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Abstract: We introduce a hybrid method for functional magnetic resonance imaging (fMRI) activation
detection based on the well-developed split–merge and region-growing techniques. The proposed method
includes conjoining both of the spatio-temporal priors inherent in split–merge and the prior information
afforded by the hypothesis-led component of region selection. Compared to the fuzzy c-means clustering
analysis, this method avoids making assumptions about the number of clusters and the computation
complexity is reduced markedly. We evaluated the effectiveness of the proposed method in comparison
with the general linear model and the fuzzy c-means clustering method conducted on simulated and in
vivo datasets. Experimental results show that our method successfully detected expected activated
regions and has advantages over the other two methods. Hum. Brain Mapp. 22:271–279, 2004.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Since the discovery of functional magnetic resonance im-
aging (fMRI) [Ogawa et al., 1990], fMRI activation detection
has been an active field of research. One challenge is that
there are many confounds presented in fMRI data such as
subject movements, heartbeat, respiration, trend, and noise.
Several methods have been proposed for activation detec-
tion, which we can classify into two categories: hypothesis-
led and data-led methods. Hypothesis-led methods usually
rely on some model (assumptions) about the paradigm and

the hemodynamic response function (modeled by combina-
tion of basis functions). A typical hypothesis-led method is
the general linear model (GLM) [Friston et al., 1995b]. The
GLM is a framework that includes simple t-test, analysis of
variance (ANOVA), ANCOVA, and multiple regressions.
Data-led methods postpone the usual assumptions and al-
low the data itself to reveal its underlying structure. Typical
data-led methods are cluster analysis [Baumgartner et al.,
1997; Filzmoser et al., 1999; Goutte et al., 1999; Scarth et al.,
1995], principal component analysis (PCA) [Hansen et al.,
1999; Lai and Fang, 1999], and independent component anal-
ysis (ICA) [Calhoun et al., 2001; Jung et al., 2001; McKeown
et al., 1998].

We have adopted an established procedure in clustering,
namely split–merge, and applied it in the novel context of
fMRI data analysis. We have finessed this approach by a
region-selection component that draws on the benefits of
hypothesis-led analyses. In our implementation this in-
volves identification of clusters that conform to a linear
model of anticipated activation. In this sense, our procedure
is a hybrid between a data-led approach and a hypothesis-
led approach [Penny et al., 2003]. The benefits of this can be
seen from two perspectives. First, from the point of view of
conventional hypothesis-led analyses, using the GLM, we
are able to embody prior knowledge about the spatial con-
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tiguity of evoked blood oxygenation level-dependent
(BOLD) responses by looking for local homogeneity in the
temporal responses. This extends the simple temporal anal-
ysis used by voxel-based GLMs to a quasi-spatiotemporal
characterization. Second, from the point of view of conven-
tional clustering algorithms, the split–merge procedure, in
conjunction with region growing, allows us to eschew any
prior assumptions about the number of activated clusters. In
short, our hybrid approach offers potential advantages over
extant clustering and conventional analysis. We demon-
strate the increased power that results from using receiver-
operating characteristic (ROC) analysis. Here, simulated and
in vivo datasets are presented, and methodologies of the
split–merge and region-growing techniques are reviewed.
We also describe the split–merge-based region-growing
method for fMRI activation detection. The sensitivities of
GLM, the fuzzy c-means clustering analysis (FCA) method,
and the proposed method are compared using the simulated
data, and using in vivo fMRI data. We present computation
complexity, robustness, and sensitivity from the viewpoint
of basic assumptions.

MATERIALS AND METHODS

Data Sets

Null experiment

Imaging was acquired on a 1.5-T scanner (SIEMENS So-
nata) equipped with high-speed gradients. The technical
parameters were as follows: 2,000/60 msec (TR/TE), 20
slices, 64 � 64 matrix, 90-degree flip angle, 22-cm field of
view (FOV), 5-mm thickness, and 2-mm gap. The null data-
set consisted of 180 volumes, and the latter 160 scans were
selected for the simulated data. During acquisition the sub-
ject was instructed to rest and perform no specific cognitive
task. We used actual baseline instead of computer-simulated
data because the former matches more closely the noise
structure of real fMRI data. Simulated activations were then
added to the null datasets.

