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Abstract: This paper describes a Bayesian method for three-dimensional registration of brain images. A
finite element approach is used to obtain a maximum a posteriori estimate of the deformation field at
every voxel of a template volume. The priors used by the MAP estimate penalize unlikely deformations
and enforce a continuous one-to-one mapping. The deformations are assumed to have some form of
symmetry, in that priors describing the probability distribution of the deformations should be identical to
those for the inverses (i.e., warping brain A to brain B should not be different probablistically from
warping B to A). A gradient descent algorithm is presented for estimating the optimum deformations.
Hum. Brain Mapping 9:212–225, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Two brain images from the same subject can be
coregistered using a six-parameter rigid body trans-
formation that simply describes the relative position
and orientation of the images. However, for matching
brain images of different subjects (or the brain of the
same subject that may have changed shape over time)
[Freeborough and Fox, 1998], it is necessary to esti-
mate a deformation field that also describes the rela-
tive shapes of the images. Many parameters are re-
quired to describe the shape of a brain precisely, and
estimating these parameters can be very prone to er-
ror. The error can be reduced by ensuring that the
deformation fields are internally consistent. For exam-
ple, suppose a deformation that matches brain A to
brain B is estimated, and also a deformation that

matches brain B to brain A. If the registration is per-
fect, then one deformation should be the inverse of the
other. If there are internal inconsistencies in the regis-
tration, then it is very unlikely that this will be the
case.

This paper is about achieving consistent estimates of
deformation fields, and is a direct extension of our
previous work [Ashburner et al., 1999] where we de-
scribed a high-dimensional method of image registra-
tion for two-dimensional images. The theory behind
the two-dimensional approach still holds for three
dimensions, but the computational overhead required
for the priors would be prohibitive for use on the
current generation of desktop workstations. In this
paper, we derive an approximation to the priors used
previously that can be computed much more quickly.
The optimization algorithm has been modified slightly
to increase its efficiency and stability.

The remainder of the paper is divided into three
main sections. The theory section describes the Bayes-
ian principles behind the registration, which is essen-
tially an optimization procedure that simultaneously
minimizes the likelihood function (i.e., the sum of
squared differences between the images), and a pen-
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alty function that relates to the prior probability of
obtaining the deformations. A number of examples of
registered images are provided in the next section. The
final section discusses the validity of the method, and
includes a number of suggestions for future work.

THEORY

Registering one image volume to another involves
estimating a vector field (deformation field) that maps
from coordinates of one image to those of the other. In
this work, we consider one image (the template im-
age) to be fixed, and estimate the mapping to the
second image (the source image). The intensity of the
ith voxel of the template is denoted by g(xi), where xi

is a vector describing the coordinates of the voxel. The
vector field spanning the domain of the template is
donated by y(xi) at each point, and the intensity of the
source image at this mapped point by f(y(xi)). The
source image is transformed to match the template by
resampling it at the mapped coordinates.

This section begins by describing how the deforma-
tion fields are parameterized as piecewise affine trans-
formations within a finite element mesh. The registra-
tion is achieved by matching the images while
simultaneously trying to maximize the smoothness of
the deformations. Bayesian statistics are used to incor-
porate this smoothness into the registration, and a
method of optimization is presented for finding the
maximum a posteriori (MAP) estimate of the param-
eters. A suitable form for the smoothness priors is
presented.

Deformation fields

Our previous work [Ashburner et al., 1999] de-
scribed a method of two-dimensional image registra-
tion, where the deformations consisted of a patchwork
of triangles. The situation is more complex when
working with three-dimensional deformations. In this
work, the volume of the template image is divided
into a mesh of irregular tetrahedra, where the vertices
of the tetrahedra are centered on the voxels. This is
achieved by considering groups of eight voxels as little
cubes. Each of these cubes is divided into five tetra-
hedra: one central one having 1/3 of the cube’s vol-
ume, and four outer ones, each having 1/6 of the
cube’s volume [Guéziec and Hummel, 1995]. There are
two possible ways of dividing a cube into five tetra-
hedra. Alternating between the two conformations in
a three-dimensional checkerboard pattern ensures that
the whole template volume is uniformly covered (see
Fig. 1). A deformation field is generated by treating

the vertices of the tetrahedra as control points. These
points are moved iteratively until the best match is
achieved. The deformations are constrained to be lo-
cally one-to-one by ensuring that a tetrahedron never
occupies the same volume as its neighbors. When the
deformations are one-to-one, it is possible to compute
their inverses (see Appendix).

