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Abstract: The study of dynamic interdependences between brain regions is currently a very active
research field. For any connectivity study, it is important to determine whether correlations between two
selected brain regions are statistically significant or only chance effects due to non-specific correlations
present throughout the data. In this report, we present a wavelet-based non-parametric technique for
testing the null hypothesis that the correlations are typical of the data set and not unique to the regions
of interest. This is achieved through spatiotemporal resampling of the data in the wavelet domain. Two
functional MRI data sets were analysed: (1) Data from 8 healthy human subjects viewing a checker-
board image, and (2) “Null” data obtained from 3 healthy human subjects, resting with eyes closed. It
was demonstrated that constrained resampling of the data in the wavelet domain allows construction
of bootstrapped data with four essential properties: (1) Spatial and temporal correlations within
and between slices are preserved, (2) The irregular geometry of the intracranial images is maintained, (3)
There is adequate type I error control, and (4) Expected experiment-induced correlations are identified.
The limitations and possible extensions of the proposed technique are discussed. Hum Brain Mapp 23:1-25,
2004.  © 2004 Wiley-Liss, Inc.
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INTRODUCTION

The nature and significance of dynamic interactions be-
tween brain regions is currently an important focus of neu-
roscience research [for review see Varela et al., 2001]. Such
interactions are postulated to coordinate, integrate, and con-
strain the expression of neural activity across multiple func-
tional networks [e.g., Peled 1999] and hence may be crucial
to brain function. This research requires techniques for the
accurate identification and description of spatial and tem-
poral correlations in brain imaging data [Friston et al., 1993,
Schiff et al., 1996]. Two steps are required: (1) A method of
quantifying correlations that is best suited to the type of
interactions (e.g., linear or nonlinear) of interest, and (2) A
technique of estimating the expected distribution of such
correlations under the null hypothesis that they reflect only
trivial correlations in the data. In this report, existing wave-
let-based techniques are extended in order to achieve the
second of these steps.

The main question addressed in this article is how to
differentiate correlations that reflect real interactions (or syn-
chronous co-activation) between brain regions from chance
inter-regional correlations. Put another way, one seeks to
distinguish between correlations specific to an experimental
question and those that are typical of the data set. “Typical”
correlations are those that occur in the data regardless of the
particular “cognitive set” of the subject, and reflect such
factors as the general effect of the scanner environment on
brain activity (and hence BOLD response) plus a host of
task-irrelevant physiological and technical factors such as
intra-cranial haemodynamics, head movement (and its cor-
rection), and scanner properties. In contrast, “specific” cor-
relations in the data are those that reflect the particular
cognitive or perceptual task that the subject undertakes, and
that are associated with activations within, and correlations
between, task-specific brain regions.

Hence a critical experimental problem is to determine the
strength and expected variance of background spatial and
temporal correlations in a data set. There are two possible
approaches to this problem. With an analytic approach, ex-
plicit estimates of the variance are formally derived from
known properties of the data [e.g., Netoff and Schiff 2002].
Bootstrapping or resampling approaches, on the other hand,
do not depend on analytic derivation of estimates, but rather
reproduce an ensemble of “surrogate” data sets that share all
of the background (“typical”) correlations of the original
data, but have specific features of the data randomized. The
ensemble of resampled data hence represents the null hy-
pothesis that correlations between specific regions of interest
are not unique to those areas or the experimental question.
Comparison between this ensemble and the original exper-
imental data then permits testing of this null hypothesis.

The aim of resampling techniques is to permute the data
without destroying background correlations. The simplest
method of data resampling is to randomly permute the data
(without replacement). However, unless strongly constrained
[e.g., Schreiber 1998], such a process will destroy the back-
ground correlations. A solution to this problem is to resample

the data in the Fourier domain [Theiler et al.,, 1992]. This
technique, which exploits the decorrelating (“whitening”)
properties of the Fourier transform, has been used extensively
in the dynamical systems field but must be employed with
several caveats in mind [Andrzejak et al., 2004; Breakspear and
Terry, 2002a; Schrieber and Schmitz, 2000]. More recently, the
decorrelating properties of the discrete wavelet transform have
also been exploited in order to produce the same effect in the
wavelet domain [Bullmore et al., 2001]. That is, wavelet coef-
ficients are permuted within each scale or level of detail and a
resampled series is recovered in the time domain by the inverse
wavelet transform of the permuted coefficients. Laird et al.
[2004] have proposed that wavelet resampling may perform
more accurately than the Fourier method for fMRI studies. We
will refer to this process of data resampling in the wavelet
domain as “wavestrapping” to acknowledge its conceptual
links to more familiar bootstrapping and other resampling
methods.

Both the Fourier [Prichard and Theiler, 1994] and wavelet-
[Breakspear et al., 2003] based techniques have been gener-
alized in order to preserve trivial temporal correlations
within multivariate data sets. This is achieved, in both cases,
by applying exactly the same randomization scheme to each
individual time series. However, this is not suitable for spa-
tio-temporal data such as functional neuroimaging data be-
cause one only seeks to preserve the average correlations,
not the exact correlations between each region. That is, one
seeks only to preserve the dependence of the temporal cor-
relation function on the spatial distance between brain re-
gions, whilst destroying the specific correlations between
particular brain regions.

Wavelets are a rapidly evolving signal analysis tool ideally
suited to the analysis of biological and dynamical signals [Bull-
more et al., 2003; Daubechies, 1992; Mallat, 1999]. One impor-
tant reason for this is because “events” that are isolated in
space/time and scale in the original data remain isolated in the
wavelet domain. This is not true of the Fourier transform. In
this report, this property of wavelets is exploited in order to
produce a resampling technique suitable for data contained
within an irregular domain. The technique is developed to suit
time series consisting of multivariate two-dimensional spatial
sets such as multiple functional magnetic resonance imaging
(fMRI) slices. The operation of the technique is illustrated in
standard IEEE test images and two sample fMRI data sets: One
data set was obtained from human subjects viewing a check-
erboard visual image and the other whilst subjects are “at rest”
in the scanner. The latter are used as a “null” data set to study
type I error control using Pearson’s correlation coefficient as a
connectivity measure. However, the proposed technique could
be used in conjunction with any functional connectivity
method and, indeed, in applications besides neuroimaging.

MATERIALS AND METHODS
Woavelet Decomposition

The technique commences with a multi-resolution decom-
position of the data by the discrete wavelet transform. This
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is a representation of the data across a hierarchy of spatial
and temporal scales. At each scale, the data are decomposed
into two orthogonal components: the detail coefficients d;,
which contain information about the fluctuations in signal
intensity at that scale, and the approximation coefficients A
which represent the residual of the signal after those and all
smaller details have been removed. The original signal can
be recovered by linearly adding the approximation of the
signal at any scale together with the details at that and all
smaller scales.

Wavelets are families of basis functions that permit such a
decomposition. A family of wavelet functions {¢;}; e, is
generated through dilation (by scale factor j) and translation
(by position factor k) of a single “mother” wavelet function
. Uniquely associated with each mother wavelet function is
a family of scaling functions ¢, generated by dilation and
translation of a single “father” scaling function ¢ Convolu-
tion of the signal with the wavelet functions i, produces
the detail coefficients d; ,. Convolution with the scaling func-
tions ¢;,. produces the approximation coefficients a,.
Hence, a multi-scale decomposition of a function f at scale |
is given by

f= 2enubpu+ Ezd/‘,k%,k- (1)

kez j=Jkez

For discretely sampled data of finite sample length, the
coefficients vanish outside of a closed interval, and hence the
number of terms in the sum is finite. We use the notation
that j = 1 is the smallest scale (determined by the sampling
frequency). For a signal of length S, the number of detail
coefficients N; at scale j is

N;=27i5+1, 2)

where [ is a small integer that allows the edges of the signal
to be covered and depends on the support width of the
wavelet functions. For two-dimensional data V(x), the detail
coefficients are further decomposed into horizontal d" Iy
vertical d°; ;. and diagonal dd]-,k,, components where k and /
are the translation factors in the horizontal and vertical
directions, respectively. There are hence 3X(N;)* coefficients
at each scale of a decomposition of a two-dimensional data set.
Qualitative and mathematical descriptions of the two-dimen-
sional wavelet transform are provided in Appendix A.

fMRI data is a four-dimensional set, V = V(x,t), where
xER? denotes the position of an intracerebral voxel. For the
most part, we only consider wavelet transform of the spatial
domain. We will denote d; ,(t) to be the detail coefficients of
the spatial decomposition at time t. As with the Fourier
transform, edge effects are a source of potential difficulty.
We used periodic interpolation of the edges as this approach
was found to be the least problematic in the wavestrapping
step.