Auditory experiment

This dataset was from the Wellcome Department of Cog-
nitive Neurology and was used with the permission of the
FIL (Functional Imaging Laboratory) methods group. The
experiment was a study on auditory bi-syllabic stimulation.
A modified 2-T SIEMENS scanner system was used to ac-
quire the whole brain BOLD/EPI images with TR � 7 sec.
The volume size was 64 � 64 � 64, with the voxel size 3 mm
� 3 mm � 3 mm. The paradigm design started with rest,
and alternated between rest and stimulation. In total, 96
acquisitions were made and 84 scans were selected (due to
T1 effects, it is advisable to discard the first few scans).
Because both the rest and stimulation blocks were 42 sec (6
scans), in total there were 84/12 � 7 cycles. The volume size
of the structure image was 256 � 256 � 54, with the voxel
size 1 mm � 1 mm � 1 mm.

Preprocessing of the Auditory
Experimental Dataset

Images were first realigned with the least-squares ap-
proach and a six-parameter rigid transformation [Friston et
al., 1995a] to reduce the effect of head motion. A spatial
smoothing was then applied to improve the signal-to-noise
ratio with an isotropic Gaussian filter, in which the full-
width half-maximum (FWHM) was set to 6 mm. Lastly, the
time series were detrended using the first-order polynomial
detrending method [Bandettini et al., 1993].

Simulated Data

Simulated activations were added to a single slice of the
null experimental data. This way, the number and shape of
simulated activated clusters was known before. We consid-
ered five kinds of shapes for activated clusters: square, el-
lipse, circular, rectangular, and triangular. Image size of the
simulated dataset was 64 � 64 and the sizes of the presumed
five activated clusters are shown in Figure 1. The time series
of the area assumed to be activated was defined as a boxcar
(starting with rest and alternating between rest and simula-
tion; 10 sample points for both rest and stimulation for 8
cycles) convolved with a hemodynamic response function
(HRF, a combination of two gamma functions) [Friston et al.,
1998]. Five simulated datasets were generated with the con-
trast-to-noise ratio (CNR) [Lange, 1995] varied among 0.2,
0.4, 0.6, 0.8, and 1.0. The corresponding amplitude of acti-
vations (the ratio of the mean amplitude [strength] of acti-
vation to the value of the baseline) was slightly smaller than
was a typical signal change observed in the BOLD contrast
[Bandettini et al., 1992; Fadili et al., 2000; Filzmoser et al.,
1999; Kwong et al., 1992]. Before analysis, a spatial smooth-
ing was applied to the simulated data with an isotropic
Gaussian filter in which the FWHM was set to 4 mm.

Split–Merge-Based Region-Growing Method

Overview of the split-merge and region-growing
methods

The split–merge and region-growing methods are well-
developed techniques for image segmentation [Morel et al.,
1995]. They postulate that neighboring pixels within the
same region have similar intensity values. The idea of split–
merge is to break the image into a set of disjoint uniform
regions. Its basic procedure comprises the following steps:

1. Initially consider the entire image as a single region
2. Pick a region R, if the homogeneity criterion H(R) is

FALSE, then split the region into four subregions
3. Consider any two or more neighboring subregion R1,

R2, …Rn if H(R1�R2� …�,Rn) is TRUE, then merge the
n regions into a single region

4. Repeat Steps 2–3 until no further splits and merges are
possible.

For the region-growing method, the basic idea is to group
pixels with the same or similar intensities into a single
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maximally uniform region. This approach comprises the
following steps:

1. Start by choosing a seed pixel (region) and compare it
with neighboring pixels

2. Region is grown from the seed pixel (region) by adding
in neighboring pixels according to the growth criterion

3. When the region can not be grown any further, stop
4. Choose another seed pixel (region) and repeat Steps

2–3.

