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Abstract: It has been explained previously how using large dimensional signal-subspaces can reduce/
eliminate bias in the estimated fMRI response (Burock and Dale [2000]: Hum Brain Mapp 11:249–260). It
has also been explained how one can project this less biased estimate onto a one-dimensional subspace of
interest (Burock and Dale [2000]: Hum Brain Mapp 11:249–260). In cases where there are multiple,
correlated characterized response components per event type, separately projecting the full hemodynamic
response onto one-dimensional subspaces of interest can lead to bias. We present an approach for both
estimating the full hemodynamic response and obtaining from it unbiased estimates of effects of theo-
retical interest (in the context of ordinary least-squares estimation). The latter estimates are identical to
those obtained by projecting the original data into the space defined by the (possibly multi-dimensional)
effects of theoretical interest, but the ensuing statistical inference can be more sensitive. Hum. Brain
Mapping 17:13–16, 2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Blood oxygenation level dependent functional mag-
netic resonance imaging (BOLD fMRI) yields time series
reflecting the oxygenation state of hemoglobin in venous
blood [Kwong et al., 1992; Ogawa et al., 1993]. Changes
in neural activity lead to changes in fMRI signal under
normal physiological conditions [Ogawa et al., 1998;
Logothetis et al., 2001]. Testing for such temporal
changes in fMRI signal using the general linear model
(GLM) [Friston et al., 1995; Worsley and Friston, 1995]

can be conceptualized as comprising two sequential
steps. In the first, the entire data vector is projected into
the column space of a design matrix (i.e., a set of predic-
tor variables is simultaneously fit to the data). Of partic-
ular relevance here is that the residuals of this initial
fitting stage are used to generate an estimate of the error
variance, which plays a crucial role in subsequent statis-
tical tests (t- or F-tests). To avoid bias in the estimated
error variance, the design matrix should ideally be able
to represent any possible response [Johnston, 1972]. In
the second step, fit components of theoretical interest are
tested for statistical significance. These fit components are
specified by contrast vectors, which constrain (or restrict)
the aspect of the fit being tested. This note concerns the use
of restriction matrices [Johnston, 1972; Burock and Dale,
2000] to test for particular fMRI response components at the
contrast stage when using a design matrix that initially
allows for more lenient response fitting.

It will be useful to introduce the concept of character-
ized and uncharacterized response components. Charac-
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terized components of the response are defined as those
that have scientific meaning or are plausible based on the
current state of knowledge about the system under
study. Most likely, such meaning will have been ac-
quired by a response component through its consistent
previous observation. By this definition, characterized
waveforms (but not their weightings) are known before
the performance of the experiment. Note that character-
ized components can contain both effects of interest and
effects of no-interest [Friston et al., 1995] relative to the
hypothesis being tested. Uncharacterized components
are defined as being not explicitly known a priori, and so
are simply taken to be the orthogonal complement of the
characterized components with respect to some larger
space (see Theory). Admitting the possibility of unchar-
acterized components allows (albeit, in a limited sense)
for unexpected yet systematic behavior of the fMRI re-
sponse.

THEORY

Restriction matrices

Although the concept of restriction matrices is basic
to the GLM [Johnston, 1972], Burock and Dale [2000]
explicitly introduced the concept of restriction matri-
ces to the fMRI literature. Their specific approach will
be subsequently referred to as “B&D” in the current
note.

A k� by k restriction matrix R allows one to test for
the presence of signal in a given k� (1 � k� � k)
dimensional subspace of the columns of a rank k de-
sign matrix (G). Each row of R is simply a contrast
vector. R may thus be considered a k�-dimensional
contrast. The null hypothesis, Ho, is expressed as

Ho: R� � q (1)

where q is a k� by 1 vector whose ith row represents
the amplitude under Ho of the ith contrast (q � 0 in
most fMRI applications), and � is the parameter vector
of the design matrix [Johnston, 1972; Worsley and
Friston, 1995]. Ho can be assessed with an F-test for
general k�, though only the special case of k� � 1 will
be explicitly considered here. Note that � is estimated

at the initial fitting step using G, whereas R comes into
play only at the contrast specification step.

