notice that v is the likelihood ratio for the voxel being
active vs. not active. The formula (4) thus effectively
combine the likelihood ratios from voxel i together
with those of its neighbours to calculate the posterior
probability of activation. The formula shows in a di-
rect way the difference to the approach in EB. If all the
neighbours are nonactivated then (4) will typically be
of the order

H1 1
f~xu0!

f~xu1!

q0

q1
J 2 1

whereas if at least one neighbour is activated the order
is typically

H1 1
f~xu0!

f~xu1!J
2 1

.

For illustration let us consider the case where p 5 0.02
and k 5 8. Then q0/q1 5 12289, and if f(xu0)/f(xu1) '
exp(28) then the first term is 0.20 whereas the second
expression is 0.9997.

Model 2

Another simple choice of P(AC 5 aC) is

r Hartvig and Jensen r

r 236 r



P~AC 5 aC! 5 H q0 if s 5 0,
ags 2 1 if s . 0. (6)

Here g 5 1 gives back the model 1 in (2), whereas the
restriction a 5 g/(1 1 g)k11 corresponds to the model
where the voxels are independent and the probability
of a voxel being activated is g/(1 1 g). The latter is
equivalent to the model in EB.

The model may be parametrized by the probability
p of a voxel being active, which is given as p 5 a(1 1
g)k, and by g. The latter is a measure of correlation of
neighbouring activation sites. The last parameter q0 is
given by the constraint that the probabilities must sum
to one. The posterior probability of activation may be
derived in the same way as in model 1, the expression
is given in (16) in the appendix.

Model 3

Finally, we will consider a model of the form (6), but
being more symmetric with respect to activated and
nonactivated voxels. We will consider the model

P~AC 5 aC! 5 Hq0 if s 5 0,
a1g1

s 2 1 1 a2g2
s 2 k if 1 # s # k,

q1 if s 5 k 1 1.
(7)

The model may be parametrized by the probability p
of a voxel being active, and 4 other parameters de-
scribing the correlation between voxels. The relation
between parameters may be found in the appendix, as
may the expression for the probability that a voxel is
active (18).

Estimation of parameters

For estimation purposes, we will now study the
whole volume of voxels, v, rather than just a single
voxel. For this reason, we will let the notation depend
explicitly on the voxel index. Rather than just using xC,
we will let xCi

denote the vector of observations in the
region Ci around voxel i. The elements of the vector
are denoted by xCi

5 (xi
0, xi

1, . . . , xi
k), thus xi

0 refers to
the statistic xi in voxel i, and xi

1, . . . , xi
k to the statistic

in the k neighbours of i. Similarly AC is changed to ACi

5 (Ai
0, Ai

1, . . . , Ai
k) and the likelihood ratios (5) are

denoted vi
j, where

vi
j 5

f~xi
ju1!

f~xi
ju0!

, j 5 0, 1, . . . , k, i [ V.

Within the model we can calculate the marginal
density of xCi

. We denote this by f(xCi
; f, c), where f

parametrizes the conditional distribution of xCi
given

ACi
, and c parametrizes the marginal distribution of

ACi
. Thus

f~xCi; f, c!

5 O
aC [ $0,1%k 1 1

f~xCiuACi 5 aC; f!P~ACi 5 aC; c!.

A possibility for estimating the parameters (f, c) is to
maximize the contrast function

g~f, c! 5 O
i[V

log f~xCi; f, c!. (8)

This is related to maximum likelihood estimation, in
particular the estimators will be asymptotically nor-
mal distributed under conditions where the maximum
likelihood estimators are. For model 2, and hence also
for model 1 by setting g 5 1, we get

f~xCi; f, g, a! 5 P
j50

k

f~xi
ju0; f!

3 Ha

g P
j50

k

~1 1 gvi
j~f!! 1 1 2

a~1 1 g!k11

g J . ~9!

The formula for model 3 is given in (19) in the appen-
dix.

Usually, though, we will take a more simple ap-
proach instead of using (8). We propose to use only
the marginal distribution of xi to estimate f and the
fraction of activated voxels p. The marginal density of
xi is a mixture density

f~x; f, p! 5 ~1 2 p!f~xu0; f! 1 pf~xu1; f!. (10)

We thus maximize the contrast function

gm~f, p! 5 O
i[V

log f~xi; f, p! (11)

to estimate f and p. Under model 1 all parameters
have been estimated this way.

When P(ACi
5 aCi

) is given by model 2 we still
estimate p 5 a(1 1 g)k from (11). The remaining pa-
rameter g may then be estimated from the empirical
covariance of {xi}: Suppose, for example, that (xuA 5
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0) ; N(0, s2), and (xuA 5 1) ; N(1, s2). Then the
covariance of xi and xj is given by

Cov~xi, xj! 5 P~Ai 5 Aj 5 1! 2 P~Ai 5 1!P~Aj 5 1!