Two-Dimensional Wavestrapping

For certain classes of random processes, the wavelet trans-
form whitens (decorrelates) the data [see Bullmore et al.,

2001, 2003]. That is, correlations between nearby detail co-
efficients d, ;;(t) and d; ;,(t) are much weaker (possibly neg-
ligible) than correlations between nearby data points V(x,,t)
and V(x,t). As a result, the wavelet coefficients can be
considered “exchangeable” in the sense that they can be
permuted amongst themselves without destroying correla-
tions within the reconstructed data. This property of ex-
changeability of wavelet coefficients is a key criterion for
validity of wavestrapping schemes. In short, wavestrapping
in its simplest form proceeds by wavelet transform of a
spatial or temporal process, followed by random permuta-
tion of detail coefficients within each level of the decompo-
sition; and then inverse wavelet transform of the permuted
coefficients.

However, for strongly correlated data sets of short length,
adjacent detail coefficients may not be completely decorre-
lated. Hence, such a process may lead to unacceptable whit-
ening of the data. For this reason, it may be necessary to
place constraints on the type of resampling scheme that
operates on the detail coefficients. In Breakspear et al. [2003],
two such possible constraints were investigated: Indepen-
dent cyclic rotation of detail coefficients within each level
and block resampling of detail coefficients. Cyclic rotation
consists of adding the same random integer r; to the position
index k of all the detail coefficients at each level j and taking
modulus N;. The random integers at different levels must be
chosen independently and, for a two-dimensional decompo-
sition, the detail coefficient matrices are “rotated” indepen-
dently by rows and then columns. Block resampling em-
ploys random permutation of blocks of nxn adjacent detail
coefficients. Both constraints act to minimize the decorrela-
tion of detail coefficients, whilst still permitting construction
of a large number of distinct surrogate realizations. The
choice of resampling scheme must be decided by the
strength of the correlations within the data and the length of
the data set. In the present study of spatially extended data,
all three of these wavestrapping algorithms (random per-
mutation, block resampling, and cyclic rotation; see Fig.
lc—e) are described and comparatively evaluated. When
moving from a one- to a two-dimensional data set, an addi-
tional question that arises is whether the horizontal, diago-
nal, and vertical coefficients at each scale should be re-
sampled together or independently. This question is also
investigated.

Woavestrapping Within an Irregular
Data Subdomain

It is possible to construct two-dimensional surrogate data
sets through randomization of the phases of a two-dimen-
sional Fourier series. However, the physiological component
of many spatially extended biophysical data is confined to
an irregular subdomain of the data. An example is the
intracranial component of fMRI data. Hence, it is necessary
to constrain the resampling technique so that the partition
between the physiological and redundant data is retained.
This is not possible with the Fourier technique, since the
spatial localization of data is contained within the phases,
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Figure 1.
Standard test images used to illustrate the wavelet resampling scheme (a,b). Example of permuta-
tion schemes (operating on the raw image in a). c: Random permutation of rows and then columns.
d: Resampling in 12 X 12 blocks. e: Cyclic rotation of rows and then columns.
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which are randomized! However, because the detail coeffi-
cients of the wavelet transform are spatially localized, it is
possible to achieve this using wavestrapping by only per-
muting coefficients that are located within the physiological
domain (i.e., those with a non-zero variance). Note that,
because of edge effects of the wavelet functions, the set of
coefficients belonging within the physiological domain is
smaller than the set of non-zero detail coefficients, even if
the redundant data are zero. Detail coefficients outside of
the physiological domain are left unchanged. Coefficients on
the boundary of this domain (i.e., which may be partially
centred on either side of the boundary) are included in the
resampling scheme. Surrogate data are then obtained
through inverse wavelet transform of the permuted and
non-permuted coefficients. It is important that the detail
coefficients outside of the physiological domain are included
in the reconstruction step because they contribute to the
power of the voxels at the edge of the data set. However,
they cannot be permuted because they naturally taper to
zero as the support of the basis functions shifts further
outside of the intracranial domain. This step is presented
schematically in Figure 2.

Woavestrapping of Multiple Slices

Functional neuroimaging data consist of a temporal series
of multiple slices. If surrogate data are constructed from
each slice independently, then the spatial correlations be-
tween different slices and temporal correlations within a
slice at different times will be destroyed. This problem can
be overcome in multivariate one-dimensional data by apply-
ing exactly the same permutation scheme to each data set
[Prichard and Theiler, 1994]. Implementation of this tech-
nique in a variety of multivariate time series data reveals
that, with appropriate choice of wavelet basis functions and
resampling scheme, the correlation function can be closely
preserved [Breakspear et al., 2003]. In the present study, the
effect of generalizing this procedure to spatio-temporal data
is investigated. That is, a surrogate realization is generated
by applying the same random permutation of detail coeffi-
cients to each two-dimensional slice of interest, and to each
decomposition obtained from a single slice across the tem-
poral sequence of data collection.

Temporal Resampling

As with the spatial correlations, only the average and not
the specific temporal correlations are required. To achieve
this, a multivariate wavestrapping step must be performed
in the temporal domain on the spatially resampled data.
That is, a wavelet decomposition is performed on the time
series of each intracranial voxel, the detail coefficients are
permuted and surrogate data is obtained though the inverse
wavelet transform. To ensure that the average spatial corre-
lations, carefully preserved by prior steps, remain approxi-
mately the same as in the original data, the same permuta-
tion is performed on the decompositions from all voxels in
the same and any other chosen slices. The effectiveness of
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Figure 2.

Schema illustrating how resampling is constrained to within phys-
iological domain. The first step requires partition of the physio-
logical domain from redundant data (with zero variance). After
transforming the data into the wavelet domain, the coefficients
that are located within, or on the boundary, of this domain are
permuted amongst themselves. This procedure occurs on each
level of the multi-scale decomposition. Data are then recon-
structed from the permuted coefficients within this domain and
those outside it, which are left invariant. Any non-zero data
outside of the original physiological domain (dotted lines) at the
end of the procedure are reset to zero. Hence, there is some loss
of power, which can be rectified through renormalization.

this step is investigated by studying the temporal spectrum
of whole slices’ time series.

To summarize, the overall algorithm proceeds in two
steps: Firstly a constrained spatial resampling and then a
multivariate temporal resampling step (see Fig. 3). Because
the wavelet coefficients are permuted throughout their
length in the time domain, and throughout the entire intra-
cranial domain, the presented technique is based upon an
assumption of spatial and temporal “stationarity.” That is,
the statistical properties of the data set under the null hy-
pothesis are, on average, spatially and temporally invariant.
Hence, the null hypothesis formally tested is that measures
of functional connectivity derived from the data are due to
background spatially-invariant correlations arising from a
stationary stochastic process. Rejection of this null hypoth-
esis can thus be attributed to the presence of region-specific
(spatially variant) neural co-activations and/or functional
correlations. In certain circumstances, null rejection could
alternatively be interpreted as evidence of dynamic or non-
linear correlations, which have been detected in scalp EEG
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1. Parallel spatial
resampling

2. Parallel temporal ) =1
resampling

=N
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Figure 3.
Schema of the two-step resampling procedure. In step |, each slice  the spatially wavestrapped data is resampled in the temporal
and at each time point is spatially resampled. The resampling dimension. The resampling procedure at the same scale for each
procedure is identical at the same scale for each time point and  voxel is identical. All resampling is performed in the wavelet
each slice. Resampling at different scales is independent. In step 2, domain after appropriate wavelet decomposition (two-dimen-
the time series from each voxel (three shown in each slice) from sional for step | and one-dimensional for step 2).
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[Breakspear and Terry, 2002b], MEG [Stam et al., 2003] and
fMRI data [Friston et al., 2003; Harrison et al., 2003; Lahaye
et al., 2003].

