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Abstract: A new procedure to model extended cortical sources from EEG and MEG recordings based on a
probabilistic approach is presented. The method (SPMECS) was implemented within the framework of
maximum likelihood estimators. Neuronal activity generating EEG or MEG signals was characterized by the
number of sources and their location and extension. Based on the noise distribution of the measured data,
source configurations were associated with the according value of the likelihood function. To find the most
likely source, i.e., the maximum likelihood estimator, and its level of confidence, a stochastic solver (Metropolis
algorithm) was applied. The method presented supports the incorporation of virtually any constraint, e.g.,
based on physiological and anatomical a priori knowledge. Thus, ambiguity of the ill-posed inverse problem
was reduced considerably by confining sources to the cortical surface extracted from individual MR images.
The influence of different levels and types of noise on the outcome was investigated by means of simulations.
Somatosensory evoked magnetic fields analyzed by the method presented suggest that larger extended cortical
areas are involved in the processing of combined finger stimulation as compared to single finger stimulation.
Hum. Brain Mapping 18:100–110, 2003. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Multichannel electro- and magnetoencephalogra-
phy (EEG and MEG) have been successfully applied to

study the functional organization of the human cortex.
In most of the cases, equivalent current dipole (ECD)
models are considered [Baumgartner et al., 1993;
Braun et al., 2000; Scherg and von Cramon, 1986].
However, information provided by these models
about the spatial properties of cortical activation and
their extension, which is of particular interest in con-
sidering neuronal reorganization, is rather limited and
can be assessed only indirectly [Elbert et al., 1995a;
Flor et al., 1995, 1997]. In order to obtain a direct
estimate of the extensions of cortical sources, several
approaches have been presented [Baillet and Garnero,
1997; Kincses et al., 1999; Lütkenhöner et al., 1995;
Pascual-Marqui et al., 1994; Sarvas, 1987; Schmidt et
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al., 1999; Wang et al., 1992]. While most of these meth-
ods yield a unique solution of the inverse problem, the
ambiguity and ill-posed character of the inverse prob-
lem results in numerous source configurations that
model the recorded data similarly well. Thus, the
specification of a single distinguished solution might
be misleading. Statistical interference on the reliability
of the source solution [Schmidt et al., 1999] might
overcome this drawback.

As the bioelectromagnetic inverse problem has no
unique solution, meaningful constraints have to be
introduced. Ideally, these constraints should be based
on a priori knowledge about the mechanisms and
conditions underlying the measured activity. Since
EEG and MEG activity is mainly generated by the
apical dendrites of pyramidal neurons oriented pre-
dominantly perpendicular to the cortical surface [Kan-
del et al., 1991; Mitzdorf, 1987], confinement of any
modeled activity to cortical surfaces [Dale and Sereno,
1993] is a successful strategy for reducing the ambi-
guity of the inverse problem. This approach can be
extended by allowing only perpendicular currents.
The above discussion reveals that an “ideal strategy”
for modeling extended cortical sources should fulfill
the following requirements: 1) it is based on a statis-
tical approach in order to provide information about
the reliability of the source solution, 2) it relies solely
on theoretically or experimentally confirmed a priori
knowledge, and 3) the method allows for the inclusion
of any available source restriction.

In the current article, we present an approach based
on a semi-parametric model that has been developed
within the framework of the maximum likelihood
(ML) theory to account for the above requirements.
The method (Semi-Parametric Model for the Estima-
tion of Extended Cortical Source, SPMECS) provides
an estimator for the most likely source as well as the
likelihood of suboptimal parameters. Due to the non-
linearity and complexity of the likelihood function, the
ML estimator cannot be specified analytically. A Me-
tropolis algorithm based on a Monte Carlo Markov
Chain approach is an efficient way to determine the
ML estimator. A major contribution of the presented
method is the fact that it accounts for the structural
specificity of the cortical surface by confining the mod-
eled sources to the cortical surface. This is obtained by
defining cortical patches and using geodesic distance
instead of Euclidean distance in 3D space as in other
approaches [Schmidt et al., 1999]. The usefulness of
the method is evaluated by simulations and experi-
mental data.