5 P~Ai 5 Aj 5 1! 2 p2. (12)

If j is a neighbour to i, say neighbour number 1, we
may derive the first probability as

P~Ai 5 Aj 5 1! 5 O
aj [ $0,1%,j52,. . .,k

P~ACi 5 aC!

5 ag O
aj [ $0,1%,j52,. . .,k

ga2 1 · · · 1 ak

5 ag~1 1 g!k21 5 p
g

1 1 g
. (13)

Notice that the two expressions above do not depend
on the position of the neighbour j. Suppose an esti-
mate Ĉ of the covariance Cov(xi, xj) is given. This may
be combined with the estimate p̂ of p to form an
estimate of g by the equations above,

ĝ 5
b

1 2 b where b 5 Ĉp̂211p̂. (14)

Since the covariance is the same for all neighbours, we
may combine estimates of the covariance at different
spatial lags within the neighbourhood, to form the
estimate Ĉ. In practice in our examples (where we
consider respectively 3 3 3 and 5 3 5 neigh-
bourhoods) we have used the eight nearest neigh-
bours to estimate the covariance,

Ĉ 5
1
4 ~Ĉ~1,0! 1 Ĉ~1,1! 1 Ĉ~0,1! 1 Ĉ~ 2 1,1!!.

Here Ĉl is the correlogram for the spatial lag l [Cressie,
1991],

Ĉl 5
1
Nl

O
j[V, j1l[V

~xj 2 x# .!~xj 1 l 2 x# .!,

where V denotes the set of brain voxels, Nl is the
number of terms in the sum, and x# . is the average of
the xi’s.

Notice that the probability in (13) only depends on
the model for AC, and hence applies whenever model

2 is considered. This is not true for the covariance in
(12), which depends on the distribution of x given A.
In the setup above we have considered a statistic
which is distributed as (xuA 5 0) ; N(0, s2) and (xuA 5
1) ; N(1, s2). When more generally (xuA 5 1) ; N(m,
s2) where m . 0, we obtain the setup above by scaling
x by m21. When the distribution of x is not normal, we
need to calculate the covariance in (12) for the distri-
bution considered. A general formula, which applies
whenever xi and xj are conditionally independent
given Ai and Aj, is given by

Cov~xi, xj! 5 Cov~E~xiuAi!, E~xjuAj!!.

Usually it is straightforward to calculate the right-
hand side above. This is the approach used in Example
3, where xi has a Gamma distribution when Ai 5 1.

As for the model 3, this has 4 free parameters when
p is given. Moment estimators may be derived for
these as above, but we will refrain from this since the
equations get more complicated. Instead we will esti-
mate the remaining parameters from (8).

In our examples below we have used the simplex
method to maximize the contrast functions [Press et
al., 1992]. The standard errors of the maximum con-
trast estimators may be obtained by general asymp-
totic theory, see for instance Heyde [1997]. Cressie
[1991] provides formulas for the standard error of Ĉl.
Presently we have no formal way of including the
uncertainty of the parameters in the analysis; it is,
however, our experience that the posterior probability
maps were quite robust to the observed variations in
the parameters. In fact, as we will show in Examples 2
and 3, they are quite robust to the choice of model.

SIMULATIONS AND APPLICATIONS

We will illustrate the method by applying it to two
synthetic data sets (where the truth is known) and a
visual stimulation data set. For the synthetic data, we
may quantify results by classification error, statistical
power or true positive rate (TPR), and level of signi-
ficance or false positive rate (FPR). For a given thresh-
old, the classification error is estimated as the number
of misclassified voxels (either type I or type II errors),
divided by the total number of voxels. The TPR is
estimated as the number of active voxels classified as
active, divided by the total number of active voxels.
The FPR is estimated as the number of nonactive
voxels that are classified as active, divided by the total
number of nonactive voxels.
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Example 1: Image restoration data

We will apply the models to a classical problem in
statistical image analysis, namely the restoration of
an unknown true image based on a degraded ver-
sion of it. Techniques for achieving this are applied
in many areas where images are recorded or trans-
mitted with noise, including remote sensing images,
satellite images, and medical images. In functional
brain imaging the problem is more complex than in
the setting above: It is not as evident what the “true
scene” is or which geometric characteristics it has,
and the noise sources are far more complex than in
image restoration problems. It still serves a purpose,
however, to study how the models perform in this
more simple problem, in order to understand the
characteristics of the models, before moving on to
more complex data.

We will consider two images. The first (denoted
Image I) is the 64 3 64 binary image of an ‘A’ by Greig
et al. [1989], see Figure 1. The image is corrupted with
binary noise, where a pixel Ai with probability q is
replaced by 1 2 Ai. The probability densities of the
degraded pixel Xi given the true value Ai are then

f~xuA 5 0! 5 qx~1 2 q!12x, x [ $0, 1%,

f~xuA 5 1! 5 ~1 2 q!xq12x, x [ $0, 1%.

The error rate q was set to 25%. Five independently
corrupted images were produced, in order to assess
the variability of the estimates. The results are sum-
marized in Table I and some of the image estimates
are displayed in Figure 1.