Spatial and Temporal Spectra

The spatial and temporal correlations and cross-correla-
tions of the data can be studied by plotting the spatial and
temporal spectra. These are frequency-specific representa-
tions of the corresponding correlation functions. Signals
without memory (=no correlations) have flat spectra. Cor-
relations introduce local and global features into the spectra.
The temporal spectrum reflects correlated events occurring at
different times; Spatial spectra (vertical and horizontal) cap-
ture correlations occurring at different regions in a spatial
image or process. The usual meaning of a temporal spec-
trum is that derived from a single time series (such as from
a pixel) using a one-dimensional fast Fourier transform
(FFT). However, it is also possible to take a 3-D FFT of a
complete slice’s time series: Integrating in both spatial di-
mensions then yields the temporal spectrum for this slice.
Integrating in time yields the average spatial spectra. Cross-
spectra are calculated from the cross-products of the Fourier
transforms of two slices. Because the integration is per-
formed across the entire spatial/temporal domain, the as-
sumption of spatiotemporal stationarity discussed above is
also implicit in the derived spectra. Further discussion of
temporal spectrum and spatial spectra and the correspond-
ing formulae are given in Appendix B.

Choice of Basis Functions and Resampling Scheme

The surrogate data for the figures in this study were
generated on a trial and error basis, the aim of which is to
find the least constrained resampling scheme that yields an
appropriate null distribution (a surrogate ensemble that ad-
equately covers the experimental data with a reasonable
variance). The following general principles were followed:
Begin with a random permutation scheme and low order
wavelet functions (such as Daubechies of order 2). The spa-
tial and temporal (cross) spectra of the original and surro-
gate data are then plotted (see Figs. 9 and 10). The surrogate
data are said to be adequate if the general underlying trend
of the original data’s spectra and those of the surrogate data
are the same. If 19 surrogate data sets are constructed, then
it is desirable to have approximately 5% of the spectra
samples outside of the surrogate distribution. If the spectra
are not adequate (such as due to whitening of the surrogate
data at high frequencies), the order of the wavelet functions
is iteratively increased. However, once Daubechies wavelets
of order 12 or more are employed, a low-frequency bias of
the surrogate spectra (typically an isolated trough at low
frequencies) often appears. These are due to increased edge
effects arising as the length of the wavelet functions” support
increases. It is hence necessary to choose the highest order
functions at which this is not observed. If the surrogate
spectra are still not adequate, then it is necessary to move
from a random resampling scheme to block resampling,
iteratively increasing the size of blocks from 2 to N;/3. If the

surrogate spectra are still inadequate, it is necessary to
change to a cyclic rotation of the detail coefficients. These
principles are outlined schematically in Figure 4.

Subjects and fMRI Data Acquisition
Data set I: visual activation data

Participants were eight healthy male volunteers (mean
age 31 years). Exclusion criteria were left-handedness, and
recent history of substance abuse, epilepsy, or other neuro-
logical disorders, and mental retardation or head injury
(assessed using the Westmead Hospital Clinical Information
Base questionnaire; WHCIB). Written consent was obtained
from all subjects prior to testing in accordance with National
Health and Medical Research Council guidelines. To pro-
duce visual sensory stimulation, we used a periodic presen-
tation of checkerboard (test) and blank screen (control) stim-
uli. Four test stimulus blocks alternated with four control
blocks. Stimuli were 512 pixels in height, and 384 in width,
with 20% contrast. On checkerboard stimuli, checks were
coloured blue and green. In test blocks, the checkerboard
pattern was reversed in an alternating sequence (i.e., green
checks appeared blue, and vice versa on every second check-
erboard stimulus). Each block comprised eight stimuli of
3-sec duration, with an interstimulus interval of 0.75 sec. The
duration of each block was, therefore, 30 sec. There were 32
test and 32 control stimuli in total, and the total duration of
the paradigm was 4 min [Williams et al., 2000]. Subjects
were scanned during the checkerboard task using a Siemens
1.5 T Magnetom VISION Plus system to acquire 64 T2-
weighted images depicting BOLD (blood oxygenation level
dependent) contrast for each 3-sec stimulus at 18 axial non-
continuous 6-mm-thick plane (slices), parallel to the inter-
commissural (ACPC) line: time to echo (TE) 40 msec, TR 3
sec with 0.75-sec delay, matrix 128 X 128, interslice gap 0.6
mm at Westmead Hospital, Sydney.

Data set 2: resting or “null” data

Three healthy volunteers were studied while they lay
quietly in the scanner with their eyes closed for 5 min. One
hundred T2-weighted images were acquired at each of 14
non-contiguous slices of data in an oblique axial plane using
the 1.5 Tesla (T) GE Signa system (General Electric, Milwau-
kee, WI) at the Maudsley Hospital, London, UK: TE 40 msec,
TR 3 sec, in-plane resolution 3 mm, slice thickness 7.7 mm,
number of excitations 1.

Processing of fMRI Data

Prior to analysis, all images were first pre-processed to
minimize the effects of subject motion [Bullmore et al., 1999].
The effect of the underlying anatomical signal was ad-
dressed by subtracting the temporal mean from each indi-
vidual pixel’s time series. Neural activation in the visual
stimulation data was determined according to the nonpara-
metric method described in Brammer et al., [1997]. The
patterns of activation in this data set have been previously
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General principles followed to choose wavelet basis functions and
resampling scheme. Procedure commences with random resam-
pling and wavelet basis functions of low order, m = 2. This order
is increased until there is an adequate matching of the spectra (—
finish) or isolated bias in the spectra appear (due to edge of effects

reported elsewhere [Williams et al., 2000]. The wavestrap-
ping was applied to the underlying (temporally de-meaned)
BOLD signal, not the “residuals” of the nonparametric
model. The technique used to identify areas of activation in

of high order basis functions). If this occurs, m is reset to m-1 and
the coefficients are resampled in small blocks of N = 2. The size
of the blocks is increased (N—N+1) until there is an adequate
matching the spectra. If N approaches half of the length of the
number of coefficients, then cyclic rotation is employed.

the visual stimulation data [Brammer et al., 1997] requires
spatial filtering by convolution with a Gaussian curve
(FWHM = 9.4 mm, kernel = 9 X 9 pixels). Whilst it would
be possible to construct surrogate data from the spatially
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filtered data, it is preferable to use the raw images. The
surrogate data are subsequently subject to the same spatial
filtering as the experimental data.

lllustration and Validation in
Nonphysiological Data

To illustrate the method visually, and to validate it in data
with varying spatial correlations, the algorithm is applied to
two standard IEEE test images, presented in Figure 1a and b.
These are chosen because the spatial correlations can be
visualized across a hierarchy of scales and localized to spe-
cific spatial locations (for example, fine structure within the
lattice of the chair and the scarf, coarse structure of the
shadows). Appropriately resampled data should retain the
correlations but randomize and/or disperse their spatial
localization. The test images are more suitable than physio-
logical data to allow visualization of this effect.

RESULTS
Illustration on “Test Image”

The effect of wavestrapping in the spatial domain at dif-
ferent scales is illustrated in Figure 5. Horizontal, vertical
and diagonal coefficients were permuted together. In Figure
5a, only the finest details have been resampled. In compar-
ison to Figure 1a, it is evident that the fine detail of the scarf
and the chair lattice has been moved. However, this struc-
ture has not been smoothed out of the picture, but is evident
diffusely through the background of the entire frame. The
number of scales on which the resampling operates has been
increased to 2 (Fig. 5b), 3 (Fig. 5c), 4 (Fig. 5d), and all scales
(Fig. 5e). Varying the scales at which the permutation acts
makes evident the manner in which the structure at each
scale contributes to the information in the image. For exam-
ple, in Figure 5d, only the coarsest shadows of the face
remain in their original location. Structure at all smaller
scales is now present diffusely throughout the image. This
bears out the difference between the particular correlations
in an image, which impart crucial information and back-
ground structure that is typical of the data set, which is still
present in all panels of Figure 5. In Figure 5f, the structure at
the three smallest scales has not been resampled. Hence, the
facial features and scarf pattern remain in their original
spatial location. However, the shadows, which give the im-
age its depth, are now present diffusely throughout the
image. In this image, specific information at various scales
conveys certain types of information (detail, depth, texture,
etc). In neuroimaging data, it is expected that fluctuations in
neural activity at different scales signify different types of
neural interactions and information processing.

