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Abstract: Functional connectivity among brain regions has been investigated via an analysis of correla-
tions between regional signal fluctuations recorded in magnetic resonance (MR) images obtained in a
steady state. In comparison with studies of functional connectivity that utilize task manipulations, the
analysis of correlations in steady state data is less susceptible to confounds arising when functionally
unrelated brain regions respond in similar ways to changes in task. A new approach to identifying
interregional correlations in steady state data makes use of two independent data sets. Regions of interest
(ROIs) are defined and hypotheses regarding their connectivity are generated in one data set. The
connectivity hypotheses are then evaluated in the remaining (independent) data set by analyzing low
frequency temporal correlations between regions. The roles of the two data sets are then reversed and the
process repeated, perhaps multiple times. This method was illustrated by application to the language
system. The existence of a functional connection between Broca’s area and Wernicke’s area was confirmed
in healthy subjects at rest. An increase in this functional connection when the language system was
actively engaged (when subjects were continuously listening to narrative text) was also confirmed. In a
second iteration of analyses, a correlation between Broca’s area and a region in left premotor cortex was
found to be significant at rest and to increase during continuous listening. These findings suggest that the
proposed methodology can reveal the presence and strength of functional connections in high-level
cognitive systems. Hum. Brain Mapping 15:247–262, 2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

New functional magnetic resonance imaging (fMRI)
protocols examining temporal correlations in steady
state data have potential advantages over conven-

tional fMRI protocols. In conventional fMRI studies,
activated brain regions are identified by MR signal
changes that occur in response to a specific stimulus or
task or as a result of some other change in brain state.
For example, block designs measure the differences in
mean signal levels between two or more steady states,
whereas event-related paradigms measure the tran-
sient signal changes produced by isolated perturba-
tions of a steady baseline. Within any such baseline
state, however, the MR signal may exhibit temporal
fluctuations that are not associated with features of
any task or stimulus and which are not caused by
instrumental variations or physiological effects origi-
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nating outside the brain. These signal changes are
treated as noise in conventional analysis techniques.
The possibility exists, however, that such signal
changes reflect alterations in blood flow and oxygen-
ation that are coupled to neuronal activity. If so, the
manner in which the variations in one region relate to
those in other regions may provide insight into neu-
ronal connectivity independent of any specific task.
Thus, protocols examining temporal correlations in
steady state data have the potential to reveal such
connectivity. Given that a major aim of neuroimaging
is to investigate functional brain networks, this possi-
bility is of considerable interest. In addition, methods
examining temporal correlations in steady state data
are free from the limitations of more traditional func-
tional imaging paradigms that arise from the need to
design studies to examine one specific component of a
cognitive system at a time.

Recently, the analysis of low frequency (�0.08 Hz)
temporal fluctuations in MR signals measurable in the
brain during resting state scans has generated a great
deal of interest. The pattern of correlations between
signal changes in a reference region and signal
changes in other parts of the brain has repeatedly been
found to reflect, to a remarkable degree, a set of plau-
sible functional connections for the reference region.
Such apparently functionally meaningful correlations
were first seen between motor regions [Biswal et al.,
1995; Cordes et al., 2000; Lowe et al., 1998; Xiong et al.,
1999;], and have since been reported within the visual
system [Biswal et al., 1995; Cordes et al., 2000; Lowe et
al., 1998] and within other brain networks with known
anatomical connectivity [e.g., Cordes et al., 2000; Lowe
et al., 1998; Stein et al., 2000]. Examination of low
frequency temporal correlations between brain re-
gions under conditions other than resting state have
revealed that some of the correlations change when
subjects are performing different tasks [Lowe et al.,
2000a], when they experience different emotions
[Skudlarski et al., 2000b], and when they are subjected
to different sensory conditions [Skudlarski and Gore,
1998]. These findings are consistent with the possibil-
ity that low frequency inter-regional correlations oc-
curring during a steady state reflect functional inter-
actions between brain regions.

Although temporal correlations found in the resting
state may reflect functional interactions between re-
gions, other explanations for these correlations are
also plausible. For example, they may arise from blood
flow patterns that are independent of neural activity.
Some of the strongest resting state correlations have
been reported between homologous regions on oppo-
site sides of the brain [Biswal et al., 1995; Lowe et al.,

1998; Xiong et al., 1999]. The symmetry between the
blood supply routes of homologous regions is likely to
contribute to correlations in the hemodynamics of
those regions. It is therefore particularly interesting
when resting state correlations are reported between
regions that are not contralateral homologues, but that
are suspected to be functionally related, for example,
between the amygdala and hippocampus [Lowe et al.,
1998], or between primary motor cortex and supple-
mentary motor area [Biswal et al., 1995; Xiong et al.,
1999]. Even if the correlations reported between re-
gions are due to neural activity, however, this shared
pattern of activity may arise because the regions are
influenced by the same structures, and not because
they are interacting via direct (or indirect) anatomical
connections.

If the correlations found between regions during
resting state reflect functional interactions, they may
be expected to change during the performance of
different tasks or across different mental states in
predictable ways. That is, correlations within a
given functional system may increase when the sys-
tem is recruited for a particular task or behavioral
state, or when attention is shifted to or from the
system. Conversely, the correlations may decrease
when other brain systems are activated if the newly
activated systems compete for attention or utilize
the same regions in a manner that disrupts the
interregional interactions of the original system.
Changes in inter-regional temporal correlations
with changes in task or mental state have been
reported [Lowe et al., 2000a; Skudlarski et al.,
2000b]. The correlational structure in these studies,
however, was not compared to resting state corre-
lations and their relationship to correlational pat-
terns found during resting state are not clear.

The present study examines low frequency tem-
poral correlations across language regions of the
brain both in a resting state and during a continuous
listening task. The language system was chosen for
this study primarily because Broca’s area and Wer-
nicke’s area are good candidates for examining non-
adjacent regions that are known to have strong ip-
silateral connections. Blood flow artifacts are
unlikely to induce greater correlations between
these non-homologous and nonadjacent regions
than are typically found between spatially sepa-
rated brain regions. If low frequency resting state
correlations reflect the level of functional interac-
tions between brain regions, however, we would
expect these areas to be particularly correlated at
rest. In addition, interactions between language re-
gions of the brain are of general interest. For exam-
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ple, studies have implicated abnormalities of func-
tional connectivity between language-related brain
areas in a range of language and reading disorders
including dyslexia [Horwitz et al., 1998; Pugh et al.,
2000] and certain forms of aphasia [e.g., Geschwind,
1974; Wernicke, 1874]. Therefore, this study may
also provide some insight into the neural basis of
language processing in healthy subjects that could
ultimately be useful in understanding disordered
language functions. Finally, language processing is
a higher-level cognitive function and it is of interest
to know whether resting state correlational studies
can reveal functional connectivity of such high level
systems. If so, correlation analyses of resting state
data would be a promising new approach to inves-
tigating the neurological basis of many complex
psychological functions.