MATERIALS AND METHODS

Mathematical Basis

The recorded EEG or MEG signal at m sensors can
be written as an m-dimensional vector y with the
elements:

yi � y0i � εi, (1)

where y0i denotes the activity of interest at the i-th
sensor in absence of noise and �i represents the noise
according to the distribution �i at the respective sen-
sor. Neural activity represented by a current distribu-
tion j(�) generating the recorded potential or field y0
can be described as a physical system modeled by a set
of k parameters � � {�1, . . . , �k}. Thus, solving the
bioelectromagnetic inverse problem corresponds to
estimating the parameters �.

The maximum likelihood (ML) method is a common
statistical approach. Each set of parameters is associ-
ated with a probability distribution for the realization
of a measurement y [Honerkamp, 1998]:

L��� � ��y��� � �y1, . . . , ym���. (2)

The function L(�) for a given sample y is named like-
lihood or likelihood function (LF). The ML estimator �̂
is the value of � which maximizes the LF. Under the
distribution given by the parameter �̂, the density
function is maximized at the given sample y. Assum-
ing the noise at each sensor to be a normal distribution
�i �̂ N(0, �i), the probability of the measured data
due to an arbitrary parameter set � is [Honerkamp,
1998]:

��y��� �
1

��2��mdet C

� exp��
1
2 �

i,j � 1

m

�yi � y	i�Cij�yj � y	j�� , (3)

where C denotes the covariance matrix with elements
Cij of the m-dimensional noise distribution and yi the
values of the electric potential or magnetic field gen-
erated by the cortical activity at the i-th sensor. Each y’i
is obtained by the forward solution of the bioelectro-
magnetic inverse problem, which according to the
lead field theory can be written as [Sarvas, 1987]:
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y� � �
V

F�r� � j��, r�dv (4)

for the current distribution j(�,r) inside the volume
conductor V. F(r) denotes a vector field function (lead
field).

Rather than maximizing L(�) directly, it is often
more convenient to consider its logarithm ll(� ) �
log{L(� )}, called log-likelihood function (logLF), and
to maximize this expression with respect to �, yielding
the same estimator �̂ since the logarithm is monotone.
The logLF corresponding to the probability distribu-
tion (3) is given by:

��� � log
��y1, . . . , ym���� � �
1
2 �

i,j � 1

m

�yi � y	i�

� Cij�yj � y	j� �
1
2 log det C �

m
2 log�2��. (5)

Since the last two terms in equation (5) are indepen-
dent of �, maximizing ll(�) with respect to � corre-
sponds to minimizing the quadratic form:

r2��� � �
i,j � 1

m

�yi � y	i�Cij�yj � y	j�. (6)

The covariance matrix C is independent of �. To esti-
mate for a system with m sensors, approximately m2

independent measurement points are mandatory ac-
cording to the Moivre-Laplace limit theorem. Thus, to
achieve asymptotic statistics, approximately 10,000
additional trials would be necessary for 100 sensors.
Since EEG and MEG experiments generally do not
generate such a large number of measurement points,
artificially strong correlation might be estimated. To
overcome this limitation, the correlation matrix might
be assumed to be diagonal, which has the additional
benefit of simplifying the mathematical expression.
However, for a sufficiently large number of indepen-
dent baseline measurements, an estimate for the gen-
eral C can be introduced into the model. Assuming
uncorrelated noise, the covariance matrix C has a di-
agonal form with off-diagonal elements identical to
zero. Without loss of generality, the variance is as-
sumed to be the same at each sensor. Thus, expression
(6) obtains the form:

r2��� �
1
�2 �

i � 1

m

�yi � y	i�
2. (7)

Anatomical Constraints

Assuming gray matter to be the location for all
neuroelectric or neuromagnetic activity measured
[Dale and Sereno, 1993], the surface between gray and
white matter is extracted from MR images of the brain
(CURRY software) [Fuchs et al., 1994]. Neural activity
of the cortical tissue is modeled on the triangulated
surface. The current in each triangle is approximated
by an electrical current dipole (ECD) located at the
center of gravity with a perpendicular direction to the
according triangle. Its orientation depends on whether
the modeled activity corresponds to activation or in-
hibition. The amplitude of the cortical activity is mea-
sured by ECD moment per unit area [Am/mm2].

Parameterization of the Cortical Activity

Parameters �i are chosen to unambiguously describe
a given cortical source based on the knowledge about
the anatomical and physiological constrains. As a first
order approximation, the geometry of each nondis-
junctive source [Pearson et al., 1999] is modeled circu-
lar. Thus, cortical activity is characterized by 3N�1
parameters: 1) the number of active cortical areas, 2)
each location T, 3) each radius R, and 4) each ampli-
tude A. The location of the source is limited to the
cortical surface. Triangles pertaining to the active
source satisfy the condition that the distance between
their center of gravity and that of the central triangle
equals not more than R. Triangles located entirely
within the specified radius are weighted by their area,
whereas triangles lying only partially within the circle
are weighted according to the intersection.

Scanning the parameter space

In general, it is not possible to specify the ML esti-
mator �̂ directly by solving the non-linear equation
(ll(�̂))/� � 0 analytically. As a numerical solver,
the Metropolis algorithm (MA) based on the Monte
Carlo Markov Chain approach is suggested. The MA
scans the space �k (spanned by the k parameters �i) for
the maximum of ll(�) [Gelman et al., 1995]. It is based
on a diffusion process within �k. The logLF is evaluated
at each place of this random walk of the source locations
on the extracted cortical surface with concomitant ran-
dom source radius R. The algorithm provides a higher
scanning rate of regions of �k with higher values of
logLF, thereby increasing the precision of the LM esti-
mator �̂ within the performed sample. At the same time,
the diffusion process ensures the sampling of the logLF
in the neighborhood of any � � �k.
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In our current approach, the source amplitude is not
varied according to the MA. Instead, the activity of
each source is calculated as the regression parameter
that minimizes the mean squares of the according
source activity with respect to the measured data. Also
the source amplitude values are not restricted. Never-
theless, if any physiological limits are known, this
information can be used as an additional physiological
constraint and can be easily integrated into the algo-
rithm.

The range of likely solutions

The scanning of the parameters of space provides a
large number of modeled sources with their corre-
sponding likelihood value. This information can be
used to specify the error bounds and confidence levels
of the estimated source parameters. To obtain the
error bounds of the source extension, a quadratic fit
was performed for the log-likelihood values of all
sources located in T̂0 with different radius R. The
curvature of the fitted parabola approximates the vari-
ance of the estimator of the source extension.

SIMULATIONS

Model for cortical activity

Simulated activity of one extended source located
on an artificial sulcus (Fig. 1) was used to validate the
presented method. The artificial sulcus was composed
of 1,200 triangles with an average area of 1.1 mm2

each. Its shape and orientation were chosen to resem-
ble the somatosensory cortex (see below for applica-
tion). The outer and inner radius of the sulcus were 80
and 70 mm, respectively. A simulated cortical source
was defined by 195 triangles within a radius of R0 � 10
mm around the center of gravity of triangle T0. Ac-
cordingly, the extended source was determined by
parameter set �0 � {T0, R0}. Measurements yi were
obtained by superposition of the forward solutions of
each triangle appertaining to the simulated activity.
For the majority of EEG and MEG experiments, the
number of active sources that have to be modeled can
be determined by preprocessing the measured data
using well-known techniques (PCA [Baumgartner et
al., 1989], ICA [Bell and Sejnowski, 1995; Makeig et al.,
1996], MUSIC [Mosher et al., 1992], Multi-ECD models
[Scherg and Berg, 1991]). Consequently, we assumed
the number of sources as known.

Instead of calculating the Euclidean 3D-distance be-
tween two triangles, the distance along the cortical
surface is considered. Recursively, a matrix is com-

puted that contains the shortest path connecting each
pair of triangles across vertices and centers of the
other triangles. This measure accounts for the func-
tional organization of the highly folded cerebral cor-
tex.

The method applies to EEG as well as MEG analysis.
EEG simulations were conducted for a 128-electrodes
setting covering the entire head. MEG analysis was
performed for a whole-head MEG system with 151
first order axial gradiometers (CTF Systems Inc.). A
four-layer spherical volume conductor with an outer
radius of Rv � 90 mm was used. Electrical and geo-
metrical properties were chosen as listed in Table I.
The magnetic permeability of all biological tissues was
assumed equal to the permeability of vacuum �0 �
12,566 � 10 � 7 N � A � 2.

In order to evaluate the impact of noise on the
outcome of the presented method, different noise lev-
els of five possible error sources were investigated:
non-constant activity distributions, uncorrelated and
correlated noise, erroneous localization of sensors, as
well as errors regarding the volume conductor model.

Influence of activity distribution

In order to investigate the error introduced by as-
suming constant activation in the modeled sources,
two distinct distributions were compared: In the first
case, a spatially homogeneous activation was as-
sumed. In the second case, the source was divided into
three equidistant, concentric rings: activity density in
the innermost region was four times higher than in the
outermost region and two times higher in the middle
region.

Influence of uncorrelated and correlated noise

In general, EEG and MEG recordings are super-
posed by uncorrelated and correlated noise that could
bias solutions of the inverse problem [Braun et al.,
1997]. To assess the impact of these two types of noise
on the SPMECS, three different levels of uncorrelated
and correlated noise were considered (1, 5, and 10%).
Uncorrelated noise was simulated by adding indepen-
dent normal distributed random numbers to the elec-
trical potential and magnetic field simulated at each
electrode and gradiometer, respectively. Correlated
noise, mimicking spontaneous brain activity, was
modeled by randomly positioned current sources with
random orientations: The potential of 1,000 current
dipoles with uniformly distributed orientation and
position within an upper hemisphere with an eccen-
tricity of 70 mm around the center of the head model
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were summed up and added to the simulated electri-
cal potential and magnetic field, respectively. The ra-
tio of noise and signal variance across sensors varied
between 1, 5, and 10%. Ten simulations were per-
formed for each level of uncorrelated and correlated
noise.

Influence of electrode and sensor positioning error

In contrast to the MEG, electrode positions in EEG
recordings must be determined one by one for each
measurement and are, therefore, corrupted with a
non-systematic positioning error. In order to investi-
gate the dependency of the SPMECS estimators to this
type of distortion, two levels of erroneous electrode
localization were simulated. The 128-electrode posi-
tions were randomly misplaced around their default
location by a normal distributed shift. Standard devi-
ation of the displacement was 5 and 10 mm, respec-
tively.

In MEG measurements, sensor positions maintain a
static spatial relationship. However, the head of the
examined subject is not affixed to the system. Thus,
the position of the head relative to the sensors might
change during measurement. Simulations were per-
formed by randomly misplacing the sensor array
around its default position. Standard deviation of the

Figure 1.
Example of sampled log-
likelihood function across
location (encoded as num-
ber of center triangle) and
source radius. Periodicity
occurs due to triangle num-
bering in stripes across the
surface. Note that local
maxima are sampled more
densely.

Figure 2.
Artificial sulcus from both views with reconstructed sources with-
out noise. The white marks the center triangle and the red area
the extend of the source (R � 10 mm).
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displacement was 2.5 and 5.0 mm, respectively. For
MEG and EEG, each displacement level was simulated
10 times.

Influence of head model errors

In order to estimate the underlying cortical activity,
the SPMECS relies on the field generated by the for-
ward calculation of modeled active sources, which is
determined using a spherical head model with four
concentric layers. Table I shows the parameters con-
sidered. Erroneous specification of the head model
and its parameters might influence the outcome of the
SPMECS and, consequently, affect parameter estima-
tion and source reconstruction. Simulations were lim-
ited to skull thickness because it has the smallest elec-
trical conductivity of all four layers and, therefore, the
largest smearing effect on EEG scalp potential [Gevins
et al., 1991].

Influence of different source sizes

In order to estimate the influence of different source
sizes on the reconstruction capabilities of the current
algorithm, five sources with the same location but
different radii were examined: 10.0, 7.5, 5.0, 2.5, and
1.0 mm.

Application

In order to illustrate the ML method for an experi-
mental data set, we studied the somatosensory repre-
sentation of the five left-hand digits of a subject on the
basis of MEG-recordings. The fingers were tactilely
stimulated individually and synchronously, resulting
in six different stimulus conditions (d1, d2, d3, d4, d5,
and d1–5). It was expected that the extended source
associated with the synchronous stimulation (condi-
tion d1–d5) would cover the sources corresponding to
the individual finger stimulation (conditions d1,. . .,d5).
The somatosensory evoked magnetic fields were re-

corded by means of a whole-head MEG-system with
151 axial first-order gradiometers (CTF Systems Inc.).
The signal was sampled at a rate of 625 Hz and low-
pass filtered at 200 Hz.

During the experiment, the subject’s left-hand digits
received tactile stimulation in a random order either
individually or synchronously, resulting in 1,000 trials
per stimulus condition (d1, d2, d3, d4, d5, and d1–d5).
The averaged signal of each condition at time points
between 60 and 75 msec poststimulus corresponding
to maximal signal amplitude was subjected to the
SPMECS. It is known that the first cortical area to be
activated during tactile stimulation is SI (areas 3b and
1), whereas SII and posterior parietal cortex exhibit
MEG responses only at a somewhat later interval (be-
yond 80–90 msec) [Elbert et al., 1995b; Hari et al.,
1993]. For the considered components at 60–75 msec
latency range, it is conceivable that activities originate
from within SI. Whereas it is possible to allow for
sources anywhere on the whole cortical sheet, addi-
tional constraints should be introduced in order to
minimize the number of degrees of freedom (mean-
ingfully reduce the parameter space �k). Therefore, a
region located 1 cm anterior and posterior to the cen-
tral sulcus of the right hemisphere (contralateral to the
stimulated side) was considered to be the region of
interest for source reconstruction (Fig. 3).

RESULTS

Simulations

Figure 1 displays L(�) across source number for the
simulated activity in absence of noise for 50,000 iter-
ations. It should be noted that the Metropolis algo-
rithm predominantly scans regions of the parameter
space with higher LF values. Nevertheless, all regions
are approached during the fitting procedure. The re-
petitive structure in the display is a result of the sys-
tematic numbering of the triangles of the analyzed
sulcus.

As a measure for the accuracy of the reconstructed
source the distance �d between the central triangle of
the estimated and the default source as well as the
difference �R between their radius were chosen. The
average and the maximum value of both parameters
for all simulated noise and error types are presented in
Tables II and III.

The simulations for each noise and error type indi-
cate that accuracy of the reconstructed source de-
creases with increasing noise level. Furthermore, the
results suggest that the extension of the reconstructed

TABLE I. Electrical conductivities and eccentricities of
the four layers of the spherical head model used as

volume conductor

Layer Anatomical structure
Eccentricity
(1/Radius)

Conductivity
(1 � 10�3/� � m)

1 Brain Tissue 0.8977 330.0
2 Cerebro-spinal fluid 0.9205 1000.0
3 Skull 0.9659 4.2
4 Scalp 1.0000 330.0
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source is systematically underestimated with increas-
ing noise level.

The results for the reconstruction of the sources
with different extensions are presented in Table IV. In
the simulations, the source location is reconstructed
correctly and the source size is generally overesti-
mated due to the modeling of the edges. Thus, the
overestimation decreases the larger the modeled
source. The analysis of the confidence level of the
estimated source extension showed: simulated source
radius 10.0 mm; SD of source radius estimator 2.6 mm
(noise level 1%), 6.0 mm (noise level 5%), and 8.4 mm
(noise level 10%).

Application

As shown by the ML method analysis, the somato-
sensory representation of the digits d1 to d5 are in
accordance with a gradient from lateral to medial
along the posterior wall of the central sulcus. The
extension of the individual sources as obtained by the
SPMECS analysis suggests an additive quality of the
activated area (see Table V and Fig. 3).

DISCUSSION

Simulations

The performed simulations demonstrate that the
presented SPMECS is capable of assessing the location
and size of an extended cortical source even under
rather difficult circumstances, i.e., in the event of op-
posing activity being located at the anterior and pos-

Figure 3.
Somatosensory representation of a subjects left-hand digits based
on somatosensory magnetic field evoked by individual (condition
d1, d2, d3, d4, and d5) and synchronous (condition d1–d5) stim-
ulation of all five digits. The latter joint activity overlaps the single
sources.

TABLE II. EEG simulations: error estimates of source localization (�d) and extend (�R) using distinct error sources

Error Source

�d (mm) �R (mm)

Mean Max Mean Max

Uncorrelated noise (level)
1% 0.7 3.0 0.0 0.0
5% 2.9 5.7 2.2 7.5

10% 4.0 5.7 3.3 7.5
Correlated noise (level)

1% 3.2 5.4 1.2 5.5
5% 5.1 8.2 2.8 9.0

10% 6.1 11.0 3.2 9.0
Activity distribution

Constant 0.0 — 0.0 —
Non-constant 1.1 — 2.0 —

Electrode mislocalization
5.0 mm 1.3 3.0 0.0 0.0

10.0 mm 2.5 5.6 1.1 7.5
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terior wall of an artificial sulcus, where both fractions
tend to cancel each other when viewed from distant
sensors.

Moreover, the adopted constant activity distribu-
tion represents an adequate approximation. However,
it might lead to systematic underestimation of recon-
structed sources if the analyzed activity distribution
differs from constant. At the borders, smaller activity
might be “overseen.”

Given the same noise level, the simulations revealed
a stronger influence of correlated noise than uncorre-
lated noise. As measurement noise is a mixture of both
types under experimental conditions, it is advisable to
determine the noise covariance matrix in order to
counteract their negative influence. However, as al-
ready pointed out in Methods, the number of samples
necessary to guarantee a statistical independence for
128 or 151 sensors of the order of 2 � 104 is, in general,
not available. The simulations indicate that, on aver-
age, the source extension is underestimated with in-
creasing noise level. Thus, to allow for comparison of
source extension between different experimental con-
ditions, an equal noise level is required.

Because erroneous localization of the sensor-array
position in MEG analysis leads to a systematic distor-
tion of the magnetic field topography, the influence of
this error is more pronounced as compared to elec-

trode localization in EEG analysis. The latter was as-
sumed to be non-systematic. Due to this common
problem for all source-reconstruction methods, special
attention should be paid to a stable head fixation.
Additionally, tracking of the head position during the
entire MEG-measurement is recommended if techni-
cally feasible.

The simulations with respect to erroneous specifica-
tion of the skull thickness revealed no bias on the ML
estimator. A concomitant decrease of the ML function
was accompanied by a broadening of the confidence
intervals of modeled source parameters.

Application

The source analysis for the experimental data set
using the ML method reveals similar extensions of the
somatosensory representation of each single digit. Lo-
cations of individual sources correspond, furthermore,
with the expected values. Simultaneous stimulation of
all five digits (d1–d5) yields an area covering the
individual finger representations. These results sup-
port the hypothesis that activation of larger skin areas
results in a more extended activation at the level of the
somatosensory cortex as compared to the stimulation
of only parts of it.

TABLE III. MEG simulations: error estimates of source localization (�d) and extend (�R)
using distinct error sources

Error Source

�d (mm) �R (mm)

Mean Max Mean Max

Uncorrelated noise (level)
1% 0.7 3.2 0.1 0.5
5% 2.4 5.1 0.6 4.5

10% 2.5 5.1 0.6 4.5
Correlated noise (level)

1% 3.7 5.7 3.0 7.5
5% 5.0 8.2 4.0 8.0

10% 5.6 10.0 4.8 9.0
Activity distribution

Constant 0.0 — 0.0 —
Non-constant 3.2 — 4.0 —

Head-model center
2.5 mm 1.2 5.1 0.9 4.5
5.0 mm 1.8 5.1 1.1 6.5

TABLE IV. Predefined and estimated source areas of five different sources

Default source area (mm2) 228.2 170.5 79.7 29.1 9.3
Estimated source area (mm2) 228.2 234.7 132.3 68.4 39.4
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General Discussion

The feasibility and significance of a maximum like-
lihood (ML) estimator for neuronal source location
and extension was demonstrated through simulations
and an application. The method presented in this
study was developed in order to address the three
requirements for an “ideal strategy” for modeling ex-
tended cortical sources presented in the introduction.
A probabilistic approach was chosen in order to pro-
vide information on the source estimator-statistics that
better accounts for the ill-posed character of the in-
verse problem, allowing for inference of the number of
similarly appropriate solutions. In order to find the
source configuration with maximum likelihood, the
parameter space needs to be scanned as densely as
possible, at least in ranges where parameters assume
physiologically meaningful values. The implemented
stochastic solver combined dense sampling in neigh-
borhoods of high likelihood values with fast conver-
gence [Schmidt et al., 1999].

According to requirements for an ideal source mod-
eling approach, the SPMECS method introduces the-
oretically and experimentally confirmed a priori
knowledge such as confining the location and the
orientation of the modeled sources to the cortical sur-
face and orthogonal to it in accordance with findings
from mapping studies in primary sensory cortex
[Mitzdorf, 1987]. Additionally, extended cortical
sources were modeled as being contiguous in accor-
dance with findings from mapping studies in primary
sensory cortex [Pearson et al., 1999].

A constant current density was chosen as first-order
approximation since detailed information on the ac-
tivity distribution across a cortical area is lacking thus
far.

In order to test and present the current method, just
one source was considered in our simulations. If the
number of simultaneously active sources is known a
priori, this information can be used as a constraint to
obtain physiological meaningful solutions.

This was the case for the presented experimental
application. Since magnetic activity was evoked in our
experiment by unilateral tactile stimulation and
peaked at a latency of about 50 msec, and since so-

matosensory evoked magnetic activity up to 60 msec
originates solely from primary cortical regions [refer
to Elbert et al., 1995b; Hari et al., 1993], the restriction
to one source is justified. However, whenever the
number of sources is less obviously preset, it might be
derived from other considerations or experimental
findings. Methods like PCA [Baumgartner et al. 1989],
ICA [Bell and Sejnowski 1995; Makeig et al. 1996],
MUSIC [Mosher et al. 1992], and Multi-ECD models
[Scherg and Berg 1991] can determine the number of
independent topographies during a certain time inter-
val. Alternatively, the number of sources can be con-
sidered as an additional unknown parameter and can
be determined using the Metropolis algorithm or a
hierarchical model.

At this point no additional assumptions have been
included in the modeling. Nevertheless, further
knowledge about other source features can be incor-
porated. If, for example, source polarity is known a
priori, i.e., the flow of currents inside the pyramidal
cells either points from the soma to the dendrites or
vice versa, the number of possible source configura-
tions can be further restricted by accordingly restrict-
ing its orientation.

Simulations and application of the ML method pre-
sented have demonstrated its reliability with respect
to estimation of location and extension of the sources.
In simulations, even in the demanding case of activa-
tion spread over opposing gyri, the source extension
could be successfully identified. For somatosensory
evoked fields, modeled source extensions for synchro-
nous vs. individual finger stimulation were in good
agreement with theoretical predictions.

At the same time, differences of the SPMECS
method as compared with commonly used methods,
i.e., minimum norm least squares (MNLS) methods
[Sarvas, 1987; Wang et al., 1992, 1993], low-resolution
electromagnetic tomography (LORETA) [Pascual-
Marqui et al., 1994], Bayesian inference (BI) [Schmidt
et al., 1999], and cortical patch (CP) [Kincses et al.,
1999; Lütkenhöner et al., 1995] method, have to be
noted. Firstly, the various methods differ with respect
to the incorporated constraints on cortical activity. The
activity distribution is modeled differently in the var-
ious methods. Minimum norm approaches follow the
principle of parsimony by minimizing either the L2-
norm [Wang et al., 1992], the L1-norm [Fuchs et al.,
1999], or the spatial change [Pascual-Marqui et al.,
1994] of the overall underlying source current distri-
bution. Even if the principle of parsimony is realized
in various biological systems, it is not shown to be
valid for summed neuronal currents. Furthermore, as
a consequence of minimizing the norm of the source

TABLE V. Source radius as estimated from
neuromagnetic fields evoked by individual (d1, . . . , d5)

and synchronous (d1–d5) tactile stimulation of the
digits of the left hand

Stimulus condition d1 d2 d3 d4 d5 d1–5
Radius (mm) 1.8 1.0 3.0 2.1 1.9 10.0
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currents, polarity of cortical surface elements may
vary from element to element, possibly resulting in
patchy source polarizations. In contrast, the ML
method models sources as contiguous and uniformly
polarized, which is in agreement with experimental
findings regarding the functional organization of the
cortex [Pearson et al., 1999]. The same assumptions are
made in the CP method. The latter method and the ML
approach, in principal, allow for incorporation of ar-
bitrary a priori source activity.

Secondly, coupling of activity within and between
sources certainly depends on the distance between
active regions. A straightforward strategy was applied
in the BI method in the form introduced by Schmidt et
al. [1999]: coupling between regions of activity in cor-
tical volume elements was modeled as a function of
their Euclidean 3D distance. However, the cortex of
the human brain is a highly folded surface divided
into numerous regions that are functionally special-
ized. Therefore, a spatial 3D neighborhood of cortical
locations does not necessarily imply functional corre-
lation. For example, the upper edge of the pre- and
postcentral gyri are spatially close to each other, but
are associated with motor and sensory functions, re-
spectively. In order to account for the functional or-
ganization of the cortex resembling 2-dimensional
maps, CP and SPMECS methods consider coupling of
neighboring cortical elements according to their 2D
distance on an extracted cortical surface.

The SPMECS and BI method are to date the only
methods modeling extended sources using a statistical
approach. The BI method allows for and requires the
specification of a priori knowledge, i.e., the a priori
probability distribution of different activation param-
eters (amplitude, spatial activity correlation). How-
ever, estimated source parameters might depend
strongly on the complex a priori probability distribu-
tion. Thus, under generalized conditions, it might be
recommendable to exclude a bias due to inappropriate
a priori information. In both the ML and BI approach,
the error of the source parameters is described by
confidence intervals, i.e., the parameter range in which
the underlying “true” value can be found with a cer-
tain probability. In contrast, in the MNLS and the CP
method, only a single solution is chosen, consequently
neglecting further equally adequate solutions.

In conclusion, the SPMECS approach appears to be
a promising method for estimating the extent of neu-
ral cortical sources from EEG or MEG data. In partic-
ular, under conditions where only limited information
regarding source activation is available and where
constraints known a priori may vary from experiment

to experiment, the SPMECS method yields insight in
source location, extension, and number.
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