In Figure 6, the effect of constraining the resampling of
coefficients to a subdomain of the data set is illustrated. The
resampling has been restricted to an ellipse (horizontal ra-
dius 70 pixels, vertical axis 100 pixels). It can be seen that the
spatial correlations within this ellipse have been random-
ised, whereas those outside have been unchanged. Slight

blurring at the edge of the ellipse, due to edge effects of the
wavelet functions, is evident.

Effect on Spatial Spectra of “Test Data”
Power spectra of single image surrogates

In order to verify that the spatial wavestrapping does not
whiten the data, it is necessary to study the horizontal and
vertical spatial spectra. Adequate preservation of the linear
correlations is verified if the spectrum of the original data is
contained within the spectrum of an ensemble of surrogate
data. In this section, the results of permutation of all detail
scales are presented. The results are illustrated in Figure 7
(for brevity, only horizontal spectra are shown in all figures;
results for vertical spectra are always comparable).

The horizontal (PSDy;) spatial spectra of the image in
Figure la are presented in Figure 7a. In Figure 7b, the
original (heavy) and ensemble of 19 surrogate data (light)
produced by random permutation of detail coefficients are
illustrated. It can be seen that, although the overall trend is
preserved, there is some loss of the detailed peaks and
troughs, and some whitening of the high-frequency end of
spectrum. In contrast, resampling of detail coefficients in
blocks of 12 adjacent coefficients (Fig. 7c) ensures that the
spectra of the original image are almost completely within
the surrogate ensemble. Note that as 19 surrogate sets were
generated for this Figure 7, 5% of the original spectral values
are permitted to lie outside of the surrogate ensemble. Cyclic
rotation of detail coefficients (Fig. 7d) produces surrogate
data with a very close spectral match to the original data and
less variance than produced by block resampling.

The proximity of the surrogate data spectra to the original
spectra is apparent visually. Example surrogate images from
each of the three schemes are presented in Figure 8. The
random permutation scheme (Fig. 8a) produces an image in
which the structure at various scales is scattered diffusely
throughout the image. In contrast, if there was some “clus-
tering” of the structure in the original image (such as the
pattern on the scarf), then to some extent that clustering is
preserved in the surrogate produced by block resampling
(Fig. 8b) and cyclic rotation (Fig. 8c). This additional reten-
tion of structure accounts for the preservation of the peaks
with these resampling schemes’ spectra.

Further constraining the resampling to within only a few
levels or within only a subdomain of the data can only lead,
on average, to an improvement in the match of the spectra.
This is because the range of possible permutations of the
constrained resampling is a subset of the original possibili-
ties (in group theoretical terms, the set of possible group
elements is a subgroup of the chosen scheme), and hence the
distribution of possible spectra is contained within the
broader unconstrained distribution. This is illustrated in
Figure 7e where surrogate data have been produced by
random permutation of all detail coefficients except those at
the finest scale. Note that in contrast to Figure 7b there is
now almost perfect matching of the spectrum at high fre-
quencies.

*9 e



¢ Breakspear et al. ¢

(a) (b)

L

50 100 150 200 250

Figure 5.
Effect of resampling in the wavelet domain at different spatial scales. a: Scale | only. b: Scales 1-2.
c: Scales 1-3. d: Scales 1-4. e: Scales 1-8 (effectively all scales). f: Scales 4—8. Daubechies wavelets
of order 12 were used.
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50 100 150

Figure 6.
Restriction of resampling of detail coefficients to within a central
ellipse with a horizontal axis of 200 voxels and a vertical axis of
140 voxels. Coefficients outside this sphere were not permuted.
Black (superimposed) curves show extent of sphere.

The success or failure of the resampling scheme depends
upon the strength of the spatial correlations within the data.
Typically, in an experimental setting, the data will be cor-
rupted by measurement noise. To simulate this, a Gaussian
signal with average amplitude 40% of the original data was
added to the image in Figure 1a. The resulting spectra ob-
tained with random permutation of detail coefficients are
presented in Figure 7f. Note that the original spectra are now
flatter and less detailed, and that there is now adequate
matching of the surrogate spectra.

The permutation of the horizontal, vertical, and diagonal
detail coefficients together, as was performed for Figure 5, or
independently has negligible effect on the closeness of fit
between the spectra of the original and surrogate data. In
many cases, it is possible to permute them independently.
However, occasionally the situation arises when the slight
extra advantage of parallel permutation is required.

Cross-spectra of multiple images

In order to test the effect of the multi-slice spatial resam-
pling technique on correlations between the two test visual
images (Fig. 1a and b), we study the spatial cross-spectra
(only the horizontal are plotted). The formulae for these are
given in Appendix B.

The horizontal (CSDy;) spatial cross-spectrum of the im-
ages in Figure 1la and b is presented in Figure 9a. In Figure
9b, the original (heavy) and ensemble of 19 surrogate data
(light) produced by random permutation of detail coeffi-
cients are illustrated. It can be seen that the results, in terms
of the preservation of the cross-spectra, are comparable to
that of the spectra of a single slice. Likewise, there is sub-
stantial improvement when moving to multi-slice block re-
sampling (Fig. 9¢c) and cyclic resampling (Fig. 9d). Hence, as

with the one-dimensional surrogate data schemes, wave-
strapping of two-dimensional data sets can be generalized in
order to preserve cross-correlations between multiple data
sets (such as adjacent slices in the third spatial dimension).

Application to fMRI Data

From the preceding analysis, and given that fMRI data
sets are relatively small in size, it is expected that the wave-
strapping algorithm may only adequately preserve the spa-
tial and temporal spectra if the correlations (steepness of the
power spectral curves) are relatively weak. Hence, the ade-
quacy of the proposed technique for fMRI data is an empir-
ical issue and cannot be determined a priori. The results are
presented in this section.

Spatial wavestrapping step

In the present data set, the spatial correlations are com-
paratively weak. In Figure 10a, the horizontal spatial spec-
trum of one typical slice from the visual activation data set
is presented. In Figure 10b, this spectra is plotted alongside
19 surrogate realizations (dashed lines) from the spatial
wavestrapping step. The results of resampling another (ran-
domly chosen) slice, from a different subject, are presented
in Figure 10c. As discussed in Bullmore et al. [2001], higher-
order wavelet basis functions more completely decorrelate
the detail coefficients than low-order wavelets. However,
due to the relatively featureless nature of the spatial spectra,
adequate results were obtained with relatively low-order
wavelets Here, wavelets of order 4 (Fig. 10b) and 6 (Fig. 10c)
were used.

It is also necessary to scale up the power of the surrogates
by about 10% to match the original data. This is because
power within the centre of the image will be permuted close
to the boundary. Some of this power will then be spread
outside of the boundaries during the inverse DWT and
hence lost from the image. However, this can easily be
rectified by automated renormalization of the data and does
not introduce any further problems, as evidenced by the
appropriate matching of the spatial spectra of the original
and (renormalized) surrogate data in Figure 10.

Sample images were studied in each subject. Although,
for most subjects, isolated peaks in the spectra and cross-
spectra (i.e., local minima or maxima in the power-frequency
plots such as in Fig. 10c) may not have been contained
within the surrogate distribution, we were able to easily
locate suitable wavelet basis functions for all slices studied.
On no occasions did there exist unrectifiable whitening or
distortion of the spectra. As discussed above, with 19 sur-
rogate sets, it is adequate to have only 95% or the surrogate
spectra data points within the null distribution and this was
always attainable.

The horizontal spatial cross-spectrum between two adja-
cent images in one subject is presented in Figure 11. Dau-
bechies wavelets of order 6 were employed to generate
surrogate data. It can be seen that the cross-spectra of the
original data are contained within the null distribution. This
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Figure 7.

a: Horizontal spatial spectrum of the image in Figure la. b: Corre-
sponding horizontal spectra of an ensemble of 19 surrogate sets
produced by random permutation of detail coefficients. c: Horizontal
spectra produced by resampling in blocks of 12 adjacent detail coef-
ficients. d: Horizontal spectra produced by cyclic rotation of detail

coefficients. e: Horizontal spectra produced after restricting random
permutation of detail coefficients to all scales other then the finest. f:
Horizontal spectra produced by random permutation of coeffi-
cients (a) plus additive Gaussian noise. For all panels, Daubechies
wavelets of order |2 were employed.
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Figure 8.
Visual representation of spatial wavestrapping at all spatial scales. a: Random permutation; b:
Resampling in blocks of 10x10 coefficients; c: Cyclic resampling.

step does generally require slightly higher-order wavelet
basis functions.