MATERIALS AND METHODS

A schematic diagram illustrating the general meth-
odology is provided in Figure 1. Two independent sets
of MR images are collected: one set of block design
data and one set of steady state data (including both
resting runs and listening runs). Analysis steps per-
formed on the block design data are illustrated in the
left-hand column, and analysis steps performed on
data from the steady state runs are shown in the right
hand column. Each row represents a single iteration of
analysis. Each iteration involves two steps. The first
step (a) involves region identification and hypothesis
generation in one data set. The second step (b) in-
volved hypothesis testing in the remaining data set.
Two iterations are performed in this study. The first
iteration involves the identification of Broca’s and

Figure 1.
Diagram illustrating general methodology.
In this study, Broca’s and Wernicke’s area
are Regions A and B, respectively, and the
left premotor region is C. See text for
details.
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Wernicke’s areas and the evaluation of their connec-
tivity. The second iteration involves the identification
of a left premotor region of interest and the evaluation
of its connectivity with Broca’s area. These correspond
to the first two rows of analyses illustrated in Figure 1.
The process could be continued for further iterations
as illustrated by the grey boxes in the third row. A
detailed description of the methods employed is pro-
vided below.

Human subjects

Eleven healthy right-handed volunteers (six men
and five women, aged 23–49) who denied previous
history of neurological disorders were scanned. All
subjects gave informed consent in accordance with a
protocol reviewed and approved by the Human In-
vestigations Committee of the Yale University School
of Medicine.

Data acquisition

Subjects wore headphones and lay in a supine po-
sition in the quadrature head coil of a GE 1.5T Signa
LX scanner capable of performing single shot gradient
echo-planar imaging. Foam pillows and a band across
the forehead were used to restrict head movements.
Each scanning session began with the acquisition of 22
contiguous T1-weighted sagittal localizing slices, us-
ing a repetition time (TR) of 505 msec, an echo time
(TE) of 14 msec, a slice thickness of 5 mm, a field of
view (FOV) of 24 cm by 24 cm, and an acquisition
matrix of size 256 � 192. This was followed by the
acquisition of nine contiguous 8 mm thick axial T1-
weighted images for anatomical identification (TR
� 500, TE � 14, FOV � 20 cm � 20 cm, 256 � 192
acquisition matrix). The bottom slice was aligned 8
mm below the anterior-posterior commissural line.
Following the acquisition of anatomical reference im-
ages, seven functional imaging runs were acquired.
Each functional run involved the acquisition of 340
images for each of the nine slices (prescribed in the
same locations as the anatomical data). A T2*-sensitive
gradient-recalled, single shot echo-planar pulse se-
quence was used for acquisition of these functional
images (TR � 1,000 msec, TE � 60 msec, flip angle
� 60°, FOV � 20 cm � 20 cm, and a 64 � 64 acquisi-
tion matrix that resulted in a voxel resolution of 3.125
mm � 3.125 mm � 8 mm). The first 10 images taken in
each scanning run were discarded to ensure the signal
had achieved a steady state, and the remaining 330
images per slice were used for analysis.

Experimental paradigm

Of the seven functional imaging runs acquired for
each subject, three employed a conventional block
paradigm. These runs had 45-sec periods of silence
alternating with 45-sec periods of continuous speech
(from a recorded story). Three blocks of each were
used, followed by a final silent period lasting 60 sec.1

These block design runs comprised one data set and
analyses on the data from these runs are depicted in
the left-hand column of Figure 1. The second data set
(analyses on this data are depicted in the right-hand
column of Fig. 1) was comprised of four steady state
runs. In each subject, two of these runs were resting
state, and two involved the presentation of continuous
speech throughout the entire run. The seven func-
tional runs were counterbalanced across subjects. All
continuous speech was taken from an audio-tape re-
cording of the story “The Warden” [Trollope, 1855].
Before the scanning, subjects were instructed to stay
alert, lie still and listen to the story whenever it was
played. After the scanning, subjects were asked if they
fell asleep during any of the runs. One male subject
reported sleeping during several runs, so that subject
was excluded from the analysis.

Data analyses

All data were motion-corrected using the SPM al-
gorithm (http://www.fil.ion.bpmf.ac.uk/spm/) with-
out signal correction (to prevent disruption of corre-
lational structure in the data). Pixels with a median
value below 5% of the maximum median pixel value
were set to zero, as well as any pixel that ever fell to
zero or below (this removed those pixels outside the
brain from the analysis). Data were then examined for
ghosting and other obvious artifacts, and images that
showed these artifacts were excluded. In addition, the
translation and rotation motion estimates were exam-
ined and images that were associated with movement
in any direction of greater than 1 mm or head rotation
of greater than 1° were excluded from analysis. The
specific analysis steps illustrated in Figure 1 are enu-
merated and described in detailed below.

Step 1a: defining Broca’s area and
Wernicke’s area

Broca’s and Wernicke’s areas were defined based on
a traditional activation analysis performed on data from

1For the first subject, a variety of block lengths ranging from 30 sec
to 90 sec were used.
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the three block design runs. First, linear drift was
removed from each run using the method described in
Skudlarski et al. [1999], and the first three images of
each block were discarded (to allow for the slow he-
modynamic response). A pixel-by-pixel t-test was then
performed within each of the three runs, comparing
each pixel’s signal level during blocks acquired while
listening to speech to its signal level during resting
blocks. Results from the three runs were averaged to
produce a t-map for each subject. The individual t-
maps for each subject were used to identify the re-
gions of interest (ROIs) for that subject in the follow-
ing manner. First, a threshold of t � 2 was used as a
cutoff for defining Broca’s area, and a threshold of t
� 3 was used as a cutoff for defining Wernicke’s area
(that had greater activation with a larger spatial ex-
tent).2 Second, each subject’s t-map was cluster-fil-
tered to remove activations involving less than three
contiguous pixels. Third, Broca’s area was defined to
include all remaining activated pixels in Brodmann
areas (BA) 44 and 45 (inferior frontal gyrus), as iden-
tified based on anatomical landmarks and Talairach
coordinates. Finally, Wernicke’s area was defined to
include all remaining activated pixels in the superior
part of BA 22, and adjacent portions of BA 39 (poste-
rior aspects of superior temporal gyrus and portions
of supramarginal gyrus), also identified based on an-
atomical landmarks and Talairach coordinates. These
two ROIs were hypothesized to be functionally con-
nected.

Step 1b: evaluating functional connectivity
between Broca’s and Wernicke’s areas

The functional connection between Broca’s area and
Wernicke’s area was evaluated by examining low fre-
quency temporal correlations in the steady state data
set. More specifically, correlation maps representing
the magnitude of correlation between each pixel and
Broca’s area during the two steady state conditions
(i.e., at rest and while listening to continuous speech)
were produced, and ROI analysis was used to evalu-
ate the significance of these correlations within Wer-
nicke’s area.

Correlations with the signal from Broca’s area were
computed for each of the steady state runs of each
subject in the following manner. First, the data were

low-pass filtered using an eighth-order Butterworth
filter (forward and reverse filtered to prevent phase
distortion) with a cutoff frequency of 0.08 Hz. This
filtering was performed before the removal of images
that showed motion, ghosting or other artifacts, as
described above (but after motion correction). Low-
pass filtering was performed to maintain consistency
with the literature on low frequency interregional
steady state correlations [e.g., Biswal et al., 1995; Lowe
et al., 1998, 2000a; Skudlarski et al., 2000b]. Second, the
global timecourse of the data within the imaging run
was found by averaging the timecourse across all non-
zero pixels. Third, the average timecourse of all pixels
in the activation-defined Broca’s area of that subject
was found. Finally, the partial correlation between the
timecourse of each pixel and that of Broca’s area was
found, after removing the effect of the global time-
course.