The second image (Image II) is the binary image
displayed in Figure 4a of Besag [1986]. The image was
corrupted by adding white Gaussian noise with stan-
dard deviation 0.9105. In this setting the densities of a
pixel Xi given Ai are

f~xuA 5 0! 5
1

Î2pt
e2x2/2t2, x [ R,

f~xuA 5 1! 5
1

Î2pt
e2(x21)2/2t2, x [ R,

where t 5 0.9105. We produced five independent
noisy images to assess the variability of estimates. The
results are given in Table I.

For each model, the parameters were estimated both
by maximizing the contrast function (8) and, for model
1 and 2, by the simple estimators described earlier. As
the results were almost similar, we give only the fig-
ures for the maximum-constrast estimates. In practice
we recommend that the simple estimators should be
used when possible, since they are much easier to
obtain, and give almost as good results.

TABLE I. Estimated classification errors for the three
models and the ICM and MAP estimates*

Model

Classification error

Image I Image II

1, 3 3 3 10.0 (0.3) 14.6 (0.3)
1, 5 3 5 9.4 (0.2) 12.2 (0.2)
2, 3 3 3 7.6 (0.3) 9.0 (0.4)
2, 5 3 5 5.9 (0.8) 6.4 (0.2)
3, 3 3 3 7.6 (0.3) 9.0 (0.4)
3, 5 3 5 6.1 (0.3) 6.2 (0.3)
MAP 5.2 (0.2) 5.5 (0.2)
ICM 6.3 (0.4) 6.4 (0.1)

* Based on 5 independent simulations of the degraded image. Image
I refers to the true image in Figure 1, degraded with binary noise.
Image II refers to the image in Figure 4a in Besag [1986], degraded
with Gaussian noise. All figures are in percent; standard errors of
estimates are given in parentheses.

Figure 1.
Comparison of spatial mixture models. Top row: Image I and
degraded version. Middle row: Estimates of the true image based
on model 1, 2, and 3 applied to a 3 3 3 pixel region. Bottom row:
Same as above, but with the models defined on a 5 3 5 region.
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We calculated the posterior probability of A 5 1
given XC in each pixel, and the estimate of the true
image was obtained by thresholding the probability
image at 0.5. The estimates for one of the noisy ver-
sions of image I can be seen in Figure 1.

The estimated classification error and its standard
error are listed in the second and third column of
Table I. The first column lists the models used in this
example. The models 1, 2, and 3 were applied, respec-
tively, defined on a 3 3 3 pixel region and on a 5 3 5
region. For comparison, we have reproduced the clas-
sification errors of the maximum a posteriori (MAP)
estimate and the iterated conditional modes (ICM)
estimate, which can be found in Greig et al. [1989].
These two estimates are based on the same global
model for the true image, but only the local properties
of the model are used with ICM.

The table shows that model 1 performs worse than
model 2 and 3, which is also clear from Figure 1. It is
also clear that the 5 3 5 region models are superior in
this setting, which is not surprising as the true images
are quite regular with large patches of either black or
white. We might suspect that the 3 3 3 models will be
more appropriate in brain imaging, where the true
scene is not as regular. Model 2 and 3 perform almost
equally well, hence we prefer model 2, since this only
has two parameters.

Model 2 performs well compared to the ICM and
MAP methods also. There are several practical differ-
ences between these and our model: First, it is more
computationally intensive to obtain the ICM and MAP
estimates than our posterior probability images. The
latter are calculated in closed form while the ICM and
MAP procedures require iterative algorithms. Second,
the MAP and ICM procedures depend on a smoothing
parameter that, especially for the MAP estimate, is
crucial for the reconstructed image. In this case, the
value of the smoothing parameter was based on the
true image, which is of course not possible in practice.
On the contrary, the parameters of model 2 are esti-
mated directly from the observed image. Seen in this
light, our model seems to be an attractive alternative
to the traditional methods. It is however not as flexible
as the ICM approach, which can be generalized for
instance to multicolour settings.

Example 2: Simulated fMRI data

In order to study the performance on data, which
are closer related to brain imaging problems than the
ones in Example 1, we have applied the methods to a
synthetic fMRI data set. We used the data set of Lange
et al. [1999], which was generated from 72 baseline EPI

scans that were temporally resampled to 384 scans.1

We refer to the article for a full description of the data,
but will repeat the basic properties here. A region of
24 3 12 voxels is considered, and in each voxel the
time series is linearly detrended. Denote the residual
time series by Yit, where i indexes voxels i 5 1, . . . , V
and t indexes scan t 5 1, . . . , T. Here V 5 288 and T 5
384. Artificial activation was added to obtain the ac-
tual data Zit, say, by the model

Zit 5 bixt 1 Yit,

where the magnitude of activation bi is given by

bi 5 msY,i.

Here sY,i
2 is an estimate of si

2, the variance of Yit, given
by

sY,i
2 5

1
T 2 1 O

t51

T

~Yit 2 Y# i.!2, Y# i. 5
1
T O

t 5 1

T

Yit.

