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Abstract: The major disadvantage of hierarchical clustering in fMRI data analysis is that an appropriate
clustering threshold needs to be specified. Upon grouping data into a hierarchical tree, clusters are
identified either by specifying their number or by choosing an appropriate inconsistency coefficient. Since
the number of clusters present in the data is not known beforehand, even a slight variation of the
inconsistency coefficient can significantly affect the results. To address these limitations, the dendrogram
sharpening method, combined with a hierarchical clustering algorithm, is used in this work to identify
modality regions, which are, in essence, areas of activation in the human brain during an fMRI experi-
ment. The objective of the algorithm is to remove data from the low-density regions in order to obtain a
clearer representation of the data structure. Once cluster cores are identified, the classification algorithm
is run on voxels, set aside during sharpening, attempting to reassign them to the detected groups. When
applied to a paced motor paradigm, task-related activations in the motor cortex are detected. In order to
evaluate the performance of the algorithm, the obtained clusters are compared to standard activation
maps where the expected hemodynamic response function is specified as a regressor. The obtained
patterns of both methods have a high concordance (correlation coefficient � 0.91). Furthermore, the
dependence of the clustering results on the sharpening parameters is investigated and recommendations
on the appropriate choice of these variables are offered. Hum. Brain Mapp. 20:201–219, 2003.
© 2003 Wiley-Liss, Inc.
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INTRODUCTION

Data analysis techniques in fMRI can be loosely classified
into two categories: model-dependent and model-free meth-
ods. The first category encompasses standard statistical ap-
proaches such as Statistical Parametric Mapping (SPM)
(Wellcome Department of Cognitive Neurology, London,
UK), where the hemodynamic response function is explicitly
modeled. However, their use is limited in studies with more
complex activation paradigms or unknown brain response

patterns (e.g., drug studies, epileptic seizures, or analysis of
resting-state data). To identify unknown brain responses,
exploratory methods such as principal component analysis
(PCA) [Sychra et al., 1994], independent component analysis
(ICA) [McKeown et al., 1998], and cluster analysis are useful.
The most popular methods among the numerous clustering
techniques are fuzzy clustering [Baumgartner et al., 1998,
2000a,b; Windischberger et al., 2001] and K-means [Goutte et
al., 1999]. Even though fuzzy and K-means clustering are
regarded as exploratory, data-driven methods, they still re-
quire the specification of the number of expected clusters.

Hierarchical clustering methods have been successfully
applied to fMRI data [Cordes et al., 2002; Filzmoser et al.,
1999; Goutte et al., 1999]. Hierarchical clustering, contrary to
K-means, is not based on a multivariate Gaussian distribu-
tion of the data, and has therefore advantages in classifying
various types of distributions. The aim of any clustering
method in fMRI is to create a partition of the entire data set
into distinct regions where each region is represented by
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voxels exhibiting similar temporal behavior. One of the ob-
stacles in fMRI data analysis is the large size and complexity
of the raw data set, the low contrast-to-noise ratio (CNR),
and the presence of artifacts including subject motion and
hardware instabilities. The ultimate goal is to detect areas of
real activation. Hierarchical clustering allures with its sim-
plicity and its absence of any underlying parametric as-
sumptions. One only needs to specify the measure of simi-
larity, which is then used to link the objects into a binary
tree. The clusters are usually defined by setting an appro-
priate inconsistency threshold, which is equivalent to a cut
of the binary tree at a certain level. However, due to the
presence of noise in the fMRI data, this “cutting” method
can result in any arbitrary number of clusters.

The purpose of this study is to evaluate the application of
a particular sharpening algorithm to obtain robust activation
maps. The sharpening technique, in general, allows a signif-
icant reduction of the dimensionality of the acquired data, at
the same time preserving its structure. In the present study,
two different on/off motor paradigms, a slow-paced and a
fast-paced finger tapping experiments, are used. The corre-
lation coefficient between two voxel time courses serves as a
measure of similarity. The choice of the appropriate linking
method is discussed. To evaluate clustering results, the per-
formance of the algorithm is compared to the outcome of a
conventional statistical analysis using a hypothesized hemo-
dynamic response function as a regressor. Finally, the de-
pendence of the obtained clusters on the sharpening param-
eters is investigated and suggestions for the appropriate
values choice are given.

THEORY

Distance Measure

The first step in clustering is to define a distance measure
between the objects (points), d(i,j). This measure must satisfy
the following three properties:

d�i,j� is symmetric, i.e. d�i,j� � d�j,i� for any objects i and j;

d�i,j� is positive for any two objects i and j if i � j;

d�i,j� is equal to zero only if the objects are identical �i � j�.

The defined measure is a metric if in addition to the listed
properties the triangle inequality is satisfied:

d�i,j� � d�i,k� � d�j,k� for any objects i, j, and k.

The choice of the similarity measure depends on the data
type (nominal, ordinal, ratio, etc.) and the accepted practice
in the application field. Common examples of similarity
measures include Euclidian and Mahalanobis distances. A
detailed description and discussion of possible similarity
measures are beyond the scope of this study and can be
found elsewhere [Hartigan, 1981; Jain and Dubes, 1988].

Linkage Algorithm

Cluster linking is accomplished by grouping the acquired
data into a hierarchical tree using an appropriate linkage
method. The three most popular and basic linkage methods
in hierarchical agglomerative clustering are the single link,
complete link, and average link method. All these methods
lead to a binary tree called a dendrogram that describes the
structure of the data. In the single linkage method (also
called the nearest neighbor method), the distance between
two clusters is defined as the minimum of all pairwise
distances between objects constituting the clusters. At each
step, the two closest clusters are joined together. Complete
linkage, or “furthest neighbor linkage,” in turn, uses the
largest distance between objects to separate two clusters.
The average linkage method uses the average distance be-
tween all pairs of objects from two different clusters.

For completeness, we like to mention briefly the popular
K-means algorithm, which is an example of a partitioning
algorithm. It aims to partition the data into distinct groups
by minimizing the sum of distances from each object to its
cluster centroid over all clusters. For more information on
clustering algorithm, the reader is referred to Hartigan
[1975] and Jain and Dubes [1988].

Terminology

Next we review some of the basic terminology used in
hierarchical clustering. The original data points are referred
to as terminal nodes. When two nodes are merged together
they form a new node, called a parent node. When the last
two clusters are merged together they form a root node. The
ordinate value of a parent node on the diagram is equal to
the distance between the objects forming the node. This
distance is also called agglomeration value. The two nodes
agglomerated to form a new cluster are called left and right
child of the newly formed cluster, respectively. The size of
the particular node equals the number of the terminal chil-
dren constituting the node. Obviously the size of any termi-
nal node is one and the size of the root node (i.e., the top
node) is equal to the number of the terminal children.

Advantages of Using the Single Linkage Method

Here, the single linkage method is used because of its
ability to correctly reveal the underlying structure of the
data. This is not necessarily the case for the other linkage
methods, unless points of high density are separated by a
sufficiently deep valley of zero density. For example, when
sets of original points become close or overlap, the complete
and average linkage algorithms yield several large clusters,
giving an impression of distinct grouping in the data regard-
less of the density. It has been shown [Hartigan, 1981] that
the large clusters produced by these algorithms depend on
the range, but not on the true density of the data set. Thus,
complete and average linkage algorithms are unable to
properly indicate the modal peaks unless the data is consti-
tuted of well-separated groups of objects. Single linkage
behaves differently, producing long chained clusters that are
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difficult to interpret. Many top nodes of the single linkage
dendrogram have a very small and a sufficiently large child.
Due to this “chaining” effect, which correctly indicates the
lack of spatial separation in case of touching or overlapping
clusters, the single linkage has been neglected by many
researchers.

Hartigan [1975, 1977a, b, 1981] provides formal support
for the usage of the single linkage over average and com-
plete linkage algorithms. Hartigan shows that single linkage
is fully consistent for separating two disjoint, high-density
clusters in Rn when n �1, and that it is fractionally consistent
for n � 1. The latter case means that if two disjoint popula-
tion groups exist, there will be two distinct single linkage
clusters containing a positive fraction of the sample points
from the corresponding population groups. It then follows
that the single linkage is in a sense conservative, that it won’t
necessarily detect all clusters, but it will detect modal re-
gions separated by a sufficiently deep valley [Hartigan,
1977b].

The single linkage has other alluring properties: it is com-
putationally simple, it produces clusters invariant under
reordering of the objects, and it is related to the minimum
spanning tree (MST). The MST is the graph of minimum
length connecting all data points. An example of the MST is
given below.

Example

To gain a better understanding, consider the following
example of the single linkage algorithm for a small data set
consisting of fourteen points in R2 labeled from 1 to 14 (Fig.
1). Initially, every point is a cluster. The first step is to
compute all pairwise distances between the points. In this
example, the distance is defined as the simple Euclidean
distance in R2 . Due to the discussed distance properties, the
distance matrix d(i,j) (Table I) is symmetric with zeros on the
main diagonal. Consider the lower triangle matrix and find
its smallest element. This element is d(8,6) and means that
the points 6 and 8 are closest together. These will be merged
to form a new cluster 15. At the next step, points 5 and 7
represent the closest clusters and will be linked together to
form object 16. The next smallest value of the distance matrix
is d(6,1). But object 6 already formed the new cluster 15, thus
object 1 will be combined with cluster 15 to form a new node
17. The process continues until all nodes merge to a single
cluster. Table II shows a step-by-step linking process. The
first column represents a new parent cluster formed by
merging together clusters from the second and third col-
umns of the corresponding row. The last column shows the
distance between the linked objects. The result of this pro-
cess is the single linkage dendrogram (SLD) shown in Figure
2. The original 14 objects are marked on the horizontal axis.
Clusters created during the linking process are marked as
black points on the diagram and labeled from 15 to 27. It is
quite obvious that in order to connect n objects one needs to
make (n-1) links, thus, it will take 13 edges to connect 14
vertexes. Referring to our terminology, the node 27 is the

root node of the dendrogram and has a size of 14. Consider,
for instance, node 22. Its left child will be node 21, its right
child node 3. The agglomeration value of node 22, that is the
distance between cluster 21 and 3, is about 1.05. The size of
node 22 is 8, because it has eight terminal children
{6,8,1,5,7,4,2,3}.

The MST is constructed as follows (Fig. 3): the two closest
observations (6 and 8) are connected by edge 1 (the edge
numbers are given in the diagram in squares). The next two
closest points, 5 and 7, are connected by edge 2 and so on. To
complete the MST, the objects will be connected in exactly
the same order as for the SLD.

The single linkage clusters can be obtained from the MST
by a number of methods. For example, removing one of the
edges of the MST will split the set into two connected
subsets representing two distinct clusters. This operation on
the MST is equivalent to the incision of the dendrogram tree
at the corresponding level. Returning to the previous exam-
ple (Fig. 3), deleting the largest edge 13 will yield two
subsets. The first subset contains two points {9,13}, and the
second consists of all the remaining 12 objects. The same
data set division could be obtained by cutting the binary tree
at level one (Fig. 2, dashed line I). Removing the second
largest edge 12 from the MST yields three clusters {9,13},
{10,11,14,12}, and {6,8,1,5,7,4,2,3}. Exactly the same grouping
could be obtained by cutting the SLD at level II and so on.
All the single-linkage clusters could be obtained by deleting
the edges of the MST, starting from the largest one.

Figure 1.
Simulated two-dimensional Gaussian cloud consisting of 14 points
labeled by consecutive integers. Objects that are discarded later
by sharpening are underlined.
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The Dendrogram Sharpening Algorithm

Finding natural divisions in the data set is a challenging
task. The ideal situation is where the population clusters are
separated by a deep valley of zero density. In practice, in a
large data set the observations in the tails contaminate the
picture, filling the space between the modal peaks. The
known solution to this problem is to alter the original col-
lection of objects in order to reveal its underlying structure.
One natural alteration is to sharpen the data to increase the
contrast between the density regions. The goal of this pro-
cedure is to reduce the number of considered elements, by
deleting or by agglomerating them, and at the same time
preserving as much structure of the data as possible.

Sharpening could be performed by a number of ways. In
sharpening by excision, observations in regions of low den-
sity are simply deleted. However, this sharpening method
has one serious disadvantage. If the original data consist of
groups of different densities, there is a great risk that the
smallest clusters will be completely removed. In sharpening
by replacement, each point is replaced by the centroid of it
and its nearest neighbors. More details on sharpening tech-
niques can be found in Tukey and Tukey [1981]. In this
work, the dendrogram sharpening algorithm introduced in
McKinney [1995] is applied. The idea of the algorithm is to
discard all small-sized children-nodes with a large-sized
parent node in the dendrogram tree. As it was indicated
[McKinney, 1995], this technique yielded consistently good
results, correctly reflecting the multimodal structure of the
data by well-separated clusters in the sharpened set.

Formally, our sharpening process is controlled by two
parameters, nfluff and ncore The nfluff value is the maximum
size of a child cluster that will be discarded if it has a parent
node of a size larger than ncore. This is a recursive algorithm
that begins with the root node of the dendrogram and
continues to invoke on the children of each node since each

child node is the root node of a dendrogram tree itself. This
is described by a flowchart in Figure 4. Different values of
the sharpening parameters together with simple or multiple
passes over the data yield a variety of sharpening effects.

Consider a simple example of the sharpening technique.
Recall the very first example (Figs. 1–3) where 14 points
were linked together into a hierarchical tree using the single
linkage method based on the conventional Euclidian dis-
tance. The dendrogram sharpening algorithm will be ap-
plied to the SLD (Fig. 2) with (nfluff, ncore) parameters (2,5),
which means that from every node of a size larger than 5, all
its children of a size smaller or equal 2 will be discarded. The
procedure starts from the root node of the tree 27. Its size
equals the number of the terminal nodes that is 14. Since 14

TABLE II. Linkage process for the
simulated data set in Figure 1

Parent node Left child Right child Distance

15 6 8 0.21243
16 5 7 0.4665
17 1 15 0.48147
18 17 16 0.63299
19 10 11 0.87614
20 18 4 0.88685
21 20 2 0.89609
22 21 3 1.0491
23 9 13 11.1184
24 19 14 1.5953
25 24 12 1.6666
26 22 25 1.835
27 26 23 2.3082

Objects in column 1 are formed when objects in columns 2 and 3 in
the corresponding row are linked together. Column 4 lists distances
between the linked objects.

TABLE I. Matrix of Euclidian distances for the simulated data set in Figure 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1.5498 2.5975 1.3628 0.63299 0.48147 0.92933 0.60667 4.0237 5.0664 5.6229 4.3253 5.1396 6.4899
2 1.5498 0 1.0491 0.89609 2.1719 1.1263 2.4603 0.94779 2.8815 3.5348 4.0732 2.8288 3.9404 5.0048
3 2.5975 1.0491 0 1.7097 3.215 2.1723 3.5091 1.9969 2.4528 2.5319 3.0273 1.835 3.3602 4.0581
4 1.3628 0.89609 1.7097 0 1.9626 0.89557 2.0881 0.88685 2.661 3.9124 4.5745 3.5436 3.7775 5.2359
5 0.63299 2.1719 3.215 1.9626 0 1.1092 0.4665 1.2373 4.6174 5.697 6.2423 4.9075 5.7355 7.1226
6 0.48147 1.1263 2.1723 0.89557 1.1092 0 1.3404 0.21243 3.5515 4.6068 5.186 3.9458 4.6656 6.0153
7 0.92933 2.4603 3.5091 2.0881 0.4665 1.3404 0 1.5134 4.6863 5.9387 6.5263 5.2539 5.8023 7.3159
8 0.60667 0.94779 1.9969 0.88685 1.2373 0.21243 1.5134 0 3.5045 4.46 5.0194 3.7519 4.6121 5.8914
9 4.0237 2.8815 2.4528 2.661 4.6174 3.5515 4.6863 3.5045 0 2.3575 3.2326 3.3091 1.1184 3.0325

10 5.0664 3.5348 2.5319 3.9124 5.697 4.6068 5.9387 4.46 2.3575 0 0.87614 1.7459 2.3082 1.5953
11 5.6229 4.0732 3.0273 4.5745 6.2423 5.186 6.5263 5.0194 3.2326 0.87614 0 1.6666 3.1271 1.7511
12 4.3253 2.8288 1.835 3.5436 4.9075 3.9458 5.2539 3.7519 3.3091 1.7459 1.6666 0 3.7418 3.2628
13 5.1396 3.9404 3.3602 3.7775 5.7355 4.6656 5.8023 4.6121 1.1184 2.3082 3.1271 3.7418 0 2.3306
14 6.4899 5.0048 4.0581 5.2359 7.1226 6.0153 7.3159 5.8914 3.0325 1.5953 1.7511 3.2628 2.3306 0

Shaded areas inside the table indicate the four smallest distances between the elements. The smallest element in the lower triangular matrix
is 0.21243, which means that points 6 and 8 are closest together and will be merged first. Then, the next smallest distance is 0.4665, thus,
points 5 and 7 will be linked.
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is greater than 5, the root node is subject to sharpening. It
has two children: the left child 26 has a size of 12 and the
right child 23 has a size of 2. Further on, the size of the node
will be indicated as a number in parenthesis. Node 23 will be
discarded because its size satisfies the original condition: 2
� 2. The size of the left child 26 (12) is greater than 2 so it will
remain unchanged and will be the next node to be analyzed.
The children of node 26 are node 22 (8) and node 25 (4). Both
of them remain unaltered since they are of a size greater
than 2. The size of node 22 (8) is greater than 5 and thus this
root will be analyzed next. Because the size of the right child
25 (4) is less than 5, it no longer satisfies the sharpening
conditions, so all its four terminal nodes {10,11,14,12} will be
listed in the sharpened data set. The left child 22 (8) will be
sharpened in a similar manner. It is obvious from the dia-
gram that the right single-point children of nodes 22,21,20
will be discarded. Node 18 (5) will remain unchanged be-
cause its size is not larger than 5. Thus, points {4,2,3,9,13} are
excluded by sharpening. Using the single linkage method to
join the remaining nine points will produce a new SLD of the
sharpened data (Fig. 5) that clearly reveals the presence of
the two distinct groups in the data set. Objects {3,5,1,2,4} on
the sharpened SLD correspond to objects {6,8,1,5,7} from the
original data set and form one cluster. Points {6,7,9,8}, which
are in fact the objects {10,11,14,12} from the original data,
constitute the second cluster. Since the original fourteen

points of the data set consisted of two Gaussian clusters in
R2 (set {1,…,8} and set {9,…,14}, respectively), it is interesting
to note two facts. One is that the discarded objects
{4,2,3,9,13} represent the outliers in each of the two clouds
(Fig. 1, see the underlined points), and, two, sharpening not
only correctly indicates the bimodality of the data, but also
properly classifies the objects between the two groups.

However, before applying the sharpening algorithm to
the fMRI data, a slight adjustment will be made to avoid the
following problem. As it was indicated, the sharpening al-
gorithm depends only on two parameters, namely the size of
a node and the size of its children. Suppose sharpening is
performed with parameters nfluff � 2, ncore � 5 on the
dendrogram tree, shown in Figure 6. Then the left child,
encircled in the diagram, will be discarded and all the ter-
minal nodes of the right child will be present in the sharp-
ened data. Obviously, the voxels that are closest to each
other will be eliminated, and pixels that are further apart
will remain in the altered data set. To eliminate this prob-
lem, the algorithm was slightly modified. If a particular
child is subject to sharpening, it will be deleted only when its
agglomeration value is larger than that of the remaining
child. Thus, in case of the illustrated example (Fig. 6), all six
terminal nodes will be present in the sharpened data set. The
modified algorithm preserves a larger number of data points

Figure 2.
Single linkage dendrogram for the simulated
data set. Values on the horizontal axis are
points from the initial data set numbered
from 1 to 14. Black nodes and numbers on
the dendrogram tree represent the internal
nodes formed by the linkage algorithm. Val-
ues on the vertical axis are the distances
between combined objects.

� Dendrogram Sharpening in fMRI �

� 205 �



and gives a researcher a better insight into the structure of
the data in the early stage of an investigation.

Cluster Identification

Cluster identification begins upon the completion of the
sharpening. One way to detect the natural grouping of the
data is to compare the length of each link in a cluster tree
with the length of neighboring links below it in the tree. If
the length of the link does not differ significantly from the
length of the neighboring links, it means that objects, joined
at this level of the hierarchy, have similar characteristics.
Otherwise, when the length of the link is much larger than
the length of the neighboring links, it indicates some dissim-
ilarity between the objects, and this link is said to be incon-
sistent.

In this report, the method of inconsistent edges [McKin-
ney, 1995] is used to identify cluster cores. This algorithm
exploits the correspondence between the SLD and the MST.
The length of the edge in the MST is an agglomeration value
of the corresponding node in the SLD. Because the two
objects joined at the particular level of hierarchy could have
different densities, the length of the edge connecting them
should be compared to the length of the edges represented
by the left child and by the right child separately. The value
of the median edge length of the left (right) subtree plus
twice the interhinge spread (described below) is the pro-
posed threshold, beyond which the edge is considered in-
consistent with respect to its left (right) child. Mathemati-
cally, this threshold, T, is given by

Tr�l� � Mr�l� � 2�Ur�l� � Lr�l�� (1)

where Mr(l), Ur(l) and Lr(l) are the median, upper-, and lower-
hinge values of the set of the agglomeration values consti-
tuting the right(left) child, respectively. The upper hinge and
lower hinge [Tukey, 1977] correspond to the first and third
quartile of the ordered data, respectively. The interhinge
spread, that is the difference between the upper and lower
hinge, gives a robust measure of spread of the edge lengths.
The recursive procedure begins with analyzing the root
node of the SLD and then invokes on its children.

Final Classification

After clusters in the sharpened data are identified, the voxels
that have been set aside during sharpening can be reclassified
in order to reassign them to the obtained cores. At this step, the
linkage matrix, built for the original data, has to be recalled.
The unclassified voxels are assigned to the cluster group, to
which they are joined by the link of minimal length. This is a
bottom-up algorithm. Initially, each data point represents a
cluster. Thus, every cluster has all members classified or un-
classified. If two clusters, linked together, are either classified
or unclassified, they are simply merged together forming a
new cluster that has all of its members classified or unclassi-
fied, respectively. If the classified cluster is linked together with
the unclassified cluster, the point in the classified cluster closest
to the unclassified cluster is found. All data points in the
unclassified cluster are assigned to the group of which the
found point is a member [McKinney, 1995].

Simulation

In the following, we show how the single, average, and
complete linkage algorithms behave for unimodal and bi-
modal Gaussian distributed data. Consider a simulated
Gaussian cloud plotted in Figure 7A. Plots (Fig. 7B–D) show
three dendrograms constructed using single, average, and
complete linkage, respectively. Average and complete link-
age trees suggest the presence of few distinct clusters in the
data set. Single linkage, in turn, produces long chained
clusters indicating the lack of spatial separation between the
objects. After applying the dendrogram sharpening once
(Fig. 7E) and twice (Figure 7F), the SLD becomes more
structured. But the method of inconsistent edges does not
identify any well-separated clusters in the data and classifies
all the data points as members of the same family.

In another simulation, Figure 8A shows two overlapping
Gaussian clouds plotted using different markers. Again, the
single linkage detects objects that are closest to each other
and then simply connects the remaining outliers to the clus-
ter core exhibiting a strong “chaining” effect. After passing
the sharpening algorithm over the data twice, the tree be-
comes more structured (Fig. 8E,F) and the method of incon-
sistent edges indicates the presence of two clusters in the
original data set. Since the natural division in the simulated
data set is known, it is possible to manually classify the
remaining objects. Points of the reduced data set are plotted
in Figure 8G using two different markers.

Compare the true data set division from Figure 8G to the
two clusters identified from the twice sharpened data (Fig.

Figure 3.
Minimal Spanning Tree (MST) of the data from Figure 1. Numbers
in squares indicate the edges of the tree.
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8H). Evidently, the match between the plots (Fig. G,H) is
almost perfect. The algorithm not only correctly identifies
the number of clusters but also properly classifies the re-
maining data points. It is worth noting that in both exam-
ples, complete and average linkage methods produce very
structured trees suggesting the presence of distinct groups
in the data (compare Figs. 7C,D and 8C,D). Single linkage
combined with the sharpening algorithm, in turn, does not
identify any distinct groups for the data from a unimodal
Gaussian distribution, and correctly indicates the bimodality
of the data when it indeed exists (see Fig. 7 and 8F).

METHODS

Data Acquisition and Paradigms

Scanning was performed in accordance with institutional
regulations (IRB approval) on a commercial 1.5T MR scan-
ner (GE, Waukesha, WI) equipped with echo-speed gradi-
ents and a standard birdcage head coil. Four experienced

normal male volunteers, 20 to 32 years old, participated in
the studies. The first motor paradigm consisted of 30 iden-
tical cycles of finger tapping and rest with a period of 10 sec
(5 sec on, 5 sec off). Scanning was performed with the
following EPI parameters: 4 slices, FOV 24 cm � 24 cm, BW
� 62.5 KHz, TR 400 msec, flip angle 50 degrees, slice thick-
ness 7 mm/gap 2 mm, 64 � 64 resolution, 750 time points.

The second paradigm consisted of five periods of bilateral
finger tapping interleaved with rest. Each task and rest
period was 30 sec long. The EPI acquisition parameters
were: FOV 24 cm � 24 cm, BW � 62.5 KHz, TR 2 sec, flip
angle 82 degrees, 20 slices, slice thickness 7 mm/gap 2 mm,
64 � 64 resolution, 165 time points. The auditory cues for
both paradigms were provided via electrostatic headphones.

Acquired data were corrected for motion using a 3-d
registration algorithm in AFNI (Robert Cox, NIH). Low-
frequency intensity drift was removed by a cubic-spline
detrending method [Tanabe et al., 2001]. Then, for each
voxel its SNR was calculated as a ratio of the mean EPI

Figure 4.
The Dendrogram Sharpening Algorithm.
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signal intensity and its standard deviation. Voxels with an
SNR value in the first decile were discarded. This procedure
effectively eliminated voxels outside the brain and noisy
time courses associated with pulsating arteries as well as
some portion of the CSF. Active voxels in the gray matter
remained unaffected. Each voxel time series was normalized
to a mean of zero and a standard deviation of unity.

Sharpening and Cluster Identification

In fMRI data, a convenient choice to measure the similar-
ity between two voxels is the correlation coefficient of the
corresponding time courses. Two voxels are said to have a
significant correlation if the value of the corresponding cor-
relation coefficient is greater than the defined correlation
threshold. Voxels with less than four significant correlations
are discarded. The correlation coefficient between voxels i
and j is then converted to a distance measure by setting

d�i, j� � 1 � cc�i, j� (2)

where cc(i,j) is the corresponding correlation coefficient. The
proposed distance measure is not a metric since it does not
satisfy the triangle inequality, but this feature does not lead to
any shortcomings in clustering. For completeness, it should be

mentioned that a simple square root operation would turn this
measure into a metric. However, this adjustment would not
modify the results, since the transformation simply monoton-
ically rescales the original distances without enhancing the
temporal separation between the data objects.

The sharpening was performed on the fMRI data with
parameters nfluff � 2 and ncore � 40. An initial pass with
nfluff � 2 proved to be very effective at removing low-
density points. But depending on the data set, it could still
leave a lot of noisy time courses in place. Objects left after
the sharpening are linked together forming a new SLD. A
second sharpening was applied to the recomputed tree, with
nfluff � 10. The value for ncore remained 40.

For example, Figure 9 shows the dendrogram trees ob-
tained at different stages of the data alteration. Figure 9A
demonstrates the tree of the original data. Due to the large
amount of linked objects, only the top 200 nodes are shown.
One can clearly observe that the original SLD exhibits a
strong chaining effect indicating that fine splits between the
natural clusters should not be expected. Figure 9B shows the
dendrogram tree for the data sharpened once. The dendro-
gram tree for the twice-sharpened data is pictured in Figure
9C. Notice, that with each pass of the sharpening algorithm
over the data, the chaining effect diminishes exposing the
basic features of the set composition. The values for fluff and
core are chosen empirically. Smaller fluff-values combined
with larger core-values yield the greatest number of ele-
ments from the original data set (Table III). As seen in Table
III, the majority of voxels are discarded during the first pass
of the algorithm over the data.

Data Reduction

Paradigm 1

From the total number of voxels in the four slices, the ma-
jority of voxels with a SNR in the first decile were discarded

Figure 5.
Dendrogram tree after single sharpening of the data in Figure 1
(see the original SLD tree on Fig. 2 to follow up the sharpening
process). Resulting tree clearly indicates the presence of two
distinct clusters in the data. The first cluster {3,5,1,2,4} corre-
sponds to points {6,8,1,5,7} from the original data set. The second
cluster {6,7,8,9} is essentially the objects {10,11,14,12}.

Figure 6.
Example of the “problematic” single linkage tree. If sharpening with
parameters nfluff � 2 and ncore � 5 is performed on the data linked
to form this tree, the encircled child will be discarded even though
it is formed of the two closest objects from the entire data set.
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leaving about 4,000 voxel time courses for future analysis. For
each voxel, the correlation coefficient was computed with all
other voxels and a frequency index determined to count the
number of significant correlations (correlation coefficient �0.5).

About 1,000 voxels were found that had more than four sig-
nificant correlations with other voxels. After the first sharpen-
ing, the number of voxels reduced to 90, and the second sharp-
ening eliminated an additional 20 voxels.

Figure 7.
Scatter plot of a simulated Gaussian cloud (A); dendrograms for
the (B) single, (C) average, (D) complete linkage; dendrogram of
the once (E) and twice (F) sharpened data set. Average and
complete linkage tree indicate incorrectly that the data set is well
structured and contains at least two separate clusters. Single

linkage dendrograms of the raw and once-sharpened data exhibit
lack of spatial separation between the points in the data set, which
is correct. Though the tree of the twice-sharpened data reveals
certain structure, the method of inconsistent edges does not
identify any clusters.
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Figure 8.
A: Two overlapping Gaussian
clouds; dendrograms for the
(B) single, (C) average, (D)
complete linkage; dendrogram
of the once (E) and twice (F)
sharpened data set. G: True
membership of the points re-
tained after the dendrogram
sharpening. Two clusters,
shown on plot (H), were iden-
tified in the sharpened data set
using the method of inconsis-
tent edges. Comparison of frag-
ments (G,H) shows that clus-
tering was performed almost
flawlessly with 93% points be-
ing reassigned to the set to
which they truly belong.
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Paradigm 2

After discarding the voxels with SNR in the first decile
from the total number of observations in 20 slices with 64
� 64 voxels, the number of voxels was reduced to about
10,000. Setting the correlation threshold to 0.5 and, as before,
requiring at least five significant correlations for each voxel,
reduced the data set to about 1,200 voxels.

The first sharpening with nfluff � 2 and ncore � 40 resulted
in about 320 voxels and was reduced further to 130 voxels
after the second pass with sharpening with parameters nfluff

� 10 and ncore � 40.
It is worth noting that application of the initial prepro-

cessing steps, which include motion and trend removal,
significantly altered the distribution of the cross correlation
coefficients. The shape of the distribution for the prepro-

cessed data appears to be more symmetrical than the posi-
tively skewed form of the raw data distribution (see solid
and dotted lines on Fig. 10, respectively).

RESULTS AND DISCUSSION

Obtained results are consistent across all four subjects
participating in the study. For each of the four subjects
activations specific to the motor task paradigms were de-
tected. To avoid redundancy, we present only the results
from two different subjects.

Figure 9.
A: Dendrogram tree for the original fMRI data set. B: Dendrogram after the first pass of the
sharpening algorithm. C: Dendrogram for the twice-sharpened data. Notice, how with each filtering
step the chaining effect diminishes and the structure of the data becomes more evident.

TABLE III. Comparative table of the number of voxels
retained before and after dendrogram sharpening for

different parameters

nfluff

(1st DSH)
nfluff

(2nd DSH) ncore

No. of
voxels
prior
DSH

No. of
voxels
after
1st

DSH

No. of
voxels
after
2nd
DSH

1 10 20 1,455 183 59
2 10 20 1,455 141 59
2 10 30 1,455 157 75
1 10 40 1,455 201 96
2 10 40 1,455 167 94
2 10 50 1,455 176 107
2 10 70 1,455 179 110

First three columns list the sharpening parameters (ncore, nfluff)
applied to the data set. The remaining columns list the number of
voxels before and after dendrogram sharpening (DSH).

Figure 10.
Distribution of the cross-correlation coefficients for the raw (dot-
ted) and preprocessed (solid) data set. Motion and trend removal
significantly impact the shape of the distribution making it more
symmetrical.
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Figure 11.
Paradigm 1. A, B: Cluster identified in the once-
sharpened data. C–E: Clusters identified in the
twice-sharpened data. F–H: Clusters C, D, and E
after the final classification of the voxels discarded
during sharpening. Clusters F and G represent vas-
cular and motion artifacts. Cluster H represents
primary motor cortex and SMA.
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Figure 12.
Paradigm 1. Mean time courses and corresponding Fourier spectra for the identified clusters. The
paradigm frequency (0.1 Hz) significantly contributes to all three average time courses and is
dominant for the cluster H.
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Paradigm 1

After the first pass of the algorithm over the data, two
clusters containing 51 and 20 voxels, respectively (Fig.
11A,B), were identified. Active voxels in cluster A could
be attributed to motion and vascular artifacts. Voxels
constituting cluster B suggest the presence of the activa-
tion in SMA and primary motor cortex. The application of
the second sharpening produced three clusters (Fig. 11(C–
E)). Cluster E is absolutely identical to cluster B. However,
artifacts previously combined in cluster A are separated
now into two different clusters C and D, each containing
20 and 17 voxels, respectively. The classification of the
remaining voxels (C 3 F, D 3 G, E 3 H) confirms our
initial hypothesis clearly indicating strong activation in
the sensorimotor cortex, SMA, premotor cortex, and pre-
central gyrus for cluster H, blood vessels (superior sagit-
tal sinus) for cluster F, and motion related artifacts in
cluster G.

Even though the paradigm frequency 0.1 Hz contributes
to each of the mean time courses of resulting clusters F, G, H
(Fig. 12), it is dominant only for the cluster H associated with
motor activation. The major contribution to cluster G comes
from frequencies �0.01 Hz. This occurs at the location where
the spatial gradient is large and is possibly related to the

low-frequency motion artifact. Also, respiratory (0.2–0.4 Hz)
and cardiac bands (�1.2 Hz) are best observed in the spectra
of cluster F.

Figure 13.
Paradigm 2. The first cluster (A), identified in the twice-sharpened data after the final classification
of the discarded voxels, shows activation in the motor cortex and related areas.

Figure 14.
Paradigm 2. The remaining three clusters (B–D) identified in the twice-
sharpened data after the final classification of the discarded voxels.
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Figure 15.
Paradigm 2. Spectral analysis of the
average time courses corresponding
to the four identified clusters. No-
tice the presence of the paradigm
associated frequency of 0.016 Hz in
all four spectra as well as the large
range of the contributing frequen-
cies for clusters B, C, and D.
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Hierarchical clustering combined with dendrogram
sharpening proved to be robust to the artifacts, such as
motion and trend. Even when applied directly to the raw
data (prior motion and trend removal), DSH identifies acti-
vation in motor cortex regions and separates vascular arti-

facts producing clusters similar to the cluster F and H (Figs.
11, 12). Voxels constituting cluster G do not pass the re-
quired correlation threshold and are excluded from the clus-
ter analysis.

Paradigm 2

Using the method of inconsistent edges, four clusters,
containing 20, 11, 14, and 30 voxels respectively, were iden-
tified in the twice sharpened data. After the classification,
the majority of discarded voxels (about 1,000) were reas-
signed to cluster A (Fig. 13). The other three clusters (B, C, D)
are shown in Figure 14. Cluster A shows strong activation in
the primary sensorimotor cortex, SMA, cerebellum and pa-
rietal lobule, Broadmann’s areas 7 and 40, known to have
contralateral connections with primary somatosensory cor-
tex, The particular activation in the parietal cortex is related
to our subject who is an experienced hockey player.

Clusters B and C were specific to the retrosplenial area
(Fig. 14B) and thalamus (Fig. 14C), respectively. The vascu-
lar flow artifacts were separated into the fourth cluster (Fig.
14D). For the sake of space, only slices containing the active
voxels are presented for the last three clusters. The mean
time course and the corresponding power spectrum for each
of the four clusters are shown in Figure 15. All time series
exhibit a hemodynamic delay of about 6 sec relative to the
stimulus onset. In addition, the dominant frequency peak
occurs at the paradigm frequency (0.016 Hz). Otherwise, the
structure of the Fourier spectra is very diverse. Out of the

Figure 16.
Paradigm 1.The mean time courses of the motor-activation–re-
lated cluster identified using dendrogram sharpening (solid line)
and SPM map (dashed line). The high frequency is attributed to the
cardiac rate.

Figure 17.
Paradigm 2. SPM analysis of voxels in the sensorimotor cortex and cerebellum (compare to Fig. 13).
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four identified clusters, cluster A has the least Fourier com-
ponents.

To evaluate the performance of the sharpening algorithm,
results were compared to those obtained using a conven-
tional statistical approach (SPM) by using a convolved box-
car function matching the expected hemodynamic response
(single-voxel P � 0.00001). Even though cluster analysis is
fundamentally different from the SPM, the latter was chosen
as a standard procedure to gain more confidence in the
resulting maps.

The SPM map for the first 5 sec on/off paradigm is omit-
ted since the maps detected by the two different methods are
virtually the same. Figure 16 shows two graphs, correspond-
ing to the average time course of cluster H (Fig. 11) resulting
from the sharpening algorithm and of the SPM activation
pattern, respectively. For the convenience of the readers,
only the first 100 time points are plotted to show increased
detail. The correlation coefficient between the two mean
time courses, resulting from the application of clustering
and SPM, is equal to 0.91 suggesting almost identical results.
The high frequency artifact seen here is related to the una-
liased cardiac rate since the TR was very short (400 msec).

Areas of activation associated with the second paradigm
(30 sec on/off finger-tapping) detected by SPM also appear
to be very similar to the clustering results (compare Figs.
13A and 17). The value of the correlation coefficient between
the mean time courses in this case is 0.99. High similarity
between the two methods was observed for all four subjects
and both paradigms used in the experiment (Table IV).

We compared our algorithm with another clustering tech-
nique known as fuzzy C-means. The major drawback of the
basic K- and fuzzy C-means algorithm is the requirement to
specify the expected number of clusters; however, the attrac-
tive part of both algorithms is their high computational effi-
ciency. We illustrate the result of the fuzzy C-means analysis
for the second 30-sec on/off paradigm. The number of clusters
was chosen to be four, which is exactly the number of groups
identified by the sharpening method. One of the produced
clusters showed motor activations identical to those in Figure
13A. The correlation coefficient between the mean time courses
of the two clusters resulting from our method and fuzzy C-

means was 0.99. We, therefore, omitted the corresponding
image. The second largest cluster is presented in Figure 18 and
encompasses some features contained in clusters B, C, and D in
Figure 14 in addition to some vascular effects. The remaining
two clusters contained only 3–4 voxels and were, therefore,
meaningless and are not shown. Both clustering methods
proved to be capable of identifying activations in the motor
areas and produced almost identical results. Hierarchical clus-
tering combined with dendrogram sharpening was more se-
lective in separating certain features into different clusters.
Fuzzy C-means splits all the voxels into two different groups:
one with pronounced on/off pattern of the paradigm and the
other containing all the remaining voxel time courses. The
main advantage of the dendrogram sharpening in hierarchical
clustering is that it does not require any prior knowledge of the
number of clusters or their locations. Sharpening and final
classification algorithms are both very simple and easy to im-
plement. The recursive calls used in the sharpening procedure
make it simple to program. However, they demand quite a bit
of CPU time and, especially, system memory. We used a
1.7GHz Pentium IV computer with 1.5GB RAM and were able
to process a whole data set in less than an hour.

Sharpening proved to be a fruitful method when the
activation is strong as for primary cortex stimulations,
though it requires more rigorous theoretical studies and
further modifications. The only limitation of this algorithm
is the proper specification of the two required sharpening
parameters. However, the choice of these values is defined
by the size and the structure of the data set. It was men-
tioned earlier that the value of the nfluff and ncore parameters
would impact the number of resulting voxels (Table III). In
fact, all of the listed values would produce very similar
clustering results, since the final classification algorithm as-
signs the voxels set aside during sharpening to the identified
cores. For example, choosing the combination of parameters
that leaves more voxels for clustering, would allow a re-

TABLE IV. Number of clusters identified in each of the
data sets attributed to the particular subject and

paradigm

Subject 1 Subject 2 Subject 3 Subject 4

Paradigm 1
No. of clusters 3 3 2 3
corr. coef 0.91 0.91 0.93 0.90

Paradigm 2
No. of clusters 4 5 4 3
corr. coef 0.99 0.98 0.99 0.99

The correlation coefficient shows the degree of similarity between
the mean time courses of the motor-activition-related cluster and
SPM map.

Figure 18.
Second largest of four clusters resulting from fuzzy C-means
algorithm (paradigm 2). It contains some features seen in clusters
B–D and also vascular artifacts.
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searcher to get an idea of the expected activation pattern
prior to the classification. High values of ncore will also
shorten the time of sharpening.

The recommendations on the choice of the settings for the
classification algorithm are somewhat different. The latter
method, as it was introduced by McKinney [1995], would
partition the entire set into n clusters. Our original fMRI data is
contaminated by physiological noise, subject motion, and scan-
ner artifacts. We propose to classify not all the objects but only
those located within a certain radius. Since the distance mea-
sure is a function of the correlation coefficient, only those
voxels that are highly correlated with the identified centers will
be reassigned. For this purpose, the value of the classification
threshold is defined. Recall that the classification algorithm
works from the bottom to the top of the tree and initially every
data point represents a cluster. Two clusters linked together in
the original dendrogram will be classified if the distance be-
tween them is less than the value of the classification threshold.
Remember that the single linkage tree, due to the lack of spatial
separation in the data, exhibits strong chaining behavior and,
thus, many top nodes tend to have a very small child. These
small children often represent the outliers in the data con-
nected to the high-density regions at the last stage of linking.
The higher the threshold value, the more voxels will be classi-
fied. Figure 19 illustrates the dependence of the correlation
coefficient between the mean time courses of the motor-activa-
tion cluster and SPM activation map on the value of the clas-
sification threshold. As one can see, at first the results of the
algorithms are getting closer as the correlation coefficient ap-
proaches its maximum for the threshold value of 0.8, but then
the classification results worsen as more and more voxels have
been reassigned to the cluster groups. The declination is due to
the reassignment of “noisy” voxels that have low correlation
coefficients. Though the correlation coefficient remains high

when all the voxels are reassigned, the optimal choice of the
classification threshold for this particular data set would be 0.8.
The latter value depends on the maximum distance between
the linked objects in the original dendrogram and varies for
different data sets and preprocessing settings. In our analyses,
the classification threshold is set to 0.8*agglomeration value of
the root node. This threshold consistently yielded good results
in all data sets.

CONCLUSIONS

The present study demonstrates that dendrogram
sharpening might be a very helpful tool for analysis of
activation patterns in fMRI. This approach is model free
and does not require prior assumption about the number
and location of the clusters. The single linkage method,
used to group the data, is preferable over the complete or
average linkage algorithms, because of its ability to reveal
the modal regions of the data. The large amount of fMRI
data makes it difficult to detect networks of brain activity.
Sharpening significantly simplifies the identification by
reducing the data set and preserving its structure. Though
dendrogram sharpening is sensitive to its parameters, it is
possible to identify appropriate values to yield a mean-
ingful result.
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