For each subject, the correlations for each pixel were
averaged across the two resting state scans to yield the
net resting state correlation between that pixel and
Broca’s area. Similarly, for each subject, the correla-
tions between each pixel and Broca’s area were aver-
aged across the two speech runs to yield a map of
correlations with Broca’s area found during continu-
ous listening. These correlations were then trans-
formed to an approximately normal distribution using
Fisher’s transformation [Hays, 1981]:

Z �
1
2 loge�1 � r

1 � r� (1)

where r is the correlation at each pixel, computed as
described above. This transformation yielded two ap-
proximately Gaussian distributions for each subject:
one from the resting state runs, and one from the
continuous speech runs. These approximately normal
distributions were corrected to approximately stan-
dard normal distributions using the methods de-
scribed in Lowe et al. [1998]. That is, for each approx-
imately normal distribution, a least squares fit of a
Gaussian to the distribution (restricted to the full-
width at half maximum) was performed. This fit had a
�2 probability �0.05 in all cases. The free parameters
were the mean, standard deviation, and area under
the Gaussian. The z-value for each pixel was then
corrected by subtracting the mean of the Gaussian fit
and dividing by the standard deviation of the Gauss-
ian fit.

The z-maps computed from resting data for each
subject were then transformed to Talairach coordi-
nates. A t-test was performed on each pixel of these

2The activations for Subject 4 were very pronounced. Higher thresh-
olds were adopted for this subject to avoid the selection of large,
imprecise regions of interest (t � 3 for Broca’s area and t � 5 for
Wernicke’s area).

� Detection of Functional Connectivity �

� 251 �



Talairach maps (using the data across all subjects) to
produce a composite map of the statistical significance
of resting state correlations with Broca’s area. Simi-
larly, the z-maps of cross-correlations during continu-
ous listening were transformed to Talairach coordi-
nates and combined across subjects to produce a
composite map of correlations with Broca’s area.
These maps were cluster-filtered to remove activations
involving �10 contiguous pixels and are displayed in
Figures 2 and 3 using a P � 0.01 cutoff (not Bonferroni
corrected). Talairach slices that had data from all 10
subjects are shown.

The correlations to Broca’s area (these correlations
were computed as described above) were evaluated
within the Wernicke’s ROIs that were defined for each
subject in Step 1a. For each subject, the average z-value
across all pixels in Wernicke’s area was computed for
both the resting state and the continuous speech data.
A t-test comparing these values to zero was used to
evaluate significance of the correlation between Bro-
ca’s area and Wernicke’s area across subjects. In addi-
tion, for each subject, the largest z-values in the region
were computed for the two conditions and used to
evaluate the within-subject significance of the Broca’s-
Wernicke’s correlation (after counting the number of
pixels in Wernicke’s region and adjusting for these
multiple comparisons).

Step 2a: definition of premotor cortical region
hypothesized to be functionally connected with

Broca’s area

Examination of the maps of correlations to Broca’s
area in the steady state data (Figs. 2, 3) revealed a left
premotor region that appeared to be highly correlated
with Broca’s area. This area was hypothesized to be
functionally connected to Broca’s area. For each sub-
ject, the resting state map of correlations to Broca’s
area produced by the analysis described above was
used to define the region of interest within left pre-
motor cortex. A cutoff of P � 0.05 was used, and a
cluster filter was applied to remove activations involv-
ing less than three contiguous pixels.3 All remaining
positively correlated pixels falling in the left lateral
dorsal portion of BA 6 (medial frontal gyrus) were
selected. The region of interest was restricted to the
dorsal portion of BA 6 to ensure a 15 mm distance

from Broca’s area and thus reduce the chances of
picking up correlations arising simply from low spa-
tial resolution.

Step 2b: evaluating functional connectivity
between Broca’s area and the premotor region

Because left premotor cortex was identified as a
region of interest based on correlations to Broca’s area
in the steady state runs, only a post-hoc ROI analysis
would be possible if correlations to the left premotor
region of interest were evaluated in the same data set.
Post-hoc analysis would involve a large correction for
multiple comparisons and only a very strong correla-
tion would pass such stringent standards. An alternate
approach is to look for this correlation in an indepen-
dent data set. By forming a hypothesis regarding the
presence of a specific interregional correlation in one
data set, and testing it in another, the need for multi-
ple comparisons can be eliminated, and power can be
increased. This was the approach adopted: the signif-
icance of steady state correlations between the left
premotor ROI and Broca’s area was evaluated in
steady state portions of the block design runs (rather
than in the steady state runs in which the correlation
was first observed).

For each subject, correlations with the signal from
the left premotor ROI were computed in steady state
portions of the block-design runs in the following
manner. After motion correction, the data were low-
pass filtered using a cutoff frequency of 0.08 Hz and
then motion and artifact related images were re-
moved. The global timecourse of the data was found
by averaging the timecourse across all non-zero pixels,
and the average timecourse of all pixels in the left
premotor cortical region (defined as described above)
was computed. Eighteen images were then discarded
at the beginning of each block and a partial correlation
removing effects arising from changes in the global
timecourse was found between the timecourse of each
pixel and that of the premotor ROI over the remaining
images in that block. The partial correlations in resting
blocks were averaged and the partial correlations in
listening blocks were averaged. These average corre-
lations were transformed to an approximately normal
distribution using Fisher’s transformation, and ad-
justed to an approximate z-distribution following the
same procedure described above.

The z-maps for each subject were then transformed
to Talairach coordinates and composite maps were
created representing correlations with the left premo-
tor cortical ROI in the two conditions. These maps
were cluster-filtered to remove activations involving

3This cluster filter was not applied to Subject 3, as the data from that
subject showed only one small focus of correlation with premotor
cortex (involving 2 contiguous pixels) in the premotor region of
interest.
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less than ten contiguous pixels and are displayed in
Figure 4. As fewer images were available to compute
steady state correlations in the block-design data set
(compared to the number of images available in the
steady state data set), the power was reduced in this
analysis, and a lower cutoff is used in Figure 4 (P
� 0.05 cutoff, not Bonferroni corrected). This reduced
cutoff level is intended to reveal potentially interesting
regions despite the reduced sensitivity of the analysis.
The evaluation of statistical significance is not affected
by the cutoff level of the composite images, which are
simply intended to allow visualization of the results
(significance is determined via ROI analysis). Those
Talairach slices that had data from all 10 subjects are
shown.

For each subject, the significance of the correlations
with the left premotor ROI (computed as described
above) were evaluated within Broca’s area for that
subject by identifying the pixel (in the correlation
map) with the largest z-value in Broca’s area, and
finding the significance of that z-value after correcting
for the number of pixels in the region. The average
z-value across all pixels in Broca’s area was also com-
puted for both the resting state and the continuous
speech data. These average z-values were used to
evaluate across-subject significance of the correlation
between Broca’s area and the left premotor ROI in the
two conditions.

For verification purposes, maps of correlations to
the left premotor ROI in the steady state runs were
also computed (this is not shown in Fig. 1). The meth-
ods used were identical to those described in Step 1b,
except premotor cortex, rather than Broca’s area, was
used as the reference region. The resulting correlation
maps are shown in Figure 5 at a P � 0.05 cutoff.

Exploring the possibility of further iterations

Further analyses could be performed (although they
were not illustrated in this study) by identifying new
regions that appear to be correlated with Broca’s area
or the premotor ROI in one data set, and examining
their correlations in the other data set. An example of
such potential analyses is represented in Figure 1 by
the grey boxes (Steps 3a and 3b).