The temporal activation pattern xt is a simple binary
function, where xt 5 0 when off and xt 5 1 when on,
for t 5 1, . . . , T. The function is periodic with 8 runs,
each of length 48 scans with 12 scans off, 24 on and 12
off. The ratio m of the activation magnitude to stan-
dard deviation was chosen to be positive and constant
in the two connected regions of size 25 and 37 voxels
depicted in Figure 2, and zero elsewhere. According to
Lange et al. [1999], a value of m 5 0.15 was chosen in
the activated areas, however when estimating m di-
rectly from the data by a regression analysis (when the
true activation pattern is known), we obtain m̂ 5 0.43
with a standard error of 0.015. The value of m is not
important for the present study, however.

In order to make the estimation problem a bit
harder than in the article, we divided the data into 4
subsets, each of length 96 scans. We estimated the
spatial activation pattern from a single subset at a time
and used the empirical variation over the four subsets
to evaluate the uncertainty of our results.

Consider a voxel time series at voxel i, Zit, for t 5
1, . . . , T0, T0 5 96. We tested for activation by a t-test.
More specifically, the estimate of the activation level is
given by

1The data may be obtained from the address http://pet.med.va.gov:
8080/plurality.

r Hartvig and Jensen r

r 240 r



b̂i 5
1

SSDx
O
t51

T0

Zit~xt 2 x# .!, SSDx 5 O
t51

T0

~xt 2 x# .!2,

and the variance of Zit is estimated by

si
2 5

1
T0 2 2 O

t51

T0

~Zit 2 Z# i. 2 b̂ixt!
2

, si
2x2~T0 2 2!/~T0 2 2!.

Here x2(f) denotes the x2-distribution with f degrees of
freedom. Then the statistic

Xi 5
b̂i

Îsi
2/SSDx

i 5 1, . . . , V,

has a t-distribution with T0 2 2 5 94 degrees of
freedom, if the voxel is not activated. Since the degrees
of freedom are quite large, it is reasonable to make
the approximation that the variance estimates are
exact, sY,i

2 5 si
2 5 si

2, whence we get a normal distri-
bution for Xi,

Xi , H N~m, 1!, if i is activated,
N~0, 1!, if i is not activated,

where m 5 m=SSDx. The image of test statistics {Xi}
hence follows a mixture distribution, where the mean
is positive when the voxel is activated and zero when

not, and the setup is as in the Overview of the Mixture
Model section with

p~xuA 5 0! 5
1

Î2p
e2x2/2, x [ R,

p~xuA 5 1! 5
1

Î2p
e2(x2m)2/2, x [ R.

We have assumed here that the temporal correlation is
zero, which is necessarily an optimistic assumption.
Temporal correlation will affect the variance of b̂i, but not
the mean, and will lead to a higher variance of the
statistic Xi, than stated above.

Figure 2 displays the image of t-statistics for the first
of the four subdata sets. The posterior probability that
a voxel is activated was calculated using the simple
mixture model without spatial interaction, i.e., the
setup of EB, and the models 1, 2, and 3. The image of
posterior probabilities was thresholded at 0.5, which is
a natural level when specifying a neutral balance be-
tween type I and II errors. The thresholded activation
images are displayed in Figure 2. Clearly the spatial
models (1, 2, 3) represent the true activation pattern
much more closely than the simple mixture model.
When using the latter, we effectively threshold the
raw t-statistic image at a certain level, while at the
spatial models we use information in neighbouring
voxels, when classifying a voxel.

In Table II the models are compared quantitatively
by their ability to classify voxels correctly, and by the
TPR at a given level of significance (FPR). The thresh-
old was adjusted to yield an empirical FPR of 5% and
1%, respectively, in each image, and the TPR of this
level was calculated. While the TPR estimates provide

TABLE II. Comparison of models for the synthetic fMRI
data in Figure 2*

Model Class. error TPR (level 5%) TPR (level 1%)

EB 11.0 (0.7) 66.1 (2.3) 46.8 (5.0)
1, 3 3 3 6.3 (0.5) 88.3 (0.8) 65.7 (4.0)
1, 5 3 5 7.0 (0.3) 85.1 (2.0) 57.7 (6.3)
2, 3 3 3 6.3 (0.8) 90.7 (1.4) 72.5 (2.4)
2, 5 3 5 6.6 (0.8) 84.3 (2.9) 74.6 (3.5)
3, 3 3 3 6.3 (0.7) 87.5 (2.3) 66.5 (3.5)
3, 5 3 5 7.4 (0.3) 82.7 (3.0) 51.6 (7.6)

* From left to right are estimates of classification error for the
thresholded images and TPR for images thresholded at a FPR of 5%
and at 1% respectively. All figures are in percent. Standard errors of
estimates, expressing the variability over the four sub-datasets, are
given in parentheses.