What effect does the “parallel” spatial wavestrapping step
have on the temporal spectrum of an entire slice’s time
series? An example of a temporal spectrum of a slice from
the “resting” fMRI data set and 19 surrogate data sets con-
structed from spatial wavestrapping with Daubechies wave-
lets of order 6 is given is Figure 12a. It can be seen that
although the match is not exact, the variance of the surrogate
data is very small.

Combined spatio-temporal wavestrapping steps

In Figure 12b,c, the effect on the temporal spectrum of
adding on the temporal wavestrapping step is studied. Each
surrogate has been generated through temporal wavestrap-

ping one of the spatially wavestrapped surrogates in Figure
12a. Figure 12b was produced using Daubechies wavelets of
order 8 resampled in 5 blocks. Figure 12c employs random
permutation after decomposition with Daubechies wavelets
of order 10. Figure 12 (b and c) shows that although the
original spectrum remains appropriately contained within
the surrogate ensemble, the variance has greatly increased.
This can be formalised by calculating the average root-
mean-square deviation of each surrogate spectrum from the
spectrum of the original data. In Figure 12a, the mean rms
deviation is 37 units. In Figure 12b and ¢, it has increased to
129 and 125 units, respectively. This is an important effect
because if the variance is too small, then the surrogate
ensemble does not adequately represent a null distribution
[Kugiumtzis, 1999]: An insufficient variance around the
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Figure 9.
a: Horizontal spatial cross-spectrum the images in Figure la,b. Corresponding cross-spectra (b) of
an ensemble of 19 surrogate sets produced by random permutation of detail coefficients. Cross-
spectra produced by (c) resampling in blocks of 12 adjacent coefficients and (d) cyclic rotation of

detail coefficients.

original data increases the rate of false-positive rejections of
the null hypothesis. This is discussed further below.

The spatial and temporal steps can be reversed: This per-
mits investigation of the effect of “parallel” temporal re-
sampling on the spatial spectra of each image (which we
claimed should also be closely preserved). The results are
presented in Figure 13. An example of spatial spectra of a
slice from the “resting” fMRI data set and 19 surrogate data
sets constructed from temporal wavestrapping with Dau-
bechies wavelets of order 10 are given in Figure 13a. Al-
though the spatial spectra are not preserved as closely as the
temporal spectrum following parallel spatial resampling
(Fig. 12a), there is still an appropriately good fit. The mean

rms difference between the original and surrogate spectra is
97 units for the horizontal and 112 for the vertical spectra.
The effect of adding on spatial resampling using Daubechies
wavelets of order 6 (Fig. 12b) and 8 (Fig. 12c¢) is to increase
the variance and hence smooth out the close matching of
local peaks in the spectra: The rms differences have in-
creased to 132 and 146 units for the horizontal and vertical
spatial spectra for both rows of spectra. Hence, the effect and
import of the parallel temporal resampling step are compa-
rable (although less pronounced) to parallel spatial resam-
pling.

It is also important to determine whether the variability
of the surrogate realizations in the voxels at the edges of
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Figure 10.
a: Horizontal spatial spectrum of a motion-corrected fMRI slice. Spatial spectra produced by
resampling wavelet coefficients using (b) Daubechies wavelets of order 4 and (c) order 6

the brain is suitably high, and not unduly constrained by
the lack of resampling of the detail coefficients in the
adjacent extracranial space. This was investigated by mea-
suring, in each voxel, the root-mean-square difference
between the time series of each surrogate realization and
the original data. The mean value of this difference over
all surrogates reflects the degree of variability of surro-
gate realizations, voxel by voxel. Results are plotted in
Figure 14. In Figure 14a, a typical cross-section of this
measure across the brain is plotted. The dashed line is
derived from spatially resampled data and the solid line
after spatiotemporal resampling. In Figure 14b, a grey-
scale image of an entire slice after spatiotemporal resam-

pling is given. The notable feature of both plots is that the
edges are steep, indicating that any reduced variability
affects very few voxels. In Figure 14a, it can be seen that
there is some reduced variability, but only for a few (one
to three) voxels at the edge of the data. This is because at
the finest scale of the wavelet decomposition, the basis
functions have very small support and hence still ensure
adequate mixing at the edges of the permuted data set
(leaving the finest level unpermuted yields spatially resa-
mpled data with flatter edges). The temporal resampling
step redresses any incomplete resampling that does occur
at the edges. Nonetheless, care should be taken if dealing
with very superficial cortex using the present approach.
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Figure I1.
The horizontal spatial cross-spectrum between two adjacent slices
in one subject (solid line) and cross-spectra produced by resam-
pling coefficients using a Daubechies wavelet of order 6 (dashed
line).

The amplitude distribution of a single slice fMRI
(throughout the recording) and two sample surrogate sets
are given in Figure 15. The BOLD value in each pixel at all
time points was extracted and the resulting values are plot-
ted on an amplitude histogram. An original data set is given
in black. Note that the distribution is approximately Gauss-
ian. The amplitude distribution of a surrogate set derived by
spatial wave-strapping is given in light grey. The distribu-
tion of a surrogate set derived by spatial and temporal
wave-strapping is given in dark grey. It can be seen that the
wave-strapping algorithm has a negligible effect on the am-
plitude distribution. Given that the amplitude distribution
of the fMRI data is effectively Gaussian, this finding is not
surprising: both the phase-randomizing [Theiler et al., 1992]
and wavestrapping [Breakspear et al., 2003] techniques tend
to bias any data toward a Gaussian distribution. Other is-
sues related to wavestrapping of one-dimensional uni- and
multivariate data sets have been examined in more detail
elsewhere [Andrzejak et al., 2004; Breakspear et al., 2003;
Bullmore et al., 2001].

Analysis of “null” data set

The validity of the spatiotemporal wavestrapping tech-
nique can be studied by comparing the expected versus
observed rate of null hypothesis rejections using a measure
of functional connectivity in the “null” (resting) fMRI data
sets. For the present study, we employed the Pearson’s
correlation coefficient r, a simple measure of linear correla-
tion/co-activation. In each data set, 1,000 distinct randomly
chosen pairs of voxels were studied. For each pair, a one-
tailed test of significance was performed by comparing the

experimentally derived correlation coefficient r,,, against
the rank ordered measures derived from 19 sets of surrogate
data 7 The null hypothesis was rejected if r,,, > max
(rsurr)'

The results for the overall analysis in the 3 “null” data sets
are presented in Figure 16. Figure 16a shows results from
one slice in the first subject using a number of resampling
strategies. Following spatial resampling alone (dashed line/
crosses), it can be seen that the observed number of null
rejections very closely mirrors the expected number. Results
from four different subsequent temporal resampling strate-
gies are shown with dotted lines. It can be seen that all give
valid although slightly conservative results over a wide
range of P values. Random recycling with Daubechies wave-
lets of order 10 (black dots) most closely matches the ex-
pected rate of false positives. In this example, permuting
detail coefficients in 4 blocks using wavelets of order 8 (Fig.
16, diamonds) yielded the most conservative outcome. In
Figure 16b and c, results from the two other data sets are
given. In these subjects, two slices were processed and one
voxel from each slice was included in each randomly chosen
pair. In these slices, the temporal resampling step was per-
formed first (dotted lines/circles) using Daubechies wave-
lets of order 6. In Figure 16a—c, results from three spatio-
temporal surrogates constructed by subsequent spatial
resampling with Daubechies wavelets of order 4 to 10 are
given (dashed lines). The results are comparable to Figure
16a with the exception that the temporal resampling step in
subject 2 (dotted line in Fig. 16b) gives a somewhat more
conservative output than the first step in Figure 16a. How-
ever, it is clear that in all subjects, suitably valid represen-
tations of the null hypothesis were generated following a
variety of resampling choices.

surr*

Results from visual activation paradigm

It is reasonable to expect that activity arising from co-
activation of bilateral visual cortex following visual stimulus
(first data set) should exhibit region-specific correlations. If
so, then the wavestrapping algorithm should randomise
such effects into the background structure. We identified
those data sets where strong activation was observed to
occur in visual cortex and compared the correlation coeffi-
cient from the experimental data with ensembles of surro-
gate data. Daubechies wavelets of order 3 to 8 were em-
ployed, according to the schema outlined in Figure 3. Two
slices from each subject were studied. An example of this
analysis is presented in Figure 17. Figure 17a and b show the
BOLD time series for two strongly activated voxels and their
corresponding spatiotemporal surrogates. The temporal
cross-spectrum of the two voxels is given in Figure 17c. It
can be seen that the cross-spectrum of the original data is
outside of the surrogate distribution: The null hypothesis
can be rejected for these voxels (r,., = 0.794 ; max(r,,.)
= 0.717, mean(r,,,,, = 0.629).