One interesting question is whether it is possible to
investigate the internal structure of a given brain net-
work by finding regions more correlated with one ROI
in the network than with other components of the
network. For this reason, a map contrasting correla-
tions to the premotor ROI with correlations to Broca’s
area in the continuous listening runs was created (this
exploratory analysis is not shown in Fig. 1). Ten Ta-

lairach-transformed correlation maps were created us-
ing the left premotor region as the reference region
(defined as described in Step 2a) and employing an
analysis similar to that described in Step 1b (i.e., the
analyses were identical except that a different refer-
ence region was used). For each pixel, a t-test was
performed contrasting the value of that pixel in the 10
Talairach-transformed premotor correlation maps
with the value of that pixel in the 10 Talairach-trans-
formed Broca’s correlation maps created as described
in Step 1b. The resulting map of t-values was cluster-
filtered to remove activations involving less than 10
contiguous pixels and thresholded at a P � 0.05 level
(not Bonferroni corrected).

RESULTS

Step 1a: defining Broca’s area and Wernicke’s
area

The conventional block design runs allowed identi-
fication of Wernicke’s region and Broca’s area in each
subject. Although the terms Broca’s area and Wer-
nicke’s region are generally used to refer to structures
on the left side of the brain, all subjects showed some
activation in our task in homologous regions of the
right hemisphere as well. The bilateral activations may
be due to the language task employed. It has been
suggested that receptive language tasks are less later-
alized than expressive language tasks [Boatman et al.,
1998, 1999; Buchinger et al., 2000]. In a comparison of
brain activity during four different language tasks,
Lurito et al. [2000] found that passive listening to
narrative text induced the least left hemisphere later-
ization. In addition, listening to recorded stories in-
volves topic following that appears to induce right
hemisphere activation [Caplan et al., 2000]. As func-
tions such as topic following are arguably not basic
language functions, the possibility that Broca’s and
Wernicke’s ROIs should be restricted to include only
left hemisphere activations was considered. Such a
decision, however, requires the assumption that the
subjects included in this study perform basic language
processing using only the left hemisphere. There is
insufficient data to support such an assumption, both
because the role of the right hemisphere in language
remains a matter of debate [e.g., Shaywitz et al., 1995]
and because the performance of these particular sub-
jects on more typically lateralized language tasks is
unknown. Therefore, Broca’s and Wernicke’s ROIs
were defined bilaterally for this study, and the terms
will be used more loosely throughout this discussion
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to refer to these regions and their right hemisphere
homologues.

Step 1b: evaluating functional connectivity
between Broca’s and Wernicke’s areas

To evaluate the significance of correlations between
Broca’s and Wernicke’s regions in the steady state
conditions, a mean z-statistic (representing the low
frequency correlation with Broca’s area) was com-
puted across all pixels in the Wernicke’s area of each
subject. These mean z-values are provided in columns
2 and 3 of Table I. T-tests on these values revealed that
the correlations during rest were significant at the p
� 0.05 level (t(9) � 6.83, P � 7.6 � 10�5) and that the
correlations during speech were also significant (t(9)
� 5.69, P � 3.0 � 10�4). In addition, a paired t-test
revealed that the correlations during speech were sig-
nificantly greater than the correlations at rest (t(9)
� 2.82, P � 0.02). As a random effects analysis was
used, these findings can be generalized beyond the
specific group of subjects involved in the study. With-
in-subject significance was also assessed by examining
the maximum z-value in the Wernicke’s region of each
subject (provided in columns 4 and 5 of Table I). At the
P � 0.05 level, corrected for the number of pixels in the
region (provided in column 6 of Table I), five subjects
were found to have significant correlations in the rest-
ing task and six subjects were found to have signifi-
cant correlations during the listening task.

The composite map of low frequency resting state
correlations with Broca’s area is shown in Figure 2.
The largest correlations are clearly with pixels in or
adjacent to Broca’s area. Correlations with Wer-
nicke’s area are also present, although much

weaker. The activations present in this correlation
map cannot be considered statistically significant,
because the threshold P-value of 0.01 was not cor-
rected for multiple comparisons (although subjects
showed consistent correlations during resting state
between Broca’s and Wernicke’s regions, the precise
location of these areas varied across subjects, and
this variability reduced significance in the compos-
ite map). As described above, however, region of
interest (ROI) analysis of Wernicke’s region did es-
tablish the significance of these correlations across
subjects. Figure 2 also suggests that Broca’s area
may be correlated during rest with a region in left
premotor cortex (BA 6).

The correlation between Broca’s area and Wer-
nicke’s area present during resting state runs in-
creased dramatically when subjects were listening
to continuous speech, as shown in Figure 3 and
established more rigorously in the ROI analysis (dis-
cussed above). Once again, the two regions most
strongly correlated with Broca’s area are Wernicke’s
region and premotor cortex.

Step 2a: definition of premotor cortical region
hypothesized to be functionally connected with

Broca’s area

There remains the question of whether the correla-
tion seen between Broca’s area and left premotor cor-
tex is significant. To investigate this, a left premotor
ROI was defined for each subject based on correlations

Figure 2.
Composite map of resting state correlations with Broca’s area
(cutoff of P � 0.01, uncorrected).

Figure 3.
Composite map of correlations with Broca’s area while subjects
listened to continuous speech (cutoff of P � 0.01, uncorrected).
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with the signal in Broca’s area during the steady state
resting runs.

Step 2b: evaluating functional connectivity
between Broca’s area and the premotor region

The significance of the Broca’s-premotor correlation
cannot be rigorously assessed in the steady state data
without a large correction for multiple comparisons,
because left premotor cortex was not a defined region
of interest before beginning analysis of the steady state

data set. The significance of the correlation between
Broca’s area and premotor cortex, however, can be
assessed more powerfully (i.e., without the need to
correct for multiple comparisons) in an independent
data set. Fortunately, an independent data set is avail-
able for this purpose and it includes both conditions of
interest (i.e., rest and continuous speech): this data set
is comprised of the three block design runs that were
used for localizing Broca’s and Wernicke’s areas. Al-
though data from block design runs is not generally
used for examining steady state correlations within

Figure 4.
Correlations with the ROI in left premotor cortex evaluated during steady state portions of block design runs (cutoff of P � 0.05).

Figure 5.
Correlations with the ROI in left premotor cortex evaluated during steady state runs (cutoff of P � 0.05).

� Detection of Functional Connectivity �

� 255 �



blocks, under appropriate conditions this may be pos-
sible [Skudlarski et al., 2000a]. Of course it will be
necessary to throw out a large number of images in
these runs to account for the slow hemodynamic
changes between blocks. Using short imaging series
(comprised of 15 images each), however, Skudlarski et
al. [2000a] reported finding low frequency resting
state correlations similar to those reported for longer
imaging series. Therefore, it may be possible to eval-
uate correlations between the left premotor region of
interest and Broca’s area using short portions of
steady state data extracted from the block-design runs.
This possibility was investigated.