Figure 2.
Activation images for the first of four subsets of the synthetic
dataset. Top left and middle: True binary activation image and
observed t-statistics image. The remaining are thresholded poste-
rior probability images for the different models. EB: Everitt and
Bullmore’s mixture model. 1, 2, and 3: Models 1, 2, and 3 defined
on a 3 3 3 region or a 5 3 5 region. The images were thresholded
at posterior probability 0.5.
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an idea of the strength of the classification test, they
are mainly of theoretical interest, since the threshold
used was calculated given the true activation pattern.
On the contrary to this, the classification error mea-
sures reproducibility of the true pattern, when a prac-
tical and objective threshold is applied.

The table confirms the impression from Figure 2:
The simple mixture model has the worst classification
error and the lowest power. The three spatial models
perform almost equally well, and a grid of 3 3 3
voxels gives the best result for this data. If the acti-
vated areas were larger than these, the 5 3 5 model
might be more suitable; however, this activation pat-
tern seems reasonably representative for real data, and
hence we recommend the 3 3 3 model to be used in
practice. When considering the power, model 2 is
slightly superior to the models 1 and 3, though this is
not significant. Models 1 and 2 are furthermore pref-
erable to model 3, since they have only 1 and 2 pa-
rameters, respectively.

We may conclude that model 2 applied to a 3 3 3
neighbourhood is preferable in this situation: The
statistical power is more than 90% at a significance
level of 5%, and the misclassification is reduced by
more than 40% compared to the simple mixture
model.

We will compare the performance of model 2 with a
nonparametric model, where the activation is esti-
mated by smoothing the data spatially with a Gauss-
ian kernel of full width at half maximum (FWHM) 2
and 3 voxels, respectively, before calculating the t-
statistic image. This is perhaps the most common way
of including spatial information in the analysis of
fMRI data, and usually the smooth t-image is thresh-
olded using the random fields theory [Worsley et al.,

1996]. Voxels may then be classified either on the basis
of peak height or on cluster size. However, our aim
here is not to compare results from thresholding based
on random fields theory with that based on posterior
probabilities. We think this is difficult as the underly-
ing principles and assumptions are fundamentally dif-
ferent. Rather we wish to compare the estimates of
spatial activation pattern obtained by the two models.
For this reason, we have thresholded the activation
images in a comparable way, namely at the level
which yields an actual FPR of 5% and 1%, respec-
tively, based on the true activation pattern. Figure 3
displays the estimated activation patterns.

From the first row, we see that the distinction
between noise and activation is dramatically differ-
ent on the posterior probability scale compared to
the t-image scale. EB made similar observations
when comparing p-values and posterior probabili-
ties. The two last rows show that the nonparametric
model yields estimates which are smoother than the
true regions, while the regions of model 2 are more
irregular and have more holes. The estimated TPR
for the nonparametric model are given in Table III.
By comparing this with Table II, we see that model
2 reproduces the true activation best, as it has the
highest TPR for each level of FPR. The difference is
only significant for FWHM 3.

Example 3: Visual stimulation fMRI data

We finally considered a visual stimulation data set
acquired with T*2-weighted EPI on a 1.5 T scanner at
the MR Research Centre, Aarhus University Hospital
in Denmark. The data consist of 90 128 3 128 scans
(5 3 1.875 3 1.875 mm voxels) for each slice, with a TR
of 2 sec. Five oblique slices were acquired in axial-
coronal direction through the visual cortex. The stim-
ulus was a 7 Hz flashing light, which was presented in
a blocked paradigm of 10 scans off, 10 scans on, etc.,
starting an ending with an off period. The first 5 scans
were discarded, and we selected one of the slices for
this analysis.

Figure 3.
Activation images for the first of four subsets of the synthetic
dataset. From left to right: Model 2 defined on a 3 3 3 region and
the nonparametric model with FWHM 2 and 3 voxels, respec-
tively. Top row: Original activation images. Below: Images thresh-
olded at empirical FPR 5% (middle) and 1% (bottom).

TABLE III. Estimates of TPR for nonparametric
activation images in Figure 3*

Model TPR (level 5%) TPR (level 1%)

NP, FWHM 2 89.5 (2.0) 66.9 (2.8)
NP, FWHM 3 78.6 (3.4) 46.0 (6.7)

* Thresholded at a FPR of 5% and at 1%, respectively. All figures are
in percent. Standard errors of estimates are given in parentheses.
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The scans were realigned by minimizing the
squared distance of each scan to a reference scan un-
der rotations and translations. Next we log-trans-
formed the data and masked 4389 brain-voxels out. A
linear model was fitted individually to each voxel time
series. The mean value space was spanned by a linear
trend and a model for the haemodynamic response
function given by a convolution of the paradigm with
a Gaussian function with mean 6 sec. and variance 9
sec2. The estimated activation amplitude was divided
by its standard error to yield an image of t-statistics.
The latter is displayed in the first panel in Figure 4.