As mentioned in the Introduction, systematic com-
ponents in the data that are not in the span of the
design matrix will positively bias the estimate �̂2 of
the error variance. The utility of the restriction matrix
approach is that it allows one to estimate character-
ized effects while initially modeling the signal in a
larger subspace. By doing so, one attempts to model
more systematic components in the data, and hence
reduce the bias on �̂2 (Johnston, 1972). The goal of this
note concerns the specification of R such that R�̂ is an
unbiased estimator of a desired linear combination
(represented by the contrast vector c) of characterized
waveform amplitudes regardless of whether the char-
acterized components are explicitly represented in the
large design matrix. B&D dealt with this problem for
a special case; this special case and its limitations are
discussed below.

In B&D, the temporal response to each type of event
is modeled in the design matrix with a standard basis
(i.e., the response amplitude at each peri-stimulus
time point is separately represented). As a conse-
quence, � in B&D directly represents the temporal
response to the modeled events; R is simply taken to
comprise the appropriately weighted, hypothesized
waveforms themselves. B&D implicitly assumes that
there is only one characterized response associated
with each event type. This assumption was valid for
their simulations. A problem arises, however, if there
are multiple, correlated characterized waveforms per
event type, as can arise in certain designs [Zarahn,
2000]. In such cases, estimation of the desired linear
combination of characterized waveform amplitudes
with B&D is biased. A second issue is that it is not
immediately obvious what form R should have when
event-related responses are modeled in the design
matrix other than with a standard basis. Below, the
choice of R is generalized to deal with these issues.

General restriction matrix approach

The specification of R is a change-of-bases problem.
Details of the derivation are not presented. The expec-
tation of the fMRI response2 y is assumed to be rep-
resentable in two k dimensional temporal bases, which
are the column spaces of GA and GB

1In that paper, feasible generalized least-squares was used instead
of ordinary least-squares estimation. Though this does not funda-
mentally change the approach to be described, the assumptions of
orthogonality are slightly different under the two types of estima-
tion. Therefore, the current method only properly pertains to ordi-
nary least-squares estimation.

2To clarify, y is the fMRI response for an entire experiment, and is
not necessarily a single “event-related” response. Thus, y can con-
tain overlapping responses from multiple occurrences of multiple
event types.
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E[y] � GA�A � GB�B. (2)

Moreover, GA and GB are assumed to share the same
column space. The heuristic distinction made between
the two bases is that GA is constructed based on some
minimal constraint (e.g., finite duration response),
whereas GB is constructed in part based on stronger
prior knowledge. In particular, GB is partitioned to re-
flect the possibility that the fMRI response can possess
both characterized32 and uncharacterized components

GB � [Gc Gu] (3)

where the columns of Gc define a characterized basis
and the columns of Gu define an uncharacterized ba-
sis. Let �A be the parameter vector in the GLM corre-
sponding to GA, and let �c be the partition of the
parameter vector of GB corresponding to Gc. In prac-
tice, �A will be estimated, even though the hypotheses
of interest are most transparently expressed as linear
combinations of �c. The restriction matrix problem is
to find an R such that E[R�̂A] � cT�c.

By definition, an explicit form for Gu will not be
known. It was explained previously how Gu is taken
to be the orthogonal complement of Gc with respect to
GA (such that GT

cGu � 0). If this assumption is
adopted, Gu does not even need to be given an explicit
form, and subsequent computations are made very
simple.

Given these hypotheses, a unique solution to the prob-
lem of finding an R such that E[R�̂A] � cT�c is to let

R � cT�Gc
TGc�

�1Gc
TGA. (4)

Although R�̂A possesses the same variance as cT�̂c (�̂c

being the estimate of �c computed directly from the
data using Gc as the design matrix), their estimated
variances can be systematically different. This is be-
cause if Gc were used as the design matrix, signal
components in the span of the column space of Gu

would contribute systematically to �̂2.

RESULTS

Bias in �̂2 due to possibly incomplete modeling of
fMRI responses with solely characterized components
was examined in an event-related design involving

the subject being presented letters to be remembered
across a delay.4 Define %��̂2 as

%��̂2 � 100 �
�̂c

2 � �̂A
2

�̂A
2

where �̂c
2 and �̂A

2 are the estimated error variances
obtained from using Gc and GA as the design matrices,
respectively. %��̂2 averaged across all voxels in the
brain was 12.8%. When restricted to the suprathresh-
old5 local maxima for the t-test (using �̂c

2 as �̂2) assess-
ing the amplitude of neural responses to the letter
presentation, %��̂2 was 25.7%. This suggests that in
this dataset, the stronger the expression of character-
ized response components, the stronger the expression
of uncharacterized response components.