The algorithm can use one of two possible boundary
conditions. The simplest is when the vertices of tetra-
hedra that lie on the boundary remain fixed in their
original positions (Dirichlet boundary condition). Pro-
viding that the initial starting estimate for the defor-
mations is globally one-to-one, then the final deforma-
tion field will also satisfy this constraint [Christensen
et al., 1995]. The other boundary condition allows the
vertices on the surface to move freely (analogous to
the Neumann boundary condition). It is possible for
the global one-to-one constraints to be broken in this
case, because the volumes of nonneighboring tetrahe-
dra can now overlap. The examples shown in this
paper use the free boundary condition.

Bayesian framework

We describe an approach for three-dimensional im-
age registration that estimates the required spatial
transformation at every voxel, and therefore requires

Figure 1.
The volume of the template image is divided into a mesh of
irregular tetrahedra, where the vertexes of the tetrahedra are
centered on the voxels. Groups of eight voxels are considered as
little cubes. The volume of each cube is divided into five tetrahe-
dra, in one of the two possible arrangements shown here. A face
of a cube that is divided according to one arrangement, opposes
with the face of a cube that has been divided the other way.
Because of this, it is necessary to arrange the two conformations
in a three-dimensional checkerboard pattern.
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many parameters. For example, to register two vol-
umes of size 256 3 256 3 108 voxels, needs 21,233,664
parameters. The number of parameters describing the
transformations exceeds the number of voxels in the
data. Because of this, it is essential that priors or
constraints are imposed on the registration. We use
Bayesian statistics to incorporate a prior probability
distribution into the warping model [Amit et al., 1991;
Gee et al., 1995a,b; Miller et al., 1993].

Bayes rule can be expressed as:

p~Yub! } p~buY!p~Y!

where p(Y) is the a priori probability of parameters of
Y, p(buY) is the likelihood of observing data b given
the parameters Y, and p(Yub) is the a posteriori prob-
ability of Y given the data b. Here, Y are the parame-
ters describing the deformation, and b are the images
to be matched. The estimate that we determine here is
the MAP estimate, which is the value of Y that maxi-
mizes p(Yub). A probability is related to its Gibbs form
[Christensen, 1999a; Gee and Bajcsy, 1999] by:

p~Y! }e2H~Y!

Therefore, the MAP estimate is identical to the param-
eter estimate that minimizes the Gibbs potential of the
posterior distribution (H(Yub)), where:

H~Yub! 5 H~buY! 1 H~Y! 1 c

where c is a constant. The registration is therefore a
nonlinear optimization problem, whereby the cost
function to be minimized is the sum of the likelihood
potential (H(buY)) and the prior potential (H(Y)).

Optimization

The images are matched by estimating the set of
parameters (Y) that maximizes their a posteriori prob-
ability. This involves beginning with a set of starting
estimates, and repeatedly making tiny adjustments
such that the a posteriori potential is decreased. In
each iteration, the positions of the control points
(nodes) are updated in situ, by sequentially scanning
through the template volume. During one iteration,
the looping may work from inferior to superior (most
slowly), posterior to anterior, and left to right (fastest).
In the next iteration, the order of the updating is
reversed (superior to inferior, anterior to posterior,
and right to left). This alternating sequence is contin-
ued until there is no longer a significant reduction to

the posterior potential, or for a fixed number of itera-
tions.

In the updating, each node is moved along the
direction that most rapidly decreases the a posteriori
potential (a gradient descent method). Moving a node
in the mesh influences the Jacobian matrices of the
tetrahedra that have a vertex at that node, so the rate
of change of the posterior potential is equal to the rate
of change of the likelihood plus the rate of change of
the prior potentials from these local tetrahedra. Ap-
proximately half of the nodes form a vertex in eight
neighboring tetrahedra, whereas the other half are
vertices of 24 tetrahedra. If a node is moved too far,
then the Jacobian determinant associated with one or
more of the neighboring tetrahedra may become neg-
ative. This would mean a violation of the one-to-one
constraint in the mapping (because neighboring tetra-
hedra would occupy the same volume), so it is pre-
vented by a bracketing procedure. The initial attempt
moves the node by a small distance e. If any of the
determinants become negative, then the value of e is
halved and another attempt made to move the node
the smaller distance from its original location. This
continues for the node until the constraints are satis-
fied. A similar procedure is then repeated whereby the
value of e continues to be halved until the new poten-
tial is less than or equal to the previous value. By
incorporating this procedure, the potential will never
increase as a node is moved, therefore ensuring that
the potential over the whole image will decrease with
every iteration. Because of the inherent stability, larger
initial values for e can be used, leading to a more rapid
convergence than for the optimization strategy de-
scribed previously [Ashburner et al., 1999].

