Table II.
Relation of PET activations and ERP source analysis
| PET activations | ERP source analysis | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| BA | X | Y | Z | Z score | Figure | X | Y | Z | Distance | ||
| Task‐related activations | |||||||||||
| Episodic/semantic | R post cingulate | 23 | 4 | −40 | 24 | 3.7 | a | ||||
| R prefrontal | 10 | 22 | 56 | −4 | 3.6 | b | 32 | 25 | 5 | 34 | |
| Semantic/episodic | L prefrontal | 45 | −38 | 30 | 8 | 4.0 | c | ||||
| L temporal | 21 | −46 | −38 | −12 | 3.8 | d | |||||
| Item‐related activations | |||||||||||
| Episodic retrieval | |||||||||||
| Old/new | L med temporal | 28 | −36 | 0 | −20 | 3.9 | e | −21 | 5 | −3 | 23 |
| L med temporal | 36 | −26 | −32 | −16 | 3.8 | f | |||||
| Living/nonliving | R putamen | 26 | 16 | −4 | 3.4 | ||||||
| R temporal | 22 | 54 | 6 | 0 | 3.3 | ||||||
| Semantic retrieval | |||||||||||
| Old/new | R prefrontal | 45 | 46 | 32 | 8 | 3.6 | g | ||||
| R prefrontal | 44 | 38 | 6 | 16 | 3.4 | h | |||||
| New/old | R med temporal | 28 | 16 | −14 | −28 | 3.9 | i | 35 | −15 | −13 | 24 |
| L ant temporal | 38 | −38 | 4 | −16 | 3.9 | j | |||||
| L temporal | 37 | −36 | −54 | 8 | 3.6 | k | |||||
| R ant cingulate | 24 | 4 | 32 | 0 | 3.6 | l | |||||
| Living/nonliving | L ant cingulate | 32 | −4 | 24 | 44 | 3.7 | m | 5 | 3 | 8 | 24 |
| L frontal | 47 | −48 | 24 | 0 | 4.0 | n | |||||
| Nonliving/living | R cerebellar | 16 | −44 | −8 | 3.8 | ||||||
Only subtractions that yielded significant PET activations are listed. BA = Brodmann area. The coordinates are from the atlas of Talairach and Tournoux (1988), where x, y, and z correspond to the right‐left, anterior‐posterior, and superior‐inferior dimensions, respectively. The letters in the figure columns refer to the location of the PET activations depicted in Figure 8. The coordinates for the ERP sources are displayed in the same row as the closest PET activations. Distances of the ERP sources from the PET activations are calculated as the square root of the sum of the squares of the distances in each of the three dimensions.