The pattern of correlations with the left premotor
region was computed for each of the two conditions
(resting and listening) in the block design data set, and
the significance of the correlation between the left
premotor ROI and Broca’s area was evaluated in the

two conditions via ROI analysis. Table II documents
the average and maximum z-values (representing cor-
relations with the left premotor ROI) found across
pixels in the Broca’s area of each of the 10 subjects.
T-tests on the average z-values confirmed that Broca’s
area had a significant positive correlation with left
premotor cortex both at rest (t(9) � 6.82, P � 7.7
� 10�5) and during continuous speech (t(9) � 13.24, P
� 3.3 � 10�7). A paired t-test comparing the two
conditions was also performed. There was an increase
in the correlation in the listening condition compared
to the resting condition that was not significant at the
P � 0.05 level, but was approaching significance (t(9)
� 2.25, P � 0.051).

The composite map of resting correlations with the
left premotor ROI is shown in Figure 4a. The strongest
positive correlations appear to be with right premotor
cortex, Broca’s area, and Wernicke’s area. The stron-

TABLE I. Mean and maximum z-statistics in the Wernicke’s region of each subject,
representing correlations with Broca’s area

Subject

Mean value Maximum value

Number of pixelsResting state Listening task Resting state Listening task

1 1.5717 4.0552 4.1021* 6.7606* 36
2 0.6633 1.2636 3.0175 3.2082 56
3 0.8980 3.2775 2.9388 5.9893* 93
4 0.3309 1.0454 2.8130 3.0005 75
5 1.5268 2.7510 3.6250* 5.4594* 65
6 1.7024 1.6320 3.4581* 3.5722* 51
7 0.5103 1.2895 2.9899 4.1698* 69
8 1.8814 3.2933 5.0054* 6.4739* 66
9 1.5373 1.2043 3.1883* 2.6863 32
10 1.1690 0.9097 3.2451 2.3791 89

* Within-subject significance (P � 0.05) for that condition.

TABLE II. Mean and maximum z-statistics in the Broca’s area of each subject,
representing correlations with the left premotor ROI

Subject

Mean value Maximum value

Number of pixelsResting state Listening task Resting state Listening task

1 0.8322 1.0025 2.3020 3.0614 115
2 1.0036 1.3083 3.8661* 3.5967* 91
3 0.7360 0.8620 2.8849 2.9944 146
4 1.1694 1.3858 2.5905 3.6319* 74
5 2.0924 1.5032 4.0002* 2.8774 31
6 1.3448 1.9208 3.2445 4.4447* 65
7 0.9265 1.2467 3.1636 2.7894 52
8 1.3916 1.5471 4.7539* 2.7391 43
9 0.8885 1.8228 4.9362* 3.7339* 13
10 0.2222 1.2432 3.1760 3.6149* 62

Within-subject significance (P � 0.05) for that condition.
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gest negative correlations appear to be with anterior
cingulate and posterior cingulate.

The composite map of correlations with the left
premotor ROI during the listening task is shown in
Figure 4b. This is similar to the map of resting corre-
lations, but does have several differences. Negative
correlations with the posterior cingulate have de-
creased in the more ventral slices, and positive corre-
lations appear in the left hemisphere near the supra-
marginal gyrus and caudate nucleus that were not
present in the resting data. It is important to note that
the activations and deactivations in these maps can
not be considered statistically significant as the P-
value of 0.05 used was not corrected for multiple
comparisons (rather, statistical significance was deter-
mined via ROI analysis).

An important issue to consider when examining
correlations in steady state portions of block design
data is how those correlations are influenced by he-
modynamic changes at block boundaries. In this
study, 18 sec worth of images at the start of each block
were discarded (before analyzing each of the two con-
ditions), but perhaps that was not sufficient to elimi-
nate all correlations arising from the blocked structure
of the data. To investigate this issue further, maps of
correlations with the left premotor region of interest in
the steady state runs were computed. Correlations
with the premotor ROI in the steady state runs cannot
be rigorously evaluated for significance (as such anal-
ysis would be post-hoc), however, this does not pre-
clude a qualitative examination of the correlations to
the premotor ROI present in the steady state data set.
These correlations can be compared to the those found
in steady state portions of the block design data set to
determine if the blocked structure of the data played a
prominent role in the correlations shown in Figure 4.

The correlations with the left premotor ROI the two
types of steady state runs are shown in Figure 5. These
maps are strikingly similar to the maps of correlations
to the left premotor ROI computed in steady state
portions of the block design data (Fig. 4). Once again,
in the resting condition, the strongest positive corre-
lations are with right premotor cortex, Broca’s area
and Wernicke’s area, and the strongest negative cor-
relation is with posterior cingulate. There are also
similarities in the changes in these correlations with
condition. In particular, in the continuous listening
condition, the negative correlation with the posterior
cingulate disappears in the ventral slices and a posi-
tive correlation appears in the region of the caudate.
There are some differences between the pattern of
correlations to this premotor region seen in the steady
state runs (Fig. 5) and those seen in steady state por-

tions of the block design runs (Fig. 4). Given the low
threshold used for these maps, however, the similarity
in the patterns of correlations found in the two data
sets for each condition are remarkable. This suggests
that the correlations found in steady state portions of
block design data were determined primarily by
steady state correlations, and to a trivial degree (if at
all) by block-related hemodynamic effects.

Exploring the possibility of further iterations

The maps of correlations with the region in premo-
tor cortex are suggestive of certain patterns of connec-
tivity that could be investigated further. For example,
an increase in correlation between the signals in the
left premotor ROI and the left caudate nucleus is
apparent during the listening task. This suggests that
there may be a connection between these regions, and
that this connectivity may play a role in speech per-
ception. One possibility is that a correlation between
premotor cortex and the caudate arises indirectly be-
cause these regions are mutually correlated with Bro-
ca’s area. Examining the map of correlations with
Broca’s area found during the listening task at a vari-
ety of thresholds, however, did not reveal correlation
with the caudate. Figure 6 presents a comparison be-
tween correlations with premotor cortex and correla-
tions with Broca’s area in the steady state listening
data. The negative activation indicates that pixels in
the vicinity of Broca’s area have timecourses more
correlated with the timecourse of Broca’s area than

Figure 6.
Difference map showing areas that are more correlated with the
premotor ROI than with Broca’s region in continuous listening
runs (cutoff of P � 0.05).
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with that of premotor cortex and, conversely, the pos-
itive activation in the vicinity of left premotor cortex
indicates that those pixels were more correlated with
left premotor cortex than with Broca’s area. In addi-
tion, there is a positive activation seen in the left
caudate. This indicates that the left caudate has a
stronger correlation with left premotor cortex than
with Broca’s area, and suggests that the correlation
between the premotor ROI and the caudate noted in
Figure 4b, if significant, is probably not due to mutual
correlations with Broca’s area. The caudate may there-
fore be an interesting reference region for continuing
correlational analyses.

DISCUSSION

A significant low frequency correlation was found
between Broca’s and Wernicke’s ROIs in the resting
data. As these regions are nonhomologous and non-
adjacent, this correlation cannot be attributed to sym-
metry in the blood supply routes of these regions or to
the low spatial resolution of functional MRI. Thus, the
low frequency resting state correlation found between
these functionally related brain areas supports the
possibility that such correlations can reveal functional
connections between brain regions that are compo-
nents of high level cognitive systems. The pattern of
correlations with Broca’s area found during continu-
ous speech qualitatively reproduced the pattern found
in the resting state data set, suggesting that the corre-
lations under the two different conditions (i.e., the rest
and listening conditions) were reflecting connections
within the same functional network. Additionally, the
increase in the magnitude of correlation between areas
long implicated in language processing (i.e., Wer-
nicke’s and Broca’s) during the listening task supports
the view that the magnitude of low frequency corre-
lations in steady state data can reveal the degree of
functional interaction between regions.