At first sight, it would appear that optimizing the
millions of parameters that describe a deformation
field would be an impossible task. It should be noted
that these parameters are all related to each other
because the regularization tends to preserve the shape
of the image, and so reduces the effective number of
parameters. The limiting case would be to set the
regularization parameter l to infinity. Providing that
the boundary conditions allowed it, this would theo-
retically reduce the dimensionality of the problem to a
six-parameter rigid body transformation (although the
current optimization algorithm would be unable to
cope with a l of infinity).

Prior potentials (H(Y))

Within each tetrahedron, the deformation is consid-
ered as a uniform affine transformation. If the coordi-
nates of the vertices of an undeformed tetrahedron are
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(x11, x21, x31), (x12, x22, x32), (x13, x23, x33), and (x14, x24,
x34), and if they map to coordinates (y11, y21, y31), (y12,
y22, y32), (y13, y23, y33), and (y14, y24, y34), respectively,
then the 4 3 4 affine mapping within the tetrahedron
(M) can be obtained by:

M 5 1
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1
2 5 1

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

1 1 1 1
2

3 1
x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

1 1 1 1
2

The Jacobian matrix (J) of this affine mapping is sim-
ply obtained from matrix M by:

J 5 S m11 m12 m13

m21 m22 m23

m31 m32 m33

D
A penalty is applied to each of the tetrahedra that
constitute the volume covered. For each tetrahedron, it
is the product of a penalty per unit volume, and the
total volume affected by the tetrahedron. The affected
volume is the volume of the undeformed tetrahedron
in the template image, plus the volume that the de-
formed tetrahedron occupies within the source image
(v(1 1 uJu), where v is the volume of the undeformed
tetrahedron).

The penalty against deforming each tetrahedron is
derived from its Jacobian matrix. Using singular value
decomposition (SVD), J can be decomposed into two
unitary matrixes (U and V) and a diagonal matrix (S),
such that J 5 USVT. The penalty is based on the
singular values from the diagonal of matrix S, which
represent relative stretching in orthogonal directions.
Matrixes U and V represent rotations, and can be
ignored.

A good penalty per unit volume for image registra-
tion is based on the singular values of the Jacobian
matrices at every point in the deformation being
drawn from a lognormal distribution. Unfortunately,
the use of conventional methods for computing the
SVD of a 3 3 3 matrix is currently too slow to be used
within an image registration procedure. C code for an
analytic form for computing the singular values of a
3 3 3 matrix was developed using the Symbolic Tool-
box of Matlab (The MathWorks, Natick, MA, USA),
and also a function describing the rates of change of
the singular values with respect to changes to the

Jacobian matrix. Unfortunately, the functions were
very susceptible to severe rounding errors—particu-
larly for matrices close to the identity matrix. This
instability, and the complexity of computing a SVD
meant that an alternative method was required.

Using the SVD regularization, the penalty per unit
volume is ¥i51

3 log(sii)
2, where sii is the ith singular

value of the Jacobian matrix. This function is equiva-
lent to ¥i51

3 log(sii)
2/4. By using an approximation that

log(s)2 . s 1 1/s 2 2 for values of s very close to one,
we now have the function ¥i51

3 (sii
2 1 1/sii

2 2 2)/4. This
function is relatively simple to evaluate because the
sum of squares of the singular values of a matrix is
equivalent to the sum of squares of the individual
matrix elements. This derives from the facts that the
trace of a matrix is equal to the sum of its eigenvalues,
and the eigenvalues of JTJ are the squares of the sin-
gular values of J. The trace of JTJ is equivalent to the
sum of squares of the individual elements of J. Simi-
larly, the sum of squares of the reciprocals of the
singular values is identical to the sum of squares of the
elements of the inverse matrix. The singular values of
the matrix need not be calculated, and there is no
longer a need to call the log function (which is slow to
compute, but could be tabulated for more speed). The
penalty function for each of the tetrahedra is now:

lv~1 1 uJu!tr~JTJ 1 ~J 2 1!TJ 2 1 2 2I!/4 (1)

where tr is the trace operation, I is a 3 3 3 identity
matrix, v is the volume of the undeformed tetrahedron
(either 1/6 or 1/3), and l is a regularization constant
(see section on “The Priors”). The prior potential
(H(Y)) for the whole image is the sum of these penalty
functions over all tetrahedra. Figure 2 shows a com-
parison of the potential based on the original (log(sii))

2

cost function, and the potential based on (sii
2 1 sii

22 2
2)/4.