DISCUSSION

It is well known that bias in error variance estima-
tion might be mitigated by using a design matrix that
can represent all plausible response components, as
opposed to simply those of clear theoretical interest
[Johnston, 1972]. A method has been presented for
specification of restriction matrices to allow for the
estimation of desired linear combinations of charac-
terized fMRI waveform amplitudes when using such
‘larger’ design matrices. The approach as described is
valid for ordinary least-squares estimation of GLM
parameters (e.g., as employed in the SPM99 package;
Wellcome Department of Neurology), though it could
be easily extended to generalized least-squares estima-
tion [Burock and Dale, 2000]. Unlike B&D, this ap-
proach is not limited to standard bases and yields
unbiased estimates even when there are multiple, cor-
related characterized components per event type
[Zarahn, 2000].

3For clarity, Gc itself could be partitioned into effects of interest and
those of no-interest [Friston et al., 1995]. This has no effect on
estimation.

4Sternberg Item Recognition Paradigm [Sternberg, 1966]; GE EPI-
BOLD 5.7, TR/TE � 3,000/50 msec, flip angle � 90°, FOV � 24 cm,
matrix � 64 	 64, slice thickness � 7 mm, 15 axial slices; data
processing and analysis performed with SPM99 (Wellcome Depart-
ment of Neurology); the columns of GA comprised a Fourier series
(order � 4, fundamental period � 36 sec); data were spatially
smoothed with an isotropic Gaussian kernel (FWHM � 8 mm); the
columns of Gc comprised convolutions of a hemodynamic response
function (using the default parameters in SPM99) with rect func-
tions corresponding to event components [Zarahn, 2000]; patient
was a 19-year-old female diagnosed with schizophrenia.
5
 � 0.05, corrected for multiple comparisons using Gaussian ran-
dom field theory as implemented in SPM99 [Worsley et al., 1996].
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Assumed orthogonality of characterized
and uncharacterized components

Andrade et al. [1999] discussed how orthogonaliz-
ing predictor variables with respect to others changes
inference on the coefficients of the latter. For example,
say non-orthogonal predictors e and f comprise a
design matrix [e f]. Imagine that e is orthogonalized
with respect to f (yielding e*), and that a new design
matrix [e* f] is created. The coefficient of f obtained
using this design matrix will reflect the expression of
both e and f in the data. That is, the coefficient of f in
the context of e* will be biased with respect to the
coefficient of f that would have been obtained from
the original design matrix, [e f].

As characterized and uncharacterized components are
assumed to be orthogonal in the current method, one
might contemplate the question “What if the character-
ized and uncharacterized components are not actually
orthogonal? Would not inference on the characterized
components then be biased by the orthogonalization?”
The answer is subtle: recall that we do not start off with
a set of known uncharacterized components that are
then orthogonalized with respect to the characterized
components. Rather, we simply define the uncharacter-
ized components as the orthogonal complement of the
characterized components with respect to some larger
space. This does not obviate the point of Andrade et al.
[1999], but simply reflects the fact that the definition of
the characterized components (and so the uncharacter-
ized components) depends on the current state of knowl-
edge about the fMRI response. Furthermore, as ex-
plained below, it is not the case that the current method
involves orthogonalization of known effects of no-inter-
est relative to effects of interest.

Contrasting characterized/uncharacterized
and interest/no-interest

The dichotomy of characterized and uncharacterized
effects used here is not identical to that of effects of
interest and effects of no-interest [Friston et al., 1995].
The relationship between the two dichotomies is that
although every effect of interest is a characterized effect
(and every uncharacterized effect is an effect of no-inter-
est), there can be characterized effects that are effects of
no-interest. In fact, every effect that one can represent
explicitly before the performance of the experiment is a
characterized effect, and characterized effects need not
be mutually orthogonal. Therefore, one need not be con-
cerned that the orthogonality assumption will induce
confounding of effects of interest by characterized effects
of no-interest [Andrade et al., 1999].

The characterized/uncharacterized dichotomy is
not practically relevant in most (non-fMRI) GLM ap-
plications. This is because in almost all regression
circumstances one deals solely with characterized re-
sponse components, whether they are of interest or
not. For example, consider a psychological study in
which the effect of age on reaction time is under
examination, with gender and IQ included as effects of
no-interest in the GLM. In this example, not only the
effect of interest (age) but also the effects of no-interest
(gender and IQ) would fall into the class of character-
ized effects.

NOTE

The MATLAB 5.3 (Mathworks, South Natick, MA)
code used in conjunction with the SPM99 program
(Wellcome Department of Neurology) implementing
the theory outlined in this work is available from the
author.
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