The overall results are presented in Table 1.Seven suitable
data sets were identified. As shown in the second column in
Table I, the experimental correlation coefficients were all

exp
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Figure 12.

Temporal spectrum (PSD;) of original data (solid line) and surro-
gate data (dashed line). (a:) PSD; following parallel spatial resam-
pling using Daubechies wavelets of order 6. b,c: The effect of
subsequent temporal resampling on these spatially wavestrapped
data, using (b) Daubechies wavelets of order 8 in 5 blocks and (c)
Daubechies wavelets of order 10 and random permutation. Note
the increase in variance in b and c.

reasonably strong. As expected, all of these were statistically
significant following one-tailed nonparametric comparison
with surrogate values (ie., r., > max(r,,,)). Thus, the
wavestrapping algorithm did appear to achieve adequate
randomisation of such expected effects. In the third column
(Table I), the mean values of 7,,,, are shown. It can be seen
that, whilst weaker than the corresponding experimental
values, all means except one are much stronger than zero.
This is not surprising, given the relative proximity of the
pairs of voxels in this strongly stimulus-driven data set.
Further analysis, possibly using simulated data, would be
required to ensure that the background correlations were
adequately randomised from such data.

DISCUSSION

In this report, we present a wavelet-based method of
constructing surrogate data for null hypothesis testing in
functional connectivity studies. The method is an extension
of previous “wavestrapping” algorithms from a one-dimen-
sional univariate [Bullmore et al.,, 2001] and multivariate
[Breakspear et al., 2003] data to spatio-temporal data with an
irregular physiological subdomain. Using standard IEEE
test images, the effects of different constraints on the resa-
mpling procedure were visualized in the real and spectral
domains. It was hence shown that the algorithm could be
tailored to suit data sets with different spectral properties,
and constrained to within various spatial scales and spatial
subdomains. Correlations within and between slices in the
spatial and temporal domains were observed to be ade-
quately preserved.

It was demonstrated that the algorithm is suitable for use
in a set of human fMRI data recorded during a visual
stimulation paradigm. This requires restricting the resam-
pling scheme to an irregular intracranial domain, a step that
cannot be achieved with Fourier-based resampling schemes.
The only other surrogate data alternative that we are aware
of is associated with a heavy computational burden in one-
dimensional data [Schreiber, 1998]. Given that computa-
tional demands increase approximately to the power of the
number of dimensions, the proposed algorithm currently
stands as the only viable non-parametric method of estimat-
ing the null distribution for functional correlations in fMRI
data. Moreover, its flexibility means that if non-neural com-
ponents of the data (such as cardiorespiratory effects) are
restricted to within temporal or spatial subscales, they can
be left “unpermuted.” In this way such effects will be
present in the surrogate data in the same way as in the
original data, and there will thus exist implicit control for
their bias of any connectivity measures.

However, there are a number of important potential lim-
itations of the method, which must be kept in mind when
interpreting its application. The first of these is the impact of
the algorithm on the amplitude distribution of the data. That
is, the amplitude distribution of the surrogate data is not
necessarily the same as that of the original data. This is also
true of Fourier-based techniques. This may lead to false
rejections of the null hypothesis (type I errors). There are a
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Figure 13.
Horizontal (PSD,,) spatial spectra of the original data (solid line) and surrogate (dashed line). a:
Spatial spectra following parallel temporal resampling with Daubechies wavelets of order |0.
Subsequent spatial resampling on these temporally wavestrapped data, using Daubechies wavelets

of order 6 (b) and 8 (c).

number of solutions to these problems. (1) If the change in
amplitude is only modest (see Fig. 14), then no action may be
required. (2) A “goodness of fit” criteria of the amplitude
distribution can be calculated [Breakspear et al., 2003] and
surrogate data realizations discarded if they do not meet this
criteria. (3) An “amplitude adjustment step” [Theiler et al.,
1994] can be added to the algorithm [Breakspear et al., 2003].
However, whilst it is fairly straightforward to implement,
such a step has its own limitations [Kugiumtzis 1999;
Schreiber and Schmitz, 1996]. (4) The correlation measure
can be checked to see if it is influenced by changes in the

amplitude distribution without distortion of the spectra.
This is often the case.

Secondly, in the present fMRI data, the temporal and
spatial correlations were reasonably weak (see Figs. 12, 13).
However, if such correlations were stronger, it might not be
possible to adequately match the spectrum. At this stage,
this can only be determined on an empirical basis. However,
we did not find any data that could not be adequately
resampled by this wavestrapping scheme.

Thirdly, the spatial resampling step in this report is a
multivariate two-dimensional algorithm. This is ideally
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suited to correlation measures within one or between two
fMRI slices. However, some methods (such as PCA) incor-
porate multiple slices. Whilst it is possible to use the pro-
posed method in this context, the correlations between slices
are very closely preserved. This may lead to a slightly over-
conservative estimation of the null hypothesis (hence type II
errors). This arises because the wavelet decomposition is
only two-dimensional. In order to preserve only the average
between slice correlations (which are dependent on the sep-
aration distance between multiple slices), a full three-dimen-
sional wavelet decomposition would be required. This is to
be the subject of future work.

Fourthly, the effects of the boundaries (the spatial and
temporal endpoints) of the data may be a potential problem
[Rapp et al., 2001], particularly if high-order wavelet func-
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Figure 14.

Mean of the root-mean-square of the difference between the
experimental BOLD and surrogate time series, voxel by voxel. a:
Cross-section through a slice, showing results after spatial waves-
trapping (dashed line) and spatiotemporal wavestrapping (solid
line). Note somewhat steeper “edges” after both steps have been
completed. b: Grey-scale results from an entire image. Dotted line
shows location of the cross-section in a.
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Figure 15.
Amplitude histogram of fMRI data (black), spatially wave-strapped
data (light gray) and spatio-temporal wavestrapped data (dark
grey). The BOLD value in each pixel at all time points was
extracted and the resulting values are plotted on an amplitude
histogram. x-axis is the value of the BOLD signal and the y-axis
gives the number of voxels with that signal value.

tions (which have a wider support and hence spread further
over the boundaries) are employed. However, in the spatial
domain, at least in our data, this was not found to be a
problem because there existed a significant number of re-
dundant data points outside of the intracranial domain.
These act to “pad” the effect of the outer boundaries of the
data and hence greatly diminish boundary effects. Thus, we
did not observe significant spectral distortions even with
relatively high-order wavelets.

Fifthly, although the method was validated in a “null data
set,” it is important to bear in mind that this assumes that
there are only randomly distributed (null) linear correlations
in fMRI signal intensity during resting (eyes closed) cogni-
tive states. A number of recent studies have, on the contrary,
reported evidence of specific and distinct patterns of func-
tional connectivity in resting states, involving primary mo-
tor [Xiong et al., 1999] and visual cortex [Lowe et al., 1998],
left and right hippocampus [Rombouts et al., 2003], and the
cingulate cortex [Grecius et al., 2003]. Such effects may be
comparable to the temporally sparse occurrence of dynamic
connectivity in resting state scalp EEG [Breakspear and
Terry, 2002b] and have been posited to support the retrieval
and manipulation of episodic memories [Grecius et al.,
2003]. To some extent, the relative sparsity of such regions,
combined with the random choice of pairs scattered over the
entire cortex, should partially overcome such effects for the
present purpose. Further empirical study of resting state
neuroimaging data is required to better survey the extent,
sparsity, and strength of such functionally connected net-
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Figure 16.

Expected versus observed rate of null hypothesis rejection in the eyes-
closed resting state fMRI data set. a: Results following first subject, one
slice after spatial wavestrapping using daubechies wavelets of order 6
(crosses, dashed line) and then subsequent temporal resampling (dotted
lines) using wavelets of order 10 and random resampling (black dots), 8
and cyclic rotation (crosses), 8 and random resampling (open circles), 8
and resampling in 4 blocks (diamonds). Results from second (b) and third
(c) subjects showing temporal resampling (dotted line) using Daubechies
wavelets of order 6, and then spatial resampling using wavelets of order
4 (crosses), 6 (diamonds), and 8 (black dots).

works. Spatiotemporal wavestrapping could play an impor-
tant role in such an endeavour.

When dealing with moderately large data sets, computa-
tional considerations are also important. Using Daubechies
wavelets of order 8 in MatLab 6.5, the spatial wavestrapping
step takes approximately 30 sec for one slice with 55 time
points on a Pentium IV 1.6GHz processor. The multivariate
temporal wavestrapping step takes approximately 130 sec.
Hence, for two slices in one subject, construction of a 19-
sample surrogate ensemble takes approximately 2 h. Com-
putation times decrease when lower order wavelet functions
can be employed and would be lower still if the algorithms
were compiled in “lower level” languages such as C. Once
constructed, the surrogate data could be employed to test a
range of “connectivity” hypotheses. These considerations
argue that the proposed technique is computationally feasi-
ble.

Finally, there is an important conceptual question: How
much of the spectrum should be preserved? The closer the
surrogate spectra to the original spectrum, the fewer the
number of possible surrogate realizations. For example, the
“size” (number of elements) of symmetry groups is orders of
magnitude greater than that of cyclic groups. It is possible
that many of the latter realizations, whilst closely matching
the spatio-temporal spectra, actually too closely resemble
particular properties of the original data. This may cause
type II errors (because the surrogate data have too much
structure to sufficiently represent the null hypothesis). Al-
ternatively, they may too closely resemble each other, that is,
lack sufficient statistical independence [Dolan and Spano,
2001; Kugiumtzis, 1999]. This may allow type I errors (be-
cause the confidence interval is too narrow). Hence, when
choosing the optimal wavelet basis functions and resam-
pling scheme, it is desirable to find the wavestrapping
scheme that generates the broadest surrogate distribution
around the original data. For this reason, cyclic rotations of
high-order wavelet decompositions should not be the
scheme of first choice.

TABLE I. Pearson’s correlation coefficient from
experimental and spatiotemporal surrogate ensembles
in six subjects (where strong activation was observed in

bilateral visual cortex) of the visual stimulus data set

T,

surr

Subject Texp Max Mean Min
ncl 0.688 0.608 0.413 0.106
nc2 0.604 0.564 0.335 —0.097
nch 0.442 0.401 0.263 0.013
nc7 0.616 0.567 0.416 —0.156
ncl5 0.665 0.558 0.379 0.127
ncl6 0.794 0.717 0.629 0.397
ncl7 0.550 0.384 —0.022 —0.423

* Experimental r,,, versus surrogate 7,,,, values. A one-tailed non-
parametric rejection of the null hypothesis is said to occur if 7,,, >
max(rsurr)'
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Figure 17.

Exemplar data from visual stimulation paradigm. a,b: Time series
of BOLD from two “strongly activated” pixels in visual cortex
(solid line) and corresponding surrogate realizations (dashed line).
c: Corresponding temporal cross-spectral density function. Pear-

Hence, interpretation of results using surrogate data needs
to be conducted with caution. However, if these caveats are
adequately accounted for, the present method remains a pow-
erful non-parametric method for use in studies of connectivity
in functional neuroimaging data. An important future devel-
opment would be to automate the selection of wavelet basis
functions and resampling scheme illustrated in Figure 4. Be-
cause of the considerations discussed above, one desires the
scheme that generates the broadest variance in the resampled
ensemble spectra but that also adequately encloses the exper-
imental spectra. It may be possible to minimise the number of
iterations required to find the best scheme/basis functions by
employing a searching algorithm such as simulated annealing.
An alternative approach, not addressed in the present study,
would be to characterize the nature of the stochastic process
underlying the data’s spatial and temporal spectra: Fractional
Brownian motion [Bullmore et al., 2001] and autoregressive
noise [Harrison et al., 2003] are two possible candidates. Wave-
let functions of appropriate order and support could then be
chosen after parameterizing the noise process. Such a study,

son’s correlation coefficient for the original data was r,,, = 0.794
and for the surrogate r,,,, = 0.637 (the median for this surrogate
ensemble).

which would require further analytic results on the decorrelat-
ing properties of higher-order wavelets and an improved char-
acterization of the spatio-temporal stochastic structure of fMRI
data, is to be the subject of future work.
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APPENDIX A: TWO-DIMENSIONAL DISCRETE
WAVELET TRANSFORM (2-D DWT)

Wavelet analysis is a means of decomposing the total
energy or variance of a process across a nested sequence of
spatial and/or temporal scales [for a recent review, see
Bullmore et al., 2003]. In this appendix, we provide a qual-
itative and mathematical description of the two-dimensional
discrete wavelet transform.

Qualitative Description

For a one-dimensional signal f, the wavelet transform yields
a decomposition across a hierarchy of scales {j}€Z. Each suc-
cessive level is a doubled (halved) version of the next finer
(coarser) scale. Within each scale J, the signal is further decom-
posed into an approximate and a detail component. The detail
component captures the variance in the signal at that scale and
is represented by a weighted sum of “wavelet” functions. The
approximation is the residual after the details at that and all
smaller scales have been removed. It is represented by a weighted
sum of “scaling” functions. Computationally, the approximation
of a signal at scale ] is derived from a low-pass filtering of the
signal. The detail at that scale is calculated through application of
an appropriately matched high-pass filter.
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A two-dimensional wavelet transform is essentially an iter-
ation of the one-dimensional transform in each dimension,
with a suitable adjustment to account for fluctuations in the
diagonal direction. The approximate component is derived by
one-dimensional low-pass filtering of the signal firstly in the
horizontal (column-wise) and thence in the vertical (row-wise)
direction. The horizontal detail component is produced by
high-pass filtering in the horizontal direction and then low-
pass filtering in the vertical direction. It thus captures the
variance at that scale occurring exclusively in the horizontal
direction. The vertical detail component is produced by high-
pass filtering in the vertical direction and low-pass filtering in
the horizontal direction. Finally, the diagonal detail component
is produced by iterative high-pass filtering in both directions. It
captures the diagonal variance. As with the one-dimensional
signal, one can recover without loss a signal through linear
summation of the approximate component at any scale ] with
the horizontal, detail, and diagonal components at that and all
smaller scales j = .

Mathematical Description

Suppose we have a class of “natural” one-dimensional
signals flx)€ L*[R) defined over a real-valued one-dimen-
sional domain R such as space or time, where L? denotes
that the integral of the square of the signal is finite (hence
“natural”). Wavelet functions are a set of orthogonal basis
functions that decompose such functions into a hierarchy of
spatial/temporal scales. At each scale, the wavelet transform
W(f) yields an orthogonal decomposition of f into an approx-
imation (smoothing) of the data, with the details at that and
all smaller scales removed. The approximation is given by a
set of weighted “scaling” functions, ¢(x). The details are
given by a set of weighted “wavelet” functions, {(x). The
original signal can hence be losslessly recovered through
linear summation of the approximation of the signal at a
scale | € Z and the details at that and all finer scales j = ],

Column

X={z),2}

f=Af+ > TIf (B1)

j=JeZ

where Aj and IIj denote the orthogonal subspace projectors
from f onto the subspaces spanned by the scaling and wave-
let functions respectively. That is,

Af= E b
kel

Tf= 2 dyby (B2)
kel

where k is the position index and the sum is taken over a

domain [ that covers the domain of f. For a discretely sam-

pled signal of length I, the detail components vanish for

scales finer than j = log2(l). Because the successive scales are

linearly orthogonal, it is also possible write,

ILf = Ajof — Af, (B3)
which mathematically states that the detail component at
any scale corresponds to the difference between two succes-
sive approximation components.

For a two-dimensional wavelet transform of a signal
fEL?*(R?) define subspace projections in the horizontal {A™;,
T} and vertical {AY,, IT"}} directions onto the scaling and
wavelet subspaces, respectively. A multiscale wavelet de-
composition in two dimensions is then given by,

f= AJAf+ 2 (TFAYF + AJTIf + T

j=]

(B4)

The first term on the RHS is the approximate component.
The terms within the summation are the horizontal, vertical,
and diagonal components. As with (B2),

AT + AJTIFf + T = AJATF = AfL AT f. (B5)

In signal processing form, equation (B3) can be equivalently
represented by a 2D DWT “filter tree,” formed by 1-D low-
pass (F)) and high-pass (F),) filters,

Column
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where Yy, denotes the approximation at level N and Yy,
the horizontal (vertical/diagonal) detail coefficients; | 2 de-
notes that the size of the matrices have been downsized by a
factor of 2 at each step (adapted with permission from N.
Kingsbury [2003] from original material published online at
http:/ /cnx.rice.edu/content/m11140/latest/). Hence, the fil-
ters effectively perform the subspace projections (low pass onto
scaling subspaces and high pass onto wavelet subspaces).

APPENDIX B: DEFINITIONS OF SPATIAL
AND TEMPORAL (CROSS-) CORRELATIONS
AND SPECTRA

Both correlation and spectral functions express the statis-
tical covariation within and between signals, although in
slightly different ways (the spectra provide a frequency
decomposition of the correlation functions). In this appen-
dix, we first provide a qualitative description of the corre-
lation and cross-correlation functions and then mathemati-
cal derivations of spatial and temporal spectra and cross-
spectra. The mathematical definitions are given in spectral
form since these are plotted in the figures of this study. A
brief discussion of the concept of “stationarity” is also given.

Qualitative Description

In a spatiotemporal data set, such as fMRI, there are
temporal correlations within a single pixel’s time series and
spatial correlations within a given slice at a particular time.
There also exist temporal cross-correlations between two pix-
els’ time series and spatial cross-correlations between two
slices (or between the same slice recorded at different times).
More specifically, suppose we have two time series, y,(t) and
Y»(f). Then the temporal correlation function I'(y;;1) ex-
presses the average co-variation of all pairs of elements
{y1(t), y,(t+7)} separated by a time lag of T within y,. The
temporal cross-correlation function I'(y,,1/,;7) expresses the
average co-variation of pairs taken one from each time series
{n(t),y(t + 7)}, again separated by a time lag T.

If we have two images, S;(x) and S,(x) then the spatial
correlation function II(S,;d) expresses the average co-varia-
tion of all pairs of elements {S; (x;), S; (x,)} separated by the
Euclidean distance d = |x;—x,| taken from S;. The spatial
cross-correlation function I1(S,,5,,d) expresses the average
co-variation of pairs taken one from each image {S; (x;), S,
(%)}, again separated by d = [x;—x,|.

Functional neuroimaging data consists of a series of slices
S,(x,t) recorded over a time window t = {t,,f,,. . .t5}, which
in this report are treated as a multivariate two-dimensional
time series. It is thus possible to restrict ourselves to linear
subsets (constant space or constant time) of the entire data
set and derive the temporal or spatial (cross-) correlation
functions as discussed above. These are examples of specific
correlation functions because they have a specific localiza-
tion in time or space (temporal correlation functions derive
from a particular pixel; spatial correlations derive from a
slice recorded at a particular time). It is alternatively possi-
ble, using the appropriate formula, to calculate a single

higher-order spatio-temporal correlation function from the
entire data set. Subsequent reduction of the dimensionality
of such a function can be achieved by integrating over one of
more (spatial or temporal) dimensions. For example, inte-
grating over both spatial dimensions yields the temporal
correlation function, not of one pixel, but rather an entire
slice. Conversely, integrating over the temporal dimension
yields the spatial spectra for a slice throughout its temporal
recording. This is approximately equal (depending upon the
method of integration employed) to the mean temporal cor-
relation function averaged over all pixels. The higher-order
correlation functions represent the correlation structure of
the data set and are typical of the data.

Mathematical Formalism

Let S; (x,t) and S, (x,t) represent the time series recordings
of two functional neuroimaging slices where xeR* denotes
the position in the plane and t = t,,t,,.. .ty represents the
temporal sequence of recordings. If we choose a spatial
position in each slice, X;; = {x,-,x]-}, then we have two time
series, y,(t) = S; (x;t) and y,(t) = S, (xt). The discrete
Fourier transform operator F yields,

N/2
Fi(y(t) = Aj(f)ei"’/(f) = E ]/j(fn)esz"m, ji=1.2

n=0

(AT)

A(f) and ¢(f) are the amplitude and phase, respectively, at
frequency f = fifo.. . fy2and At = ti_, is the
sampling period. The temporal spectral density function
(PSD) is simply the square of the amplitude, the modulus
squared of the Fourier transform,

N/2

PSD,(f) = A(f? = E y(t,)e2 it

n=0

(A2)

This can also be obtained through multiplication of the
Fourier transform with its complex conjugate,

PSD,(f) = Fl(y(t)) X Fy(y(t)) (A3)
The temporal cross-spectral function is, by analogy, defined
as the modulus of the cross-product of the Fourier transform
of two time series,

CSD,, 0P = [Fe(y1(£)) X Fl(ya(D))]. (A4)

Note that because this cross-product is, in general, a com-
plex function, it is necessary to take the modulus to obtain a
real-valued function of frequency f.

If we choose a particular time ¢ = t;, then we have two
slices S;(x) and S,(x). Because these are two-dimensional
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functions, their Fourier transforms are also two-dimensional
(and complex-valued),

Fo(51(0) = A(£)e"™ = A(fy f)e® ), j=1,2 (A5)

where f, = {f;,f} is the two-dimensional spatial frequency
vector. The horizontal spatial spectrum is derived by taking
the modulus squared and then integrating in the vertical
dimension,

PSDy(fu) = JF{(S(x)) X FAS())df., (A6)
where the integral is taken over all vertical frequencies f,.
The vertical spectrum PSD,, is obtained by integrating over
fu- As with the temporal spectrum, the spatial cross-spectra
are derived from integrating the modulus of the cross-prod-
ucts,

CSDH(fH) = f‘Ff(Sl(X)) X Ff(sz(x))|dfv~ (A7)
The vertical cross spectrum is likewise derived from inte-
gration in the horizontal frequency domain.

As discussed above, it is also possible to calculate higher-
order spatio-temporal spectra/correlation functions of the
entire data set and then integrate over one of more spatial/
temporal dimensions. Hence, the temporal spectrum is ob-
tained by integrating the cross-product over the spatial di-
mensions

PSD((f)) = JIF{(S(x,t)) X F(S(x.t))df,, (A8)

where f, is the temporal frequency, f = {f, £} and F¢(S(x,t)) is
the three-dimensional Fourier transform of S. In addition,
the horizontal or vertical spatial spectra can be obtained by
their appropriate integration,

PSDy(fu) = JJF(S(x,t)) X F(S(x.t)dfdf,.  (A9)
These formulae give rise to the plots show in Figures 12 and
13. The spatial and temporal cross-spectra can be derived by
integration of appropriate cross-products.

Stationarity

The use of temporal and spatial integrals warrants a short
discussion about “stationarity.” Obtaining integrals/averages
over space or time effectively assumes that the underlying
process is stationary in the relevant domain; that is, that the
statistical properties are time/space invariant. More specifi-
cally, stationarity assumes that, given sulfficient length of data,
all statistical measures (mean, variance, correlation functions,
spectra, kurtosis, etc.) will converge. Finite lengths of data, or
subdivisions of the data, yield representative values of such
measures, which do not drift in time. This is the usual meaning
of the term “stationary” or “ergodic” [see Stam et al., 2003].

The method described in this study rests on the assumption
that the physiological data are stationary in both the temporal
domain and in the (intra-cerebral) spatial domain. However,
by constraining the randomization procedure, a variety of
more complex hypotheses could be tested. By constraining the
randomization to within any subdomain of the data does allow
non-stationarity to be accommodated. In fact, this is the very
basis of allowing for the irregular intracerebral domain.
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