We did not account for correlation in the time series,
whence we expect the variance of the statistics to be
larger than the theoretical variance of the t-distribu-
tion. We investigated the empirical distribution of the
set {xi} of 4,389 statistics and found that a mixture of
three components fitted well to this. Two of these were
Gamma distributions, modeling respectively positive
and negative BOLD effects, and one was a Normal

distribution modeling the noise. The fitted density
was

f~x! 5 p0fN~x; 0, s2! 1 p 2 fG~2x; l 2 , b 2 !

1 p 1 fG~x; l 1 , b 1 !, (15)

where fN( z ; m, s2) denotes the density of a normal
distribution with mean m and variance s2 . 0, and
fG( z ; l, b) is the density of a Gamma distribution with
mean l/b and variance l/b2,

fG~x; l, b! 5
bl

G~l!
xl 2 1e 2 bx, x . 0, l . 0, b . 0.

With the requirement that p0 1 p1 1 p2 5 1, there are
7 free parameters, which were estimated by maximiz-
ing the likelihood function under the restriction that

Figure 4.
Comparison of estimated activation
patterns for the different mixture mod-
els of the visual stimulation data. Top
left and middle: Raw image of t-statistics
and an enlarged section of this. The
remaining panels are posterior proba-
bility images thresholded at 0.5. Top
right: nonspatial mixture model. Middle
and last row: Models 1, 2, and 3 defined
on respectively a 3 3 3 voxel region
(middle row) and 5 3 5 voxel region
(last row).
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E~XuX . 0! 5

O
i51

V

xi1~xi . 0!

O
i51

V

1~xi . 0!

,

i.e., the mean of X given that it is positive, must equal
the empirical mean of the positive xi’s. It is well
known that the likelihood function may be un-
bounded in mixture models, and the latter restriction
was imposed to reduce the parameter space to finite
likelihood values. The estimates are given in Table IV.

We are only interested in detecting positive activa-
tion in this example. Therefore we write f(x) as

f~x! 5 ~1 2 p1!f~xuA 5 0! 1 p1f~xuA 5 1!,

where

f~xuA 5 0! 5
p0

p0 1 p2
fN~x; 0, s2!

1
p2

p0 1 p2
fG~2x; l 2 , b2!

is the null distribution and

f~xuA 5 1! 5 fG~x; l1, b1!

is the distribution of x, given that the voxel is posi-
tively activated.

The setup is hence as given previously, only here
the null distribution represents both no activation and
negative BOLD effects. As an alternative to the
Gamma distribution for positive activation, one could
consider the sum of a Gamma and a Normal distribu-
tion, to account for the fact that the activation level is
observed with noise. The density of the latter is, how-
ever, not available in closed form, and because the
distributions are very similar at the present noise
level, we have chosen a single Gamma.

Figure 4 shows the image of statistics {xi} and en-
larged sections of thresholded posterior probability
maps for the nonspatial mixture model (EB), and for

models 1, 2, and 3. The images were thresholded at
0.5. Like in the previous section, there is hardly any
difference between the different spatial models, but
there is a striking difference between the EB model
and the others. In general the activated areas are larger
with the spatial models and small (i.e., single voxel)
areas are suppressed. Clearly we can only speculate
whether these estimates are more accurate. However,
the simulated data of the previous section suggest that
for activated areas of a certain size, the spatial model
gives a significantly improved estimate. The idea that
activation should have a certain spatial extent is the
rationale behind spatial smoothing and other filtering
techniques, and hence also this methodology.

In Figure 5 we have displayed the estimate one gets
by smoothing the original data before calculating the
statistical image. We have no directly comparable way
of thresholding this image, instead we have thresh-
olded the image at three different levels. The mixture
model estimates have some similarities with these
activation patterns, but clearly the latter are much
smoother. Again we can only speculate what is most
accurate. It is, however, well known [Müller, 1988]
that a kernel smoothing estimate will be biased, in the
sense that the estimate will be smoother than the
underlying signal. This is a likely explanation for the
difference in smoothness.

DISCUSSION

Conceptual summary

We have proposed a spatial mixture model for a
statistical parametric map {xi}. The idea is to model the
distribution of xi both when the voxel is not active and
when it is. Typically the nonactivated distribution is
known, this is the usual null distribution of the SPM.
The activation distribution might either be a simple
noncentral version of the null distribution, as in Ex-
ample 2, or a completely different distribution, which
models the range of different activation strengths ob-
served in the data, as in Example 3. The activation
pattern is described by an unobserved volume of bi-
nary indicators, {Ai}. We suggest three different prior
models for this pattern, which reflect the property that
activation tends to occur in clusters rather than indi-
vidual pixels. By formulating the models locally on a
small region of pixels, it is possible to obtain a closed
form expression for the posterior probability that a
voxel is activated, given the values of the SPM in a
region around the voxel.