For the optimization, the rate of change of the
penalty function for each tetrahedron with respect
to changes in position of one of the vertices is re-
quired. The Matlab Symbolic Toolbox (The Math-
Works, Natick, MA, USA) was used to derive
expressions for analytically computing these deriv-
atives, but space prohibits us from giving these
formulae here. The ideas presented here assume
that the voxel dimensions are isotropic, and the
same for both images. Modifications to the method
that are required to account for the more general
cases are trivial.
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Likelihood potentials (H(bzY))

The registration deforms an source image (f) to
match a template image (g). It assumes that one is
simply a spatially transformed version of the other
(i.e., there are no intensity variations between them),
where the only intensity differences are because of
uniform additive Gaussian noise. The Gibbs potential
is simply based upon the sum of squared differences
between the images, sampled at each voxel of the
template image:

H~buY! 5
1

2s2 O
i 5 1

I

~ f~y~xi!! 2 g~xi!!
2 (2)

where g(xi) is the ith voxel value of g and f(y(xi)) is the
corresponding voxel value of f. The variance (s2) is
assumed to be constant for all voxels, and is estimated
from the residual sum of squared difference from the
previous iteration. The potential is computed by sam-
pling I discrete voxels within the template image, and
equivalent points within the source image are sam-
pled using trilinear interpolation. Gradients of the
trilinearly interpolated source image are required for
the registration, and these are computed using a finite
difference method.

EXAMPLES

Two sets of examples are provided in this section.
The first set is based on a single pair of brains. The
second set of examples explores the iterative construc-
tion of an average shaped brain image based on six
individual images.

Registering a pair of images

Differences in size and orientation between a pair of
brain images are first removed by performing a 12-
parameter affine registration [Ashburner et al., 1997].
Most of the remaining measurable shape differences
are low frequency, and are estimated using a basis
function approach [Ashburner and Friston, 1999],
whereby the deformations are described by 1176 pa-
rameters. The combination of these two methods pro-
vides a good starting point for estimating the opti-
mum high-dimensional deformation field. A value of
one is used for l, and 40 iterations of the algorithm are
used. This takes about 15 1

2 hr to estimate the
21,233,664 parameters on one of the processors of a
SPARC Ultra 2 (Sun Microsystems, USA). 94.5 Mbytes
of memory were required by the program (6.75
Mbytes for each of the 8-bit images, and 81 Mbytes for
a single precision floating point representation of the
deformation field). This meant that all the data could
be stored in random access memory. Figure 3 shows
an example of two brain images that have been regis-
tered in this way. The corresponding deformation
fields are shown in Figure 4.

The symmetry of the registration process was exam-
ined by repeating the registration, but swapping the
source and template images. This gives us a second
deformation field, which, if the registration procedure
is symmetric, should be the inverse of the first. To do
the comparisons, the inverses of the two deformation
fields were computed as described in the Appendix.
An example of part of a deformation field computed
both ways is shown in Figure 5. The average absolute
discrepancy between the first and the inverse of the
second deformation, and between the second and the
inverse of the first was found to be 1.36 and 1.37 mm.
Part of the error is because the likelihood function is
not symmetric, as it uses only the gradient of one of
the images. A fully symmetric likelihood function
[Christensen, 1999b] would be required to make the
transformations more consistent.

Registering to an average

One of the themes of this paper is about achieving
internal consistency in the estimated warps. So far,

Figure 2.
A comparison of the different cost functions. The dotted line
shows the potential estimated from (log(sii))

2, where sii is the ith
singular value of a Jacobian matrix. The solid line shows the new
potential, which is based on (sii

2 1 sii
22 2 2)/4. For singular values

very close to one, the potentials are almost identical.
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only mappings between pairs of images have been
discussed. When a number of images are to be regis-
tered to the same stereotactic space, then there are
many possible ways in which this can be achieved.
The different routes that can be taken to achieve the
same goal may not always produce consistent results
[Le Briquer and Gee, 1997; Woods et al., 1998]. To
achieve consistency in the warps, we suggest that the
images should all be registered to a template image
that is some form of average of all the individual
images. A mapping between any pair of brains can

then be obtained by combining the transformation
from one of the brains to the template, with the inverse
of the transformation that maps from the other brain
to the template.