This study adds to a growing body of research
suggesting that temporal correlations in resting (and
other forms of steady state) functional imaging data
can provide information regarding functional connec-
tions in the brain [e.g., Biswal et al., 1995, 1997a,b;
Lowe et al., 1998, 2000a,b; Xiong et al., 1999]. This
suggests a new approach to functional imaging that
may have advantages over currently popular imaging
protocols. Although conventional fMRI subtraction
paradigms can investigate only those psychological
functions that differ between the specific task per-
formed and the control task used, data collected in
steady state scans (such as resting scans) may be used
to examine functional connectivity in many different

psychological systems. More importantly, subtraction
paradigms generally provide information regarding
task-related activation of individual regions, and cor-
relational studies may have the potential to provide
complementary information about the functional in-
teractions between regions, and how those interac-
tions change under different task conditions and men-
tal states. Given that a major aim of neuroimaging is to
identify networks of neural systems responsible for
brain function, this possibility is of great interest.

There are a range of approaches to investigating
functional connectivity. Previous studies of functional
connectivity have examined correlations (or covaria-
tions) between regions across subjects [Clark et al.,
1984; Horwitz et al., 1984, 1991; Metter et al., 1984;
Moeller et al., 1987; Peterson et al., 1999], over time
[Friston et al., 1993; Lowe et al., 2000b] or some com-
bination of both [Buechel and Friston, 1997; Prohovnik
et al., 1980]. These methods have great potential for
investigating the neural bases of brain function. Inter-
regional correlations, however, do not necessarily im-
ply physical connectivity or even causal interactions
between regions because confounding sources of cor-
relations may be present. To address this limitation of
correlational techniques, a range of studies have been
developed that combine correlational analyses with
known anatomical constraints [McIntosh and Gonza-
lez-Lima, 1991; Paus, et al., 1996; Tamada et al., 1999].
An alternative to correlational studies, introduced by
Paus et al. (1997), is to investigate causal interactions
between brain regions directly by stimulating a brain
area with transcranial magnetic stimulation and using
positron emission tomography to measure the result-
ing changes in regional cerebral blood flow that occur
across the brain. Although very promising, this ap-
proach has the drawbacks that it cannot at present
reveal projections arising from subcortical structures,
that it is invasive, that multiple cytoarchitectonic and
functional areas are stimulated simultaneously, and
that the stimulation is nonphysiologic. Finally, there
are global variance-based analyses that can be used to
identify distributed networks of brain areas that be-
have in similar ways over time or across tasks, such as
principle-component analysis [Friston et al., 1993] and
partial least squares [McIntosh et al., 1996]. These
methods have great utility for investigating brain be-
havior at the systems level. They do not, however,
provide estimates of the significance or strength of
specific interregional functional connections.

When correlational studies of functional connectiv-
ity are undertaken, they should be designed to mini-
mize sources of confounding correlations. In this re-
spect, the examination of low frequency temporal
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correlations in steady state data has advantages over
other correlational approaches to studying functional
connectivity. For example, across-subject correlational
methodologies cannot distinguish whether correla-
tions arise from temporal synchrony of regional activ-
ity within subjects, or from static differences in net-
work activation across subjects. This is not an issue in
studies that examine correlations within subjects over
time. Even for studies examining within-subject cor-
relations, however, it is possible that correlations
could arise between functionally unrelated brain re-
gions responding to different aspects of the same stim-
uli. This problem is likely minimized (although not
completely eliminated) in studies that examine corre-
lations in steady state data because there are no onsets
or offsets in the stimuli to drive correlations.

The examination of steady state temporal correla-
tions within individual subjects may prove to have
unique utility. One advantage to the use of within-
subject correlations rather than across-subject correla-
tions is that relationships between the correlations
found and individual behavioral scores can be com-
puted across the subject population. Such analyses
may ultimately prove useful in elucidating brain-be-
havior relationships. When examining correlations in
resting data, there are the advantages that multiple
systems can be investigated in a single data set, and
that brain function can be studied without requiring
subjects to perform tasks that may be difficult or im-
possible for certain patient populations.

In addition to providing support for the view that
low frequency temporal correlations between brain
areas in steady state data can reveal functional con-
nectivity, this study proposes an iterative method for
identifying and evaluating these interregional correla-
tions. Two iterations were performed to illustrate the
proposed methodology. These two iterations revealed
patterns of functional connectivity in the language
perception system. In the first iteration, the confirma-
tion of a resting state correlation between Broca’s and
Wernicke’s areas, and the confirmation of an increase
in this correlation during the listening condition, were
obtained. In the second iteration, a region in left pre-
motor cortex was found to have a significant correla-
tion with Broca’s area at rest and during the listening
task.

One possible explanation for the correlation found
between Broca’s area and the premotor region is that
the premotor area plays a role in language perception.
The role of motor processing in language perception
has long been an intriguing issue [Liberman et al.,
1967]. Previous studies have found activations in pre-
motor cortex during tasks involving speech compre-

hension and have suggested that this region is in-
volved in the semantic processing of linguistic
material, particularly those aspects of semantic pro-
cessing involving spatial imagery or relational analy-
sis [Inui et al., 1998; Mellet et al., 1996; Nakai et al.,
1999]. Alternately, a resting correlation between Bro-
ca’s area and left premotor cortex could be interpreted
to reflect a functional connection that is important for
tasks other than language. For example, Broca’s area
has been implicated in motor imitation tasks (see Ia-
coboni et al., 1999; Nishitani and Hari, 2000). A con-
nection between Broca’s area and left premotor cortex
could facilitate the involvement of Broca’s area in such
motor related tasks.

If the correlation between Broca’s area and left pre-
motor cortex reflects a functional connection that is
important for language processing, it would be ex-
pected to increase during the listening task. If it re-
flects the importance of Broca’s area in tasks other
than language, however, it would be expected to di-
minish (or at least not to increase) during the passive
listening task. Examination of correlations in steady
state portions of the block design data set revealed
that the correlation between Broca’s area and the left
premotor ROI did increase in the listening condition,
although the change in correlation was not quite sig-
nificant across condition (P � 0.051). Therefore, the
findings from this study tentatively suggest that this
left premotor region plays a role in language process-
ing. Further investigation is warranted.

The analyses were not carried on for further itera-
tions, although it would be possible to do so. There
were many potentially interesting regions that could
have been investigated. The left caudate nucleus was
discussed as one particularly interesting candidate.
This region appeared to be correlated with the left
premotor ROI during the continuous listening task
although it showed little or no correlation to Broca’s
area during the listening task.

The significance of the correlation between premo-
tor cortex and the caudate nucleus during continuous
listening could have been evaluated by continuing
with further iterations of analyses. First the caudate
would have to be defined for each subject based on
that subjects’ map of correlations with premotor cor-
tex obtained from steady state continuous listening
portions of the block-design data set. These newly
defined regions could then be used as the reference
regions to create a new set of correlation maps using
the continuous speech data from the steady state runs,
and the correlation between the caudate and premotor
cortex could then be evaluated based on these new
correlation maps. This process would parallel that
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used in establishing significance of the premotor-Bro-
ca’s area correlations, except that the roles of the two
data sets would be reversed. This time, the region
would be defined based on correlations in the block-
design data set and then evaluated statistically based
on correlations in the steady state data set.