To use the method in practice all one needs to
specify are the two distributions of the test statistic. As

TABLE IV. Parameter estimates for the distribution
(15) of {xi}

ŝ 5 1.5160 p̂1 5 0.0502 p̂2 5 0.0081
l̂1 5 6.2349 l̂2 5 56.923
b̂1 5 0.9433 b̂2 5 10.253
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in an ordinary analysis, the choice of test statistic
influences the sensitivity, but there are no restrictions
on the class of statistics that may be employed: the
only requirement is that one can specify parametric
distributions for the two activation states.

The proposed models account to some extent for the
spatial structure of the underlying activation pattern.
We found that the three different models worked al-
most equally well on synthetic and real fMRI data. In
fact we tested two more advanced models also, but
they gave similar results. (The models are described in
a research report by the authors.) We recommend
model 2 to be used in practice: It has only two param-
eters, with natural interpretations: One is p, the prob-
ability of a voxel being activated. An estimate of p is a
global measure of the fraction of activated voxels,
which is of interest in itself. The other is g, which is a
measure of the correlation of the true activation field.
The parameters may be estimated directly from the
data.

When modeling only a single slice with 1.9 mm vox-
els, we found that a 3 3 3 neighbourhood worked well.
When a volume of slices is considered, the neigh-
bourhood could be extended with the two voxels di-
rectly below and above the centre or to a 3 3 3 3 3 cube.
This should of course depend on the interslice distance.

Comparison with existing methods

The methodology extends that of EB, who proposed
a nonspatial mixture model. In fact, the EB model is a
special case of our analysis scheme, as it is contained

in model 2. We found significant improvements in
sensitivity on synthetic fMRI data compared to the
non-spatial mixture model: The sensitivity increased
from 66% to 91% at a FPR of 5%, and the misclassifi-
cation rate of the 0.5-thresholded images was reduced
from 11% to 6%. The analysis of visual stimulation
data indicated similar improvements.

When applied to synthetic fMRI data, our method
was more sensitive than smoothing the data with a
kernel of FWHM 3 voxels, but the sensitivity of the
FWHM 2 smoothing was similar to ours. However the
nonparametric smoothing model seems to produce
estimates which are more smooth, than the ones ob-
tained with our method. As mentioned in Example 3,
this could be explained by the bias in the kernel
smoothing estimate. One argument used for smooth-
ing data is the Matched Filter Theorem [Rosenfeld and
Kak, 1982]. This states that in order to maximize sig-
nal-to-noise ratio at a specific point in an image, one
should convolve the image with a kernel that has the
same shape as the signal at that point. This is a state-
ment about detecting a signal. When one wants to
estimate the signal or some features of it, this is not
necessarily an optimal strategy because of the bias
introduced. On the contrary, a parametric model, if
correct, yields estimates that are less biased and more
efficient. Clearly, our model is not “correct,” but we
would like to emphasize the difference between para-
metric and nonparametric modeling. Furthermore, the
choice of the smoothing parameter, i.e., the FWHM of
the kernel, is always a critical point in nonparametric
estimation. It seems that for fMRI data, this parameter

Figure 5.
Images of t-statistics based on
the visual stimulation data
smoothed spatially with a Gauss-
ian kernel of FHWM 2 voxels
(top row) and 3 voxels (bottom
row). The images are thresh-
olded at 5.0 (left), 6.0 (middle),
and 7.0 (right).
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is often chosen in an ad hoc manner. With our method,
the “smoothing parameter” (such as the parameter g
of model 2) is estimated directly from the data itself.

The assumptions underlying mixture modeling
seem more natural and transparent to us than those
underlying the random fields theory. We expect a
priori to find basically two different types of voxels,
activated and nonactivated, and a model for the data
should reflect this. The inference in the model is fun-
damentally different from the usual hypothesis testing
framework. In the latter, what is really an estimation
problem, is answered by a hypothesis test [Worsley,
1997]. The main problem is then the protection against
false positives, with the large number of tests per-
formed. In our approach we estimate the proportion of
active voxels p, and use this to determine the posterior
probability that a voxel is activated. As may be seen
from (3) and (4) the probability that A 5 1 tends to 0
as p tends to 0. This may be regarded as our way of
handling multiple comparisons: If the size of the vol-
ume is increased, but the number of active voxels is
fixed, p will decrease, and hence so will the posterior
probability that a voxel is activated. For a fixed
amount of activation, a larger search volume hence
yields a more conservative analysis than a small.

Another advantage compared to the random fields
framework is the robustness to misspecification of the
model. To illustrate this, we replaced the normal dis-
tribution in Example 3 with a t-distribution with 20
degrees of freedom. The thresholded activation im-
ages were almost identical, with only a few voxels
changing state. This is not surprising, as the two dis-
tributions are almost equivalent for our purposes. On
the contrary, the random field theory relies on the
extreme tail of the distribution, whence there is non-
negligible difference between a t(20) distribution and
the normal distribution in this framework.

The method may be particularly relevant in appli-
cations where signal estimation is more important
than signal detection. This is the case for instance
when fMRI is used for presurgical planning, where the
protection against false negatives is more important
than false positives. Another example is when the
results of an fMRI study are combined with data from
other modalities, such as to regularize the inverse
problem of MEG/EEG [Liu et al., 1998].

During the review process of this article, we real-
ized that the idea of using local models for the true
image in restoration problems is not new. Meloche
and Zamar [1994] used an approach similar to ours,
and they also derived moment estimators for param-
eters of the true image model. Meloche and Zamar
considered a more general framework, where they

estimated the probabilities P(AC 5 aC) nonparametri-
cally in a very elegant way. We restrict our attention to
parametric models, which are realistic from a brain
imaging point of view, and this gives us the big ad-
vantage of being able to calculate the posterior prob-
ability in closed form. As mentioned earlier, this point
is crucial for the applicability of the method in prac-
tice. Furthermore Meloche and Zamar only consider
models of the form (xuA 5 0) ; N(0, s2) and (xuA 5
1) ; N(1, s2), where our setup is completely general.

We have assumed throughout the article that the
observations are uncorrelated given the true activa-
tion pattern. Some spatial correlation can be detected
in the noise in fMRI data, and hence this assumption
will often be violated. The correlation of the signal is,
however, much larger than that of the noise, and we
have accounted for most of the correlation in the data
by the model for the activation pattern. In some mod-
els, one may extend the methodology to correlated
noise by estimating the spatial correlation first, and
incorporating this in the expression for f(xCuaC). As-
suming stationarity of the correlation, this may be
estimated from the residual time series, see for in-
stance Hartvig [1999]. Clearly the computations get
more complicated then, as the closed form expression
for the posterior probability is lost.

From a mathematical point of view, a natural ques-
tion is whether there exist global models for the whole
set of voxels, which have marginal distributions given
by the models in this article. This is in fact the case,
since all three models have the property, that the
structure of the model is maintained when reducing to
marginal distributions. Considering model 2, for in-
stance, this means that if we formulate the model on
the whole set of voxels, the marginal distribution of a
3 3 3 region will be the same as that obtained by
formulating the model on this region only. This also
means that edge effects may be handled in a rigorous
way by simply reducing the number of neighbours k
when calculating the probability of activation in
boundary voxels.

CONCLUSION

We have formulated a simple mixture model for fMRI
data that captures most of the spatial structure of the
underlying activation pattern. The spatial model has two
parameters, which are directly interpretable and may be
estimated from the data. The expression for the posterior
probability that a voxel is activated is given in closed
form. Rather than the usual hypothesis testing, the focus
of the method is estimation of the activation, which
seems more natural in many applications.
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In order to use this method, one needs only specify
the null distribution and the distribution of activated
voxels. These can be any distributions. The resulting
activation image is a posterior probability image,
which may be thresholded in an intuitive way without
the need for correcting for multiple comparisons. Al-
ternatively, one may display the unthresholded prob-
ability map, which shows a clear distinction between
estimated activation and baseline.
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APPENDIX

We derive the formulas for the posterior probability
that a voxel is activated in model 2 and model 3 in the
following.

Model 2

For given p and g, q0 is determined by

q0 5 1 2 a
~1 1 g!k11 2 1

g
.

Using the same technique as in model 1, we find

P~A 5 1uxC! 5 H1 1
1
v Fg 2 1 1

1 2 a~1 1 g!k11/g

a

SP
j51

k

~1 1 gv j!D 2 1GJ 2 1

. (16)

Model 3

In this model we have
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1 5 q0 1 q1 1
a1

g1
$~1 1 g1!

k11 2 1 2 g1
k11%

1
a2

g2
k $~1 1 g2!

k11 2 1 2 g2
k11%,

p5q1 1 a1$~1 1 g1!
k 2 g1

k% 1
a2

g2
k21 $~1 1 g2!

k 2 g2
k%,

(17)

where p is the probability of a voxel being activated.
Instead of (16) we find

P~A 5 1uxC! 5 H1 1
1
v

N
DJ 2 1

, (18)

where

N 5
a1

g1
P
j51

k

~1 1 g1v j!

1
a2

g2
k P

j51

k

~1 1 g2v j! 1 q0 2 Sa1

g1
1

a2

g2
kD ,

D 5 a1 P
j51

k

~1 1 g1v j!

1
a2

g2
k21 P

j51

k

~1 1 g2v j! 1 $q1 2 ~a1g1
k 1 a2g2!% P

j51

k

vj.

For model 3 the marginal density of xCi
, used in the

constrast function (8), is

f~xCi; f, c! 5 P
j50

k

f~xi
ju0; f!

3 Ha1

g1
P
j50

k

~1 1 g1vi
j~f!! 1

a2

g2
k P

j50

k

~1 1 g2vi
j~f!!

1 q0 2 Sa1

g1
1

a2

g2
kD 1 $q1 2 ~a1g1

k 1 a2g2!% P
j50

k

vi
j~f!J ,

(19)

with c 5 (a1, a2, g1, g2, q1) and q0 given by the
constraint in (17).
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