Here we attempt to compute an image that is the
average of six normal subjects brains. The image is an
average not only in intensity, but also in shape. We
began by estimating the approximate deformations that
map each of the images to a reference template, using a
12-parameter affine registration [Ashburner et al., 1997]
followed by the basis function approach [Ashburner and

Figure 3.
A sagittal plane from two images registered together. The tem-
plate (reference) image is shown in (d). (a) shows the source
image after affine registration to the template image. The source

image after the basis function registration is shown in (b), and the
final registration result is in (c). The deformation fields are shown
in Figure 4.
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Friston, 1999] (see Figs. 6 and 7). Following the registra-
tion, each of the images were transformed according to
the estimated parameters. The transformed images con-
tained 121 3 145 3 121 voxels, with a resolution of
approximately 1.5 3 1.5 3 1.5 mm. The first estimate of

the new template was computed as the average of these
images. The estimated 4 3 4 affine transformation ma-
trices and basis function coefficients were used to gen-
erate starting parameters for estimating the high dimen-
sional deformation fields.

Figure 4.
The deformation fields corresponding to the images in Figure 3.
Two components (vertical and horizontal translations) of the field

following affine and basis function registration are shown on the
left, whereas the final deformation field is shown on the right.

Figure 5.
A deformation computed by warping the first image to the second (left), and by taking the inverse
of the deformation computed by warping the second to the first (right).
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For each of the six images, ten iterations of the
current algorithm were used to bring the images
slightly more in register with the template. A value of
four was used for l. The spatially transformed images
were averaged again to obtain a new estimate for the

template, following which the images were again reg-
istered to the template using a further ten iterations.
This process continued for a total of four times. A
plane from each of the spatially transformed images is
shown in Figure 8.

Figure 6.
Images of six subjects registered using a
12-parameter affine registration (see also
Figs. 7 and 8). The affine registration
matches the positions and sizes of the
images.

Figure 7.
Six subjects brains registered with both
affine and basis function registration (see
also Figs. 6 and 8). The basis function
registration estimates the global shapes
of the brains, but is not able to account
for high spatial frequency warps.
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Visually, the images appear very similar. This is not
always a good indication of the quality of the regis-
tration (but it does confirm that the optimization al-
gorithm has reduced the likelihood potentials). In the-
ory, the wrong structures could be registered together,
but distorted so that they look identical. For the ex-
amples shown here, the mapping between the images
appeared satisfactory for brain structures that are con-
sistently present and identifiable.

The brain surfaces of the original images were ex-
tracted using the tools within SPM99. This involved a
crude segmentation of the grey and white matter
[Ashburner and Friston, 1997] on which morphologi-
cal operations were performed to remove the small
amounts of none-brain tissue that remained. The sur-
faces were then rendered using the tools within Mat-
lab 5.3 (The MathWorks, Natick, MA, USA). A number
of points were selected that were near the surface of
the template brain (the average of the spatially trans-
formed images). The points did not refer to any par-
ticular distinctive features, but were randomly se-
lected from coronal slices spaced approximately 20
mm apart. By using the computed spatial transforma-
tions, these points were projected on to the closest
corresponding location on the rendered brain sur-
faces. Figure 9 shows the rendered surfaces. Note that
the large amount of cortical variability means that it is
very difficult to objectively identify homologous loca-
tions on the surfaces of the different brains. The

shapes of the internal brain structures are less vari-
able, so the method is able to estimate the transforma-
tions much more precisely.

Although the deformation fields contain a mapping
from the average shaped template image to each of the
individual images, it is still possible to compute the
mapping between any image pair. This is done by
combining a forward deformation that maps from the
template image to the first image, with an inverse
deformation (computed as described in the Appendix)
that maps from the second image to the template.
Figure 10 shows five images that have been trans-
formed in this way to match the same image.

ISSUES OF VALIDITY

The validity the registration method is dependent
on four main elements: the parameterization of the
deformations, the matching criteria, the constraints or
priors describing the nature of the warps, and the
algorithm for estimating the spatial transformations.