Note that this type of analysis may be repeated
multiple times, exchanging the roles of the two data
sets each time. Therefore, via such an iterative proce-
dure, it may be possible to track functional connectiv-
ity through a network of regions. A carefully designed
protocol may allow multiple iterations and may thus
be used to map out a complex cognitive network.

To map out multiple disjoint networks is more dif-
ficult for this method because to investigate a given
network requires that two regions that are known to
be involved in that network can be functionally local-
ized (in the case of the example presented here, Bro-
ca’s and Wernicke’s regions were used as these “seed”
regions and were localized using block-design speech
runs). It may be possible to investigate two networks
in one study by including more than one set of block-
design runs (one for each network of interest) in the
same scanning session. Limitations on the amount of
data that can be collected in a scanning run, however,
will severely limit the number of networks that can be
investigated in a single study. Alternate approaches,
such as the methods described by Worsley et al.
[1998], should be considered for examining multiple
networks at once, although the sensitivity of such
methods may be a concern.

The proposed iterative method for examining func-
tional connectivity provides increased sensitivity by
avoiding the need to correct for many multiple com-
parisons. Results obtained using this method, how-
ever, must be interpreted with caution because corre-
lations with predefined regions are not always
independent. For example, a correlation between the
caudate nucleus and Broca’s area could arise in the
steady state resting runs because the caudate is corre-
lated at rest with left premotor, which was defined
based on it’s correlation with Broca’s area in that data
set. Additional strategies, however, such as partial
correlation analysis or segmenting the data into mul-
tiple independent samples may address this potential
limitation.

Finally, when interpreting data from any correla-
tion-based study of functional connectivity, it is im-
portant to remember that correlations between brain
regions do not imply specific causal interactions (for
example, a correlation between Regions A and B may
arise because A influences B, because B influences A,
because some third region, C, influences both A and B,

or for many other reasons). To address such issues,
methods designed to determine the direct, causal in-
teractions between brain region (i.e., the effective con-
nectivity) may be employed [Friston et al., 1997; McIn-
tosh and Gonzalez-Lima, 1991]. Such methods
generally rely upon a model of the system of interest
that incorporates information regarding which brain
regions are involved in the system, and the possible
anatomical connections between those brain regions.
Methods that identify functional circuits, such as the
one described in this study, can help in the develop-
ment of such models. In addition, information regard-
ing the functional connections between regions may
be used directly in computing effective connectivity.
For example, structural equation modeling [Gonzalez-
Lima and McIntosh, 1994; Grafton, et al., 1994; McIn-
tosh and Gonzalez-Lima, 1991, 1994] uses interre-
gional correlation matrices to estimate effective
connectivity within a brain circuit. Thus, to gain an
understanding of causal relationships in brain cir-
cuitry, computational analyses that are designed to
elucidate patterns of effective connectivity may be
applied to functional connectivity data.

CONCLUSIONS

This study provides strong support for the hypoth-
esis that functional connectivity between brain areas
may be investigated by examining low frequency tem-
poral correlations in steady state data. The biological
basis of these low frequency correlations between
functionally connected regions is a matter for further
investigation. It has been suggested that they may be
related to the low frequency oscillations in cerebral
hemodynamics and metabolism that have been found
in different species [Biswal et al., 1995; see discussion
by Obrig et al., 2000]. It is also possible that they are
related to variations in cognitive activities occurring
during the so-called “steady state” periods. Regard-
less of the underlying mechanism responsible for
these correlations, they may provide a powerful way
of examining brain circuitry.

This study confirms that such correlations can be
found between highly neurally connected, nonadja-
cent, nonhomologous regions within a higher-level
brain system. In addition, a method has been pro-
posed for tracking such correlations across function-
ally connected regions in a cognitive network. This
method involves alternating between independent
data sets, defining regions based on correlations in one
data set and evaluating the significance of these cor-
relations in the remaining data set. The results from
the application of this method to a well-studied sys-
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tem (the language perception system) are promising.
Further studies using this approach and similar meth-
odologies may potentially provide valuable insight
into the nature of cognitive connectivity.

ACKNOWLEDGMENTS

We thank E. Mencl for sharing his software, T.
Hickey and H. Sarofin for their technical assistance,
and R. Kennan and R. Fullbright for helpful discus-
sions. This work was supported by the National Insti-
tutes of Health grants NS33332, MH01232 (B.S.P.),
MH59139 (B.S.P.), and MH18268.

REFERENCES

Biswal BB, Hudetz AG, Yetkin FZ, Haughton VM, Hyde JS (1997a):
Hypercapnia reversibly suppresses low-frequency fluctuations
in the human motor cortex during rest using echo-planar MRI.
J Cereb Blood Flow Metab 17:301–308.

Biswal BB, Van Kylen J, Hyde JS (1997b): Simultaneous assessment
of flow and BOLD signals in resting-state functional connectivity
maps. NMR Biomed 10:165–170.

Biswal BB, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional
connectivity in the motor cortex of resting human brain using
echo-planar MRI. Magn Reson Med 34:537–541.

Boatman D, Freeman J, Vining E, Pulsifer M, Miglioretti D, Minahan
R, Carson B, Brandt J, McKhann G (1999): Language recovery
after left hemispherectomy in children with late-onset seizures.
Ann Neurol 46:579–586.

Boatman D, Hart JJ, Lesser RP, Honeycutt N, Anderson NB, Miglior-
etti D, Gordon B (1998): Right hemisphere speech perception
revealed by amobarbital injection and electrical interference.
Neurology 51:458–464.

Buechel C, Friston KJ (1997): Modulation of connectivity in visual
pathways by attention: cortical interactions evaluated with
structural equation modelling and fMRI. Cereb Cortex 7:768–
778.

Buchinger C, Floel A, Lohmann H, Deppe M, Henningsen H, Knecht
S (2000): Lateralization of expressive and receptive language
functions in healthy volunteers. Neuroimage 11:S317.

Caplan R, Dapretto M, Mazziotta JC (2000): An fMRI study of
discourse coherence. Neuroimage 11:S96.

Clark CM, Kessler R, Buchsbaum MS, Margolin RA, Holcomb HH
(1984): Correlational methods for determining regional coupling
of cerebral glucose metabolism: a pilot study. Biol Psychiatry
19:663–678.

Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA,
Moritz CH, Quigley MA, Meyerand ME (2000): Mapping func-
tionally related regions of brain with functional connectivity MR
imaging. Am J Neuroradiol 21:1636–1644.

Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997):
Psychophysiological and modulatory interactions in neuroimag-
ing. Neuroimage 6:218–229.

Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993): Functional
connectivity: the principal-component analysis of large (PET)
data sets. J Cereb Blood Flow Metab 13:5–14.

Gonzalez-Lima F, McIntosh AR (1994): Neural interactions related
to auditory learning analyzed with structural equation model-
ing. Hum Brain Mapp 2:23–44.

Geschwind N (1974): Conduction aphasia. In: Cohen RS, Wartofsky
MW, editors. Boston studies in the philosophy of science. Vol.
XVI. Selected papers on language and the brain. Vol. 68. Hol-
land: D. Reidel Publishing Co. p 509–529.

Grafton ST, Sutton J, Couldwell W, Lew M, Waters C (1994): Net-
work analysis of motor system connectivity in Parkinson dis-
ease: modulation of thalamocortical interactions after pal-
lidotomy. Hum Brain Mapp 2:45–55.