Split–merge-based region-growing method

It is known that for an in vivo fMRI experiment, the true
neural activation typically tends to occur in a functional
cluster [Katanoda et al., 2002; Tononi et al., 1998]. In other
words, true fMRI activation is more likely to occur in clus-
ters of spatially connected voxels than in a single voxel.
Intuitively, based on this feature, we can utilize the idea of
split–merge and region-growing methods for fMRI activa-
tion detection. The proposed split–merge-based region-
growing method (SMRG) method is divided into three pro-
cedures: split–merge, region selection, and region growing. In
the split–merge procedure, the homogeneous clusters in the
image space are found. In the region-selection procedure,
some task-related or interested clusters are selected based on
the results of split-merge procedure. In the region-growing
procedure, the selected clusters are set as the initial seeds
and its neighboring voxels are grouped according to the
growth criterion.

Split–merge

As applied in this study, the split–merge consists of a
region-splitting phase and agglomerative merging phase. In
the region-splitting phase, the fMRI data F � {fxyzt}MNOT is

considered initially as a 4-D block with a Kendall’s coeffi-
cient of concordance (see Appendix) [for more details see
Baumgartner et al., 1999; Kendall and Gibbons, 1990]. Where
(x, y, z) are the spatial 3-D coordinates of brain voxels, and
t is the time index, M � N � O denotes the total number of
brain voxels in an image scan, T represents the total number
of image scans, and fxyzt indicates the image intensity of the
brain voxel (x, y, z) at the tth instance of time. The block is
split into eight sub-blocks [B1, B2, …, B8] of equal size, each
of which is a 4-D array, characterized by vectors of Kendall’s
coefficient of concordance �KB1,KB2, . . . ,KB8]. To define homo-
geneity, we consider a threshold TSM for Kendall’s coeffi-
cient of concordance. It is specified in advance and kept
constant in the splitting phase. Block Bi is homogeneous if
the homogeneity criterion KBi � TSM, i � 1,2, . . . ,8 is satis-
fied. Otherwise, Bi is heterogeneous. Heterogeneous sub-
blocks are split recursively until homogeneity occurs or a
minimal block size is reached. Each application of the split-
ting process is followed by a merging step. In the merging
phase, adjacent blocks are merged if the combined new
block meets the homogeneity criterion. The above splitting
and merging process can be described with an octree data
structure. Each non-terminal node in the tree has at most
eight descendants, although it may have less due to merg-
ing. Final results of the split-merge procedure are p clusters
Ci with volume size Si, i � 1, 2, …P The number P is far
smaller than M � N � O.

Region selection

In this procedure, we extract the task-related clusters from
the obtained P clusters. To this end, there are two steps:

Step 1. Cluster size-based constraint. We have known that
random noise in the image space will not form a

Figure 1.
Simulated fMRI data. The white box represents sites of artificial activated regions. The top
right-hand graph depicts the time series of an activated voxel, and the bottom right-hand graph
displays the time series of a non-activated voxel.
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homogeneity region. In the procedure of split-
merge, if a higher TSM is specified the cluster size
of noise will be small. Based on this fact, only the
clusters with a cluster size greater than Ts1 are
reserved. Where Ts1 is the predefined threshold,
the left clusters will not be considered and the
number of survived clusters is far smaller than P.

Step 2. A priori knowledge-based constraint. As is
known, not all the survived clusters from Step 1
are task related because there are some other ho-
mogeneous regions. If the paradigm information
can be utilized, one could test for the significant
periodicity via Fourier transform methods (for pe-
riodic paradigm) or for the significant correlation
to the predefined reference [Fadili et al., 2000]. If
the paradigm information can’t be utilized, some
a priori neurophysiologic and anatomic knowl-
edge must be employed. In this study, a test of
significant correlation was utilized, i.e., Pearson
correlation was calculated between the predefined
reference and each cluster’s average time series.
Only those with correlation coefficients greater
than the predefined threshold Ts2 are considered
task related.

Region growing

Initially, each surviving region Ai from the region-selec-
tion procedure is specified as the initial seed. For each Ai, we
can define a set E as the unassigned voxels that are boundary
points of Ai

E � {q � Ai �N(q) � Ai � 0}

where N(q) is the set of neighbors (6-connected, 18-con-
nected, or 26-connected neighborhood in the three orthogo-
nal directions can be considered) of voxel q. For each voxel
p in E, if the predefined growth criterion is satisfied, voxel p
is added to region Ai. This growing procedure is repeated
until no more voxels are assigned to region Ai. In this study,
the growth criterion is defined as

corr(fxyz:,Mi) � TRG

where fxyz: is the time series of voxel (x, y, z), Mi is the
average time series of the pre-merged region Ai, corr(0,0) is
the Pearson correlation coefficient, and TRG is the predefined
threshold.

In summary, the role of the split–merge procedure is to
detect the homogeneous area in the image space based on
the homogeneity criterion. Its accuracy and sensitivity is
therefore not urgent. We pay more attention to its robust-
ness, i.e., we hope the split–merge will not lose any homo-
geneous region; therefore, a high TSM should be specified.
The role of the region-selection procedure is to extract the
task-related clusters. To achieve this goal, there are two
parameters, Ts1 and Ts2, that should be specified. In fact, the

selection of Ts1 and Ts2 depend on the property of true data.
Typically, according to our practical experience, Ts1 and Ts2

are selected from 4–8 and 0.5–0.8, respectively. In contrast
to the above, the role of the region-growing procedure is to
ensure the accuracy and sensitivity of the task-related clus-
ters. The TRG parameter is analogous, but not equivalent to
selecting a significance level of a statistical test.

Analysis of Simulated Data

We utilize the ROC analysis on the simulated data to
evaluate the effectiveness of the SMRG method. In addition,
GLM and FCA are compared to SMRG. Because GLM and
FCA are typical hypothesis-led and data-led methods, re-
spectively [Friston et al., 1997; Nicolino et al., 2001], the
comparison is convincing. To give the ROC analysis, the true
positive ratio in the activated region and the false positive
ratio in the non-activated region were first calculated. An
ROC curve was then calculated by plotting the true-positive
ratio on the false-positive ratio. The curve corresponding to
a certain method closest to the upper left corner should be
the best. Finally, as the conventional ROC analysis, the area
under the ROC curve was taken as the detectability measure
of different methods. For the three methods, only the clus-
ters larger than 2 voxels were considered significant. The
clusters left were regarded as random noise.

In the implementation of GLM, the design matrix is the
simulated activated time series without mixing noise. In the
implementation of FCA, the fuzziness exponent weight is set
to 2 based on the previous work of Fadili and colleagues
[2000]. There is no theory to determine the number of clus-
ters before FCA. To find the optimal cluster number for each
of the five simulated datasets, a number between 2–30 was
set as the candidate (30 is a value used typically for FCA
[Baumgartner et al., 2000] in a real fMRI dataset). The num-
ber that obtained the maximal area under the ROC curve
was selected as the appropriate cluster number. Further-
more, the distance measure was the hyperbolic correlation
measure [Golay et al., 1998]. To obtain the task-related clus-
ters, Pearson correlation coefficients were calculated be-
tween a predefined reference and the centroid of each clus-
ter. The clusters with a correlation coefficient greater than
the predefined threshold TFCA (it was set as 0.25 for simu-
lated data) were considered to be task related. In the imple-
mentation of SMRG, TSM � 0.25, Ts1 � 2, Ts2 � 0.25 (this
corresponding to TFCA � 0.25). The specification of threshold
values for TSM � 0.25 and TFCA � Ts2 � 0.25 was based on a
priori knowledge of the simulated activated clusters. For both FCA
and SMRG, the reference time series is the simulated activated
time series without mixing Gaussian noise.

Analysis of In Vivo Data

The auditory dataset was analyzed with the three meth-
ods mentioned above. For the three methods, only brain
voxels obtained from a low-level threshold estimated from
the histogram were considered. In addition, only the clusters
larger than 4 voxels were considered significant. Because the
fMRI activation is generally to occur in clusters, as conven-
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tional practice [Arfanakis et al., 2000], the clusters smaller
than 4 voxels were regarded as noise and hence will not be
considered. For GLM, the design matrix was set as the
convolving result of fixed response (boxcar) with the canon-
ical HRF. Before FCA, to overcome the ill-balanced data
problem, noisy pixels were removed by preprocessing (for
each time series, we calculated their 1-lag-shifted autocorre-
lation function, and P � 0.01 was selected as the significance
level [for details please refer see Somorjai et al., 2000]). The
fuzziness exponent weight was set to 2, the cluster number
was set to 30 (this is a value typically utilized for FCA
[Baumgartner et al., 2000]), and the hyperbolic correlation
measure was utilized as the distance measure. Furthermore,
TFCA was set as 0.5. For SMRG, TSM � 0.85, Ts1 � 4, and Ts2

� 0.5 (this corresponding to TFCA � 0.5). Because the split–
merge stage was to find the homogeneity region in the fMRI
data space, a relatively high value, 0.85, was specified for
TSM. Although specification of threshold values for TFCA �
Ts2 � 0.5 was empirical, the emphasis here was to make a
fair comparison between SMRG and FCA.

These methods were compared both qualitatively and
quantitatively. Quantitative comparison was carried out as
follows: (1) a common activation area obtained by GLM was
set as the reference area (because GLM is the most popular
method for fMRI activation detection, we set the result of
GLM as the benchmark); (2) the thresholds of FCA and
SMRG were adjusted by keeping the same cluster volume
for the reference area; and (3) the volume size and the
average time series of the non-reference area were taken as
measures of effectiveness and sensitiveness for different
methods.

RESULTS

Simulated Data

Figure 2 shows the area under the ROC curve for each of
the three statistical models. Areas under the ROC curves
were taken as the detectability index of the three methods.
From Figure 2, it is easy to conclude that SMRG outper-
formed GLM and FCA. To clarify further the increased
sensitivity of SMRG, we examined a particular case, with
CNR at 0.4. ROC curves of the three methods are depicted in
Figure 3a. The ROC curve of the SMRG approached the top
left corner primely, whereas the ROC curves of the other two
methods were farther. In Figure 3a, points x, y, and z are
those points closest to the optimal classification (false posi-
tive rates � 0, true positive rates � 1) in the respective ROC
curves. Figure 3c–e illustrates the best result of GLM, FCA,
and SMRG, respectively. Compared to GLM and FCA,
SMRG revealed more true-positive and fewer false-positive
voxels. The computation complexities of the three methods
are reported in Table I. Computations were carried out on a
1.8 GHz PC, and SMRG, GLM, and FCA were all coded in
MatLab (MathWorks, Inc.).

In Vivo Data

Right auditory cortex in the 29th slice was set as the
reference area. For GLM, four thresholds were selected,
corresponding to the P values of 10�7, 10�6, 10�5, and 10�4.
The corresponding threshold TFCA of FCA was 0.19, 0.1, 0.06,
and 0.03, respectively, and the corresponding threshold TRG

of SMRG was 0.73, 0.71, 0.67, and 0.62, respectively. Results
of the three methods are shown in Figure 4. From the view-
point of qualitative analysis, each method could detect suc-
cessfully the activated areas such as Brodmann’s area (BA)
42 (primary auditory cortex) and BA 22 (auditory associa-
tion area).

Compared to FCA, the activated areas detected by SMRG
were larger and more continuous, e.g., the activation in the
left auditory cortex. In addition, there were less false-posi-
tive clusters scattered throughout the brain in the SMRG
results than in the FCA results. In Figure 4d, for instance,
there were some false-positive clusters in the FCA results.

Compared to GLM, quantitatively speaking, the activated
area detected by SMRG was more continuous. In Figure 4d,
in the left auditory cortex activated area, there were 216
voxels that activated in both SMRG and GLM; the average
time series of these 216 voxels is shown in Figure 5a. In
SMRG, there were 125 voxels activated that were not acti-
vated in GLM. The average time series of these 125 voxels is
shown in Figure 5b. The correlation coefficient between this
two average time series is 0.75; therefore, the 125 voxels
were all meaningful activated voxels. In the right auditory
cortex activated region there were 294 activated voxels in
both SMRG and GLM; however, 35 voxels that were acti-
vated in GLM were not activated in SMRG. In other words,
the detected activation in SMRG was smaller than that in
GLM.

Figure 2.
Performance of SMRG, GLM, and FCA for the simulated dataset.
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DISCUSSION

Split–merge is appropriate primarily for cubic images with
dimensions that are a power of 2, such as 64 � 64 � 64 or 128
� 128 � 128. These images can be divided until the blocks are
as small as 1 � 1 � 1. If the split–merge is applied to an image
whose dimension is not a power of 2, at some point the blocks

cannot be divided further. For instance, if an image is 48 � 48
� 48, it can be divided into blocks with size of 24 � 24 � 24, 12
� 12 � 12, 6 � 6 � 6, and finally, 3 � 3 � 3. No further division
beyond 3 � 3 � 3 is possible. As for fMRI data, the image size
of a single slice is typically 64 � 64. The number of slices is
variable. To keep the precision of split–merge, there are two
feasible schemes. The first would be to apply the split–merge
procedure to each single slice. Each heterogeneous block
should be split into four sub-blocks, and the resulting data
structure would be a regular quadtree. The second scheme
would be to resample the original image to a cubic image
whose dimensions are a power of 2. For instance, if the original
image size is 64 � 64 � 14, the resulting image after interpo-
lation should be 64 � 64 � 64.

For fMRI activation detection, each method has its unique
characteristics such as basic assumptions, computation com-
plexity, robustness, and sensitivity. Method selection for
fMRI activation detection is an explorative procedure under
the characteristics of candidate methods and the property of
actual data. From our point of view, in addition to sensitivity
comparison between different methods, the comparison of
basic assumptions, computation complexity, and robustness
are also meaningful.

Figure 3.
a: ROC curves corresponding to the case of CNR � 0.4 for the simulated data. b: presumed
activation. c: Results of SMRG. d: Results of GLM. e: Results of FCA.

TABLE I. Computation time for the three different
methods in simulated dataset with different CNR

Method

CNR

0.2 0.4 0.6 0.8 1.0

GLM �6 �6 �6 �6 �6
FCA 776 792 723 645 738
SMRG 19 20 19 25 23

Computation time in seconds for the three different methods in
simulated dataset with different CNR. FCA is calculated in the
optimal cluster and SMRG is calculated with the TRG value that
corresponds to the optimal classification point. CNR, contrast-to-
noise ratio; GLM, general linear model; FCA, fuzzy c-means clus-
tering analysis.
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From the viewpoint of basic assumptions, compared to
GLM, SMRG has two advantages: (1) it combines hypothe-
sis-led and data-led approaches; and (2) SMRG can utilize
the information of neighboring voxels; however, GLM
doesn’t utilize it, hence, it is hindered from the clustered
activation feature. Compared to FCA, SMRG has three ad-
vantages: (1) it is not sensitive to the ill-balanced data prob-

lem; therefore, SMRG can minimize the risk of discarding
possibly activated voxels; (2) because SMRG doesn’t need
the predefined cluster number, it is exempt from the “cluster
validity” problem; and (3) FCA ignores the spatially clus-
tered aspect of activations, whereas SMRG can utilize the
spatial neighboring information of clustered activation.
From the viewpoint of computation complexity, for the in

Figure 4.
Activation maps revealed by each of the three methods, i.e., GLM, FCA, and SMRG, shown from the
top row to the bottom of the figure. Three slices (29–31 of 64 slices) involved in the auditory
experiment are shown. Left side corresponds to right hemisphere. a–d: are results of the three
methods corresponding to GLM thresholded at the voxel-wise significance level of P � 10�7, P
� 10�6, P � 10�5, and P � 10�4, respectively.
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vivo dataset, the computation time of GLM, FCA, and
SMRG was 19, 8,676, and 636 sec, respectively (the thresh-
olds for each method correspond to the result of Fig. 5d).
GLM was fastest due to its hypothesis-led property. SMRG
was a sequence algorithm, whereas FCA was an iterative
optimal algorithm; therefore, the computation speed of
SMRG was faster. For large datasets, especially when a large
cluster number was specified for FCA, predominance of
SMRG was evident. The robustness of GLM depended on
the model selected. Selecting the most appropriate model
without additional assumptions was difficult, however, es-
pecially when the hemodynamic response to stimulus was
complicated. For FCA, the robustness relies upon two fac-
tors: (1) the optional robust statistics in the normalization
procedure; and (2) specification of an appropriate cluster
number. This open “cluster validity” problem remains un-
solved. For SMRG, the robustness also depends on two
factors: (1) the homogeneity criterion in the split-merge pro-
cedure (in the present study, Kendall’s coefficient of concor-
dance, which is a robust statistic, was selected as the homo-
geneity criterion); and (2) the inherent ability of the split–
merge to find all homogeneous areas. Because task-related
clusters are homogeneous areas, the split–merge will not
lose any task-related clusters. Combined with the region-
selection procedure, the robustness of SMRG is ensured.
From the viewpoint of sensitivity, the reason that the split
and merge procedure out-performs both FCA and voxel-
wise GLM is because our procedure harnesses spatiotempo-
ral priors inherent in cluster analysis and the prior informa-
tion afforded by the hypothesis-led component of region
selection. Conjoining these two sources of prior information
allows our approach to detect with greater sensitivity the
spatially extended activation clusters that conform to the
GLM adopted.

Recently, attention has been focused on brain regions in
which neural activity during the resting state [Biswal et al.,

1995; Michael et al., 2003] and experimental task state [Liu et
al., 1999]. Our method may helpful in detecting functional
cluster [Tononi et al., 1998] in the brain. For instance, to
study functional connectivity on the coherent networks in
the human brain, one might want to find the homogeneous
brain regions in the resting state or in a particular experi-
mental condition. The split–merge and region-growing pro-
cedure can be utilized to find homogeneous brain regions
without any prior knowledge about the experimental de-
sign. Future effort will focus on the detection of functional
cluster in the brain by utilizing our method.

In summary, a new method has been proposed for fMRI
activation detection. ROC analysis on simulated datasets has
demonstrated its effectiveness and faster computation
speed. Furthermore, its usefulness has been confirmed by
applying it to real data. Compared to the other two methods,
SMRG has two advantages: (1) the activated clusters are
more continuous; and (2) there are fewer small, scattered
clusters. Experimental results demonstrate that the pro-
posed method can serve as a reliable new method suited to
the nature of fMRI data analysis.
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APPENDIX

Kendall’s Coefficients of Concordance

The 4-D fMRI data F � {fxyzt}MNOT is first reshaped to a
matrix X(T,Q) where T is the number of time instances and
Q � M � N � O is the number of voxels in the fMRI data.

X � �
x11 x12 . . . x1Q

x21 x22 . . . x2Q

. . . . . . . . . . . .
xT1 xT2 . . . xTQ

�
where xij is the ith time instance of the jth time series. Then
rank each column from 1 to T.

W �
�i � 1

T (SRi)2 � n(SR)2

1⁄12T2(Q3 � Q)

is the Kendall’s coefficient of concordance. In which SRi is
the sum of ranks for each row of X, and SR � {(T � 1) � Q}
is the mean of the SRi values. Kendall’s coefficient of con-
cordance is a measure that characterizes the overall concor-
dance of the group of time series. Its value is between 0 and
1 (0 indicates no concordance and 1 means a perfect match).
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