Parameterizing the deformations

The deformations are parameterized using regu-
larly arranged piecewise affine transformations. The
same principles described in this paper can also be
applied to more irregular arrangements of tetrahedra.
Since much of an estimated deformation field is very

Figure 8.
The images of the six brains following
affine and basis function registration, fol-
lowed by high-dimensional image regis-
tration using the methods described in
this paper (see also Figs. 6 and 7). The
high-dimensional transformations are
able to model high frequency deforma-
tions that cannot be achieved using the
basis function approach alone.
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smooth, whereas other regions are more complex, it
would be advantageous in terms of speed to arrange
the tetrahedra more efficiently. The layout of the tet-
rahedra described in this paper is relatively simple,
and it does have the advantage that no extra memory
is required to store the original coordinates of vertices.
It also means that some of the calculations required to

determine the Jacobian matrices (part of a matrix in-
version) can be precomputed and stored efficiently.

An alternative to using the linear mappings would
be to use piecewise nonlinear mappings such as those
described by Goshtasby [1987]. However, such map-
pings would not easily fit into the framework we
describe. The main reason for this is that there is no

Figure 9.
Rendered surfaces of the original six
brains. The white markers correspond to
equivalent locations on the brain surfaces
as estimated by the registration algorithm.

Figure 10.
By combining the warps, it is possible to
compute a mapping between any pair of
images. In this example, the remaining
images were all transformed to match
the one shown at the lower left.
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suitable simple expression for the Gibbs potential for
each of the patches of deformation field.

In terms of speed, our method does not compare
favorably with some other high-dimensional intensi-
ty-based registration algorithms [Thirion, 1995]; and,
in this paper, we have not concentrated on describing
ways of making the algorithm more efficient. One way
of achieving this would be to use an increasing density
of nodes. For the early iterations, when estimating
smoother deformations, less nodes are required to
adequately define the deformations. The number of
parameters describing the deformations is equal to
three times the number of nodes, and a faster conver-
gence should be achieved using fewer parameters. It is
worth noting that a coarse to fine scheme for the
arrangement of the nodes is not necessary in terms of
the validity of the method. A coarse to fine approach
(in terms of using smoother images and deformations
for the early iterations) can still be achieved even
when the deformation field is described by an equally
large number of nodes from start to finish.

The matching criterion

The matching criterion described here is fully auto-
matic, and produces reproducible and objective esti-
mates of deformations that are not susceptible to bias
from different investigators. It also means that rela-
tively little user time is required to perform the regis-
trations. However, this does have the disadvantage
that human expertise and understanding (that is ex-
tremely difficult to encode into an algorithm) is not
used by the registration. More accurate results may be
possible if the method was semiautomatic, by also
allowing user identified features to be matched.

The current matching criterion involves minimizing
the sum of squared differences between the source
image (which is transformed) and a template (or ref-
erence) image. This same criterion is also used by
many other intensity based nonlinear registration
methods and assumes that one image is just a spatially
transformed version of the other, but with white
Gaussian noise added. It should be noted that this is
not normally the case. After matching a pair of brain
images, the residual difference is never purely uni-
form white noise, but tends to have a spatially varying
magnitude. For example, the residual variance in
background voxels is normally much lower than that
in gray matter. A better approximation than the sim-
ple model would involve using a nonstationary vari-
ance map.

The validity of the matching criterion depends
partly upon the validity of the template image. If the

contrast of the template image is different from the
contrast of the source image, then the validity of the
matching will be impaired because the correlations
introduced into the residuals are not accounted for by
the model. Pathology is another case where the valid-
ity of the registration is compromised. This is because
there is no longer a one-to-one correspondence be-
tween the features of the two images. An ideal tem-
plate image should contain a “canonical” or average
shaped brain. On average, registering a brain image to
a canonical template requires smaller (and therefore
less error prone) deformations than would be neces-
sary for registering to an unusual shaped template.

The priors

Consider the transformations mapping between im-
ages A and B. By combining the transformation map-
ping from image A to image B, with the one that maps
image B to image A, a third transformation can be
obtained that maps from A to B and then back to A.
Any nonuniformities in this resulting transformation
represent errors in the registration process. The priors
adopted in this paper attempt to reduce any such
inconsistencies in the deformation fields. The extreme
case of an inconsistency between a forward and in-
verse transformation is when the one-to-one mapping
between the images breaks down. Unlike many Bayes-
ian registration methods that use linear priors [Amit et
al., 1991; Bookstein, 1989, 1997; Gee et al., 1997; Miller
et al., 1993], the Bayesian scheme here uses a penalty
function that approaches infinity if a singularity be-
gins to appear in the deformation field. This is
achieved by considering both the forward and inverse
spatial transformations at the same time. For example,
when the length of a structure is doubled in the for-
ward transformation, it means that the length should
be halved in the inverse transformation. Because of
this, the penalty function we have adopted is identical
for both the forward and inverse of a given spatial
transformation. We believe that the ideal form for this
function is that which we previously described [Ash-
burner et al., 1999], but the more rapidly computed
function used in the current paper is a close enough
approximation.

The penalty function is invariant to the relative
orientations of the images. It does not penalize rota-
tions in isolation, only rotations relative to the orien-
tation of neighboring voxels. To rotate a voxel relative
to its neighbors, it is necessary to introduce shearing
into the affine transformations, and this shearing is
penalized. Similarly, translations are not penalized,
but translations relative to neighboring voxels are.
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This is because relative translations require some vox-
els to be stretched or shrunk. Zooming of voxels is
penalized.

We have stated only the form of the prior potential,
and said little about its magnitude relative to the
likelihood potential. This is because we do not yet
know what the relative magnitudes of the two sets of
potentials should be. l relates to our belief in the
amount of brain structural variability that is likely to
be observed in the population. A relatively large value
for l results in the deformations being more smooth,
at the expense of a higher residual squared difference
between the images, whereas a small value for l will
result in a lower residual squared difference, but less
smooth deformations. The prior distributions de-
scribed in this paper are stationary (because l is con-
stant throughout). In reality, the true amount of brain
structural variability is very likely to be different from
region to region, so a set of nonstationary priors
should, in theory, produce more valid MAP estimates.
Much of the nonstationary variability will be higher in
some directions than others. A more precise encoding
of this directional variability could be in the form of a
tensor field, where the directions of variability are
specified relative to the axes of a canonical template
image. A possible form for this cost function would be
something like:

v~1 1 uJu!

3 tr~T~ JTJ 1 JJT 1 ~ J 2 1!TJ 2 1 1 J 2 1~ J 2 1!T 2 4I!/8!

where T is a matrix representing the variability for a
particular tetrahedron (Eq. 1). Estimating the normal
amount of structural variability is not straightforward.
Registration methods could be used to do this by
registering a large number of brain images to a canon-
ical template. However, the estimates of structural
variability will be heavily dependent upon the priors
used by the algorithm. A “chicken and egg” situation
arises, whereby the priors are needed to estimate the
optimum deformation fields, and the deformation
fields are needed to estimate the correct priors. It may
be possible to overcome this problem using some form
of restricted maximum likelihood estimation (REML)
[Harville, 1974] approach. REML algorithms are nor-
mally used for fitting weighted linear least squares
models where the weights are also treated as un-
known hyperparameters. This is a similar situation to
that described here, because we have unknown hyper-
parameters (i.e., s2 and l) describing the relative im-
portance of the likelihoods v. the priors.

The optimization algorithm

The method searches for the MAP solution, which is
the single most probable realization of all possible
deformation fields. The steepest descent algorithm
that is used does not guarantee that the globally op-
timum MAP solution will be achieved, but it does
mean that a local optimum solution can be reached.
Robust optimization methods that almost always find
the globally optimum solution would take an ex-
tremely long time to run with a model that uses mil-
lions of parameters. These methods are simply not
feasible for routine use on problems of this scale. Even
if the true MAP estimate is achieved, there will be
other potential solutions that have similar probabili-
ties of being correct. Also, because there is no one-to-
one match between the small structures (especially
gyral and sulcal patterns) of any two brains, it is not
possible to obtain a single objective high frequency
match, however good an algorithm is for determining
the best MAP estimate. Because of this, registration
using the minimum variance estimate (MVE) may be
more appropriate. Rather than searching for the single
most probable solution, the MVE is the average of all
possible solutions, weighted by their individual prob-
abilities of being correct. Although Miller et al. [1993]
and Christensen [1994] have derived a useful approx-
imation, this estimate is still difficult to achieve in
practice because of the enormous amount of comput-
ing power required.

If the starting estimates are sufficiently close to the
global optimum, then the algorithm is more likely to
find the true MAP solution. Therefore, the choice of
starting parameters can influence the validity of the
final registration result. An error surface based only
on the prior potential does not contain any local min-
ima. However, there may be many local minima when
the likelihood potential is added to this. Therefore, if
the a posteriori potential is dominated by the likeli-
hood potential, then it is much less likely that the
algorithm will achieve the true MAP solution. If very
high-frequency deformations are to be estimated, then
the starting parameters must be very close to the true
optimum solution.

One method of increasing the likelihood of achiev-
ing a good solution is to gradually reduce the value of
l relative to 1/s2 over time. This has the effect of
making the registration fit the lower frequency defor-
mations before fitting the higher frequencies. Most of
the spatial variability is low frequency, so the algo-
rithm can get reasonably close to a good solution
using a relatively high value for lambda. This also
reduces the number of local minima for the early
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iterations. The images should also be smoother for the
earlier iterations to reduce the amount of confounding
information and the number of local minima.

A value for s2 is used that is based on the residual
squared difference between the images following the
previous iteration. s2 is larger for the early iterations,
so the posterior potential is based more on the priors.
It decreases over time, thus decreasing the influence of
the priors and allowing higher frequency deforma-
tions to be estimated. Similarly, for the example where
images were registered to their average, the template
image was smoothest at the beginning. Each time the
template was recreated, it was slightly crisper than the
previous version. High-frequency information that
would confound the registration in the early iterations
is gradually reintroduced to the template image as it is
needed.

CONCLUSIONS

We have developed a method for high-dimensional
registration of brain images, where the deformations
are represented by piecewise affine transformations.
Unlikely deformations are penalized using a Bayesian
framework that incorporates a set of symmetric priors
that preserve a locally one-to-one mapping between
the image volumes. Currently, execution of the regis-
tration algorithm is time consuming, but this should
become less of an issue as desktop computers become
faster.
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APPENDIX. INVERTING THE
DEFORMATION FIELD

The current method estimates a deformation field
that describes a mapping from points in the template
volume to those in the source volume. Each point
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within the template maps to exactly one point within
the source image, and every point within the source
maps to a point in the template. For this reason, a
unique inverse of the spatial transformation exists. To
invert the deformation field, it is necessary to find the
mapping from the voxels in the source image to their
equivalent locations in the template.

The template volume is covered by a large number
of contiguous tetrahedra. Within each tetrahedron, the
mapping between the images is described by an affine
transformation. Inverting the transformation involves
sequentially scanning through all the deformed tetra-
hedra to find any voxels of the source image that lie
inside. The vertices of each tetrahedron are projected
onto the space of the source volume, and so form an
irregular tetrahedron within that volume. All voxels
within the source image (over which the deformation
field is defined) should fall into one of these tetrahe-
dra. Once the voxels within a tetrahedron are identi-
fied, the mapping to the template image is achieved
simply by multiplying the coordinates of the voxels in
the source image by the inverse of the affine matrix M
for the tetrahedron (from section on “Prior Poten-
tials”).

The first problem is to locate the voxels of the source
image that lie within a tetrahedron, given the locations
of the four vertices. This involves finding locations
where the x, y, and z coordinates assume integer val-
ues within the tetrahedral volume. First of all, the
vertices of the tetrahedron are sorted into increasing z
coordinates. Planes where z takes an integer value are
identified between the first and second, the second
and third, and the third and fourth vertices. Between
the first and second vertices, the cross-sectional shape
of a tetrahedron (where it intersects a plane where z is
an integer) is triangular. The corners of the triangle are
at the locations where lines connecting the first vertex
to each of the other three vertices intersect the plane.
Similarly, between the third and fourth vertices, the
cross-section is again triangular, but this time the cor-
ners are at the intersects of the lines connecting the
first, second and third vertices to the fourth. Between
the second and third vertex, the cross-section is a
quadrilateral, and this can be described by two trian-
gles. The first can be constructed from the intersects of
the lines connecting vertices one to four, two to four,
and two to three. The other is from the intersects of the

lines connecting vertices one to four, one to three, and
two to three. The problem has now been reduced to
the more trivial one of finding coordinates within the
area of each triangle for which x and y are both integer
values (see Fig. 11).

The procedure for finding points within a triangle is
broken down into finding the ends of line segments in
the triangle where y takes an integer value. To find the
line segments, the corners of the triangle are sorted
into increasing y coordinates. The triangle is divided
into two smaller areas, separated by a line at the level
of the second vertex. The method for identifying the
ends of the line segments is similar to the one used for
identifying the corners of the triangles. The voxels are
then simply located by finding points on each of the
lines where x is integer.

Figure 11.
An illustration of how voxels are located within a tetrahedron.
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