Hays WL (1981): Statistics, 3rd ed. New York: CBS College Publish-
ing.

Horwitz B, Duara R, Rapoport SI (1984): Intercorrelations of glucose
metabolic rates between brain regions: application to healthy
males in a state of reduced sensory input. J Cereb Blood Flow
Metab 4:484–499.

Horwitz B, Rumsey JM, Donohue BC (1998): Functional connectivity
of the angular gyrus in normal reading and dyslexia. Proc Natl
Acad Sci USA 95:8939–8944.

Horwitz B, Swedo SE, Grady CL, Pietrini P, Schapiro MB, Rapoport
JL, Rapoport SI (1991): Cerebral metabolic pattern in obsessive-
compulsive disorder: altered intercorrelations between regional
rates of glucose utilization. Psychiatry Res 40:221–237.

Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Riz-
zolatti G (1999): Cortical mechanisms of human imitation. Sci-
ence 286:2526–2528.

Inui T, Otsu Y, Tanaka S, Okada T, Nishizawa S, Konishi J (1998): A
functional MRI analysis of comprehension processes of Japanese
sentences. Neuroreport 9:3325–3328.

Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M
(1967): Perception of the speech code. Psychol Rev 74:431–461.

Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD
(2000a): Correlations in low-frequency BOLD fluctuations reflect
cortico-cortical connections. Neuroimage 12:582–587.

Lowe MJ, Mock BJ, Sorenson JA (1998): Functional connectivity in
single and multislice echoplanar imaging using resting-state
fluctuations. Neuroimage 7:119–132.

Lowe MJ, Phillips MD, Mattson DH, Mathews VP, Lurito JT,
Dzemidzic M, Srinivasan R (2000b): Resting state BOLD fluctu-
ations reflect impaired functional connectivity in multiple scle-
rosis. Proc Magn Reson Med 8:872.

Lurito JT, Dzemidzic M, Mathews VP, Lowe MJ, Kareken DA,
Phillips MD, Wang Y (2000): Comparison of hemispheric later-
alization using four language tasks. Neuroimage 11:S358.

McIntosh AR, Bookstein FL, Haxby JV, Grady CL (1996): Spatial
pattern analysis of functional brain images using partial least
squares. Neuroimage 3:143–157.

McIntosh AR, Gonzalez-Lima F (1991): Structural modeling of func-
tional neural pathways mapped with 2-deoxyglucose: effects of
acoustic startle habituation on the auditory system. Brain Res
547:295–302.

McIntosh AR, Gonzalez-Lima F (1994): Structural equation model-
ing and its application to network analysis in functional brain
imaging. Hum Brain Mapp 2:2–22.

Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B (1996):
Functional anatomy of spatial mental imagery generated from
verbal instructions. J Neurosci 16:6504–6512.

Metter EJ, Riege WH, Kuhl DE, Phelps ME (1984): Cerebral meta-
bolic relationships for selected brain regions in healthy adults.
J Cereb Blood Flow Metab 4:1–7.

Moeller JR, Strother SC, Sidtis JJ, Rottenburg DA (1987): Scaled
subprofile model: a statistical approach to the analysis of func-
tional patterns in positron emission tomographic data. J Cereb
Blood Flow Metab 7:649–658.

� Detection of Functional Connectivity �

� 261 �



Nakai T, Matsuo K, Kato C, Matsuzawa M, Okada T, Glover GH,
Moriya T, Inui T (1999): A functional magnetic resonance imag-
ing study of listening comprehension of languages in human at
3 T-comprehension level and activation of the language areas.
Neurosci Lett 263:33–36.

Nishitani N, Hari R (2000): Temporal dynamics of cortical represen-
tation for action. Proc Natl Acad Sci USA 97:913–918.

Obrig H, Neufang M, Wenzel R, Kohl M, Steinbrink J, Einhaeupl K,
Villringer A (2000): Spontaneous low frequency oscillations of
cerebral hemodynamics and metabolism in human adults. Neu-
roimage 12:623–639.

Paus T, Marrett S, Worsley K, Evans A (1996): Imaging motor-
to-sensory discharges in the human brain: an experimental
tool for the assessment of functional connectivity. Neuroim-
age 4:78 – 86.

Paus T, Thompson CJ, Comeau R, Peters T, Evans AC (1997):
Transcranial magnetic stimulation during positron emission to-
mography: a new method for studying functional connectivity of
the human cerebral cortex. J Neurophysiol 17:3178–3184.

Peterson BS, Skudlarski P, Gatenby JC, Zhang H, Anderson AW,
Gore JC (1999): An fMRI study of Stroop word-color interfer-
ence: evidence for cingulate subregions subserving multiple dis-
tributed attentional systems. Biol Psychiatry 45:1237–1258.

Prohovnik I, Hakansson K, Risberg J (1980): Observations on the
functional significance of regional cerebral blood flow in “rest-
ing” normal subjects. Neuropsychologia 18:203–217.

Pugh KR, Mencl WE, Shaywitz BA, Shaywitz SE, Fulbright RK,
Constable RT, Skudlarski P, Marchione KE, Jenner AR, Fletcher
JM, Liberman AM, Shankweiler DP, Katz L, Lacadie C, Gore JC
(2000): The angular gyrus in developmental dyslexia: task-spe-
cific differences in functional connectivity within posterior cor-
tex. Psychol Sci 11:51–56.

Shaywitz BA, Shaywitz SE, Pugh KR, Constable RT, Skudlarski P,
Fulbright RK, Bronen RA, Fletcher JM, Shankweiler DP, Katz L,
Gore JC (1995): Sex differences in the functional organization of
the brain for language. Nature 373:607–609.

Skudlarski P, Constable RT, Gore JC (1999): ROC analysis of statis-
tical methods used in functional MRI: individual subjects. Neu-
roimage 9:311–329.

Skudlarski P, Gore J (1998): Changes in the correlations in the fMRI
physiological fluctuations may reveal functional connectivity
within the brain. Neuroimage 7:S37.

Skudlarski P, Wexler BE, Fulbright R, Gore JC (2000a): Inter-re-
gional correlations in the fMRI time-course evident in short
imaging series. Neuroimage 11:S549.

Skudlarski P, Wexler BE, Gore JC (2000b): Emotions changes the
functional connectivity measured by the fMRI time-course cor-
relations. Neuroimage 11:S246.

Stein T, Moritz C, Quigley M, Cordes D, Haughton V, Meyerand E
(2000): Functional connectivity in the thalamus and hippocam-
pus studied with functional MR imaging. Am J Neuroradiol
21:1397–1401.

Tamada T, Miyauchi S, Imamizu H, Yoshioka T, Kawato M (1999):
Cerebro-cerebellar functional connectivity revealed by the later-
ality index in tool-use learning. Neuroreport 10:325–331.

Trollope A (1855): The warden. Narrated by Margaret Hilton, 1988,
Recorded books, Charlotte Hall, MD, USA.

Wernicke C (1874): Der aphasische Symptomencomplex. Breslau:
Cohn & Weigert.

Worsley KJ, Cao J, Paus T, Petrides M, Evans AC (1998): Applica-
tions of random field theory to functional connectivity. Hum
Brain Mapp 6:364–367.

Xiong J, Parsons LM, Gao JH, Fox PT (1999): Interregional connec-
tivity to primary motor cortex revealed using MRI resting state
images. Hum Brain Mapp 8:151–156.

� Hampson et al. �

� 262 �


