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Abstract: A theoretical framework supporting experimental measures of dynamic properties of human
EEG is proposed with emphasis on distinct alpha rhythms. Robust relationships between measured
dynamics and cognitive or behavioral conditions are reviewed, and proposed physiological bases for EEG
at cellular levels are considered. Classical EEG data are interpreted in the context of a conceptual
framework that distinguishes between locally and globally dominated dynamic processes, as estimated
with coherence or other measures of phase synchronization. Macroscopic (scalp) potentials generated by
cortical current sources are described at three spatial scales, taking advantage of the columnar structure
of neocortex. New EEG data demonstrate that both globally coherent and locally dominated behavior can
occur within the alpha band, depending on narrow band frequency, spatial measurement scale, and brain
state. Quasi-stable alpha phase structures consistent with global standing waves are observed. At the
same time, alpha and theta phase locking between cortical regions during mental calculations is demon-
strated, consistent with neural network formation. The brain-binding problem is considered in the context
of EEG dynamic behavior that generally exhibits both of these local and global aspects. But specific
experimental designs and data analysis methods may severely bias physiological interpretations in either
local or global directions. Hum. Brain Mapping 13:125–164, 2001. © 2001 Wiley-Liss, Inc.

Key words: high-resolution EEG; dura image; Laplacian; synaptic action; spherical harmonics; brain
dynamics; spatial scale; binding problem; coherence; phase synchronization

r r

1. INTRODUCTION

Spontaneous EEG was first recorded from a human
scalp in the mid-1920s by the psychiatrist [Hans

Berger 1929]. These first human data were ubiquitous
and robust alpha rhythms. Human alpha rhythms are
defined as oscillations of electric potential in the 8–13
Hz range, normally recorded with larger amplitudes
over posterior regions with eyes closed. Alpha
rhythms and most other scalp EEG are believed to
represent oscillations of postsynaptic potentials in
neocortex [Klass and Daly, 1979; Nunez, 1981; Nied-
ermeyer and Lopes da Silva, 1999]. However, the
physiological bases for oscillatory EEG behavior, for
example the underlying time constants responsible for
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specific frequency ranges, are poorly understood
[Nunez, 1995, 2000a, 2000b; Steriade, 1999; Lopes da
Silva, 1991, 1999].

Better understanding the complex dynamics of EEG
will require a sophisticated grasp of interactions be-
tween several subfields of EEG. Of special importance
are volume conduction, dynamic theory, the influence
of neuromodulators on dynamic control parameters
(e.g., time constants and feedback gains), distinction
between robust and unusual spatial-temporal EEG
properties, and biases of specific experimental meth-
ods for revealing (or obscuring) dynamic behavior.
This will require better communication among clini-
cians, experimental neuroscientists, and theoreticians.
Misconceptions of EEG, especially of volume conduc-
tion and reference electrode effects, have been well
documented. Such fallacies can influence both exper-
imental design and physiological interpretations of
data [Klass and Daly, 1979; Nunez, 1981, 1990, 1995;
Gevins and Cutillo, 1986, 1995; Nunez et al., 1991,
1994, 1997, 1999; Silberstein et al., 1990; Silberstein,
1995a; Niedermeyer and Lopes da Silva, 1999].

In recent years more scientists with training in en-
gineering or physics have published in the neuro-
science literature, partly as a consequence of the rela-
tively new fields of MEG, PET, and MRI. The resulting
mathematical models have facilitated better under-
standing and experimental design. Still there is no
substitute for experience with data. Genuine theory in
any field, as opposed to isolated mathematics, requires
close contact with data. Thus, EEG theoreticians must
develop an intuitive feeling for experimental EEG in
order to connect theory to experiment. While this may
seem obvious, implementation of genuine theory in
EEG has been slow to develop, partly because of its
considerable interdisciplinary character [Nunez, 1995,
2000b].

The issues cited above provide motivation for this
paper. We first review robust dynamic properties of
EEG recorded from human cortex and scalp. Several
theoretical issues concerning volume conduction,
source dynamics, and their manifestations as EEG are
discussed. Connections between synaptic current
sources, dipole moment per unit volume at meso-
scopic scales (between micro and macro), and scalp
potential are outlined. High spatial resolution EEG is
considered in the context of spatial filtering by the
head volume conductor. The multiscale character of
brain dynamics is emphasized, in which dynamic EEG
properties may depend critically on both spatial and
temporal measurement scales. We argue that conven-
tional scalp EEG, high-resolution scalp EEG and intra-
cranial recordings with electrodes of different size

provide overlapping but partly independent measures
of brain function. We challenge the belief (perhaps
widely held) that cortical recordings (ECoG) necessar-
ily provide a “gold standard” for dynamic behavior of
neocortex. ECoG typically provides very limited spa-
tial sampling, is limited to a particular spatial scale
determined partly by electrode size, and may be dom-
inated by high spatial frequency dynamics. We sug-
gest that different parts of the spatial spectrum may be
of primary interest in different studies. In particular,
cognition (and associated brain binding) may be
strongly correlated with relatively low spatial fre-
quency activity, involving the integrated activity of
tens of millions of neurons.

This combined experimental/theoretical discussion
provides background for new experimental data on
human spontaneous EEG presented in Section 6, con-
cerned with EEG amplitude, phase, and coherence
while resting and performing mental calculations.
Later papers are planned to address more detailed
dynamic issues closely associated with local and
global physiological theories as well as cognitive con-
nections currently underway at the Brain Sciences In-
stitute. Topics include high-resolution estimates of
spherical harmonic spectra, cortical resonance re-
sponse to sine wave modulated light, and EEG dy-
namics during several drugs states. We mean for this
(mostly) theoretical paper to provide guidelines for
many later experimental EEG studies by other scien-
tists as well as ourselves.

2. HUMAN SPONTANEOUS EEG

2.1 Alpha rhythms

Discussion of human spontaneous EEG begins ap-
propriately with alpha rhythms for both historical and
clinical reasons. Scalp alpha rhythms provide the ap-
propriate starting point for clinical EEG exams [Kella-
way 1979; Niedermeyer, 1999a]. Some initial clinical
questions include: Does the patient show an occipital
alpha rhythm? Are the spatial-temporal characteristics
appropriate for the patient’s age? How does the pa-
tient react to eyes opening, hyperventilation, drowsi-
ness, etc? For example, pathology is often associated
with pronounced hemispheric asymmetry or low al-
pha frequencies. In most adults, alpha rhythms consist
of frequencies in the 9–11 Hz range when recorded
from the scalp with eyes closed. A resting alpha fre-
quency lower than about 8 Hz in adults is abnormal in
all but the very old.

Classical alpha rhythms may be recorded in roughly
95% of healthy adults with closed eyes [Nunez, 1981].
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By “classical” we refer to the common clinical defini-
tion of near sinusoidal oscillations. (With the usual
clinical definition, “nonalpha” EEG may exhibit sub-
stantial spectral spectral power in the alpha band,
sometimes leading to confusion in studies of physio-
logical bases for alpha.) Normal waking alpha
rhythms usually have larger amplitudes over poste-
rior regions, but are typically recorded over wide-
spread scalp regions. Alpha amplitude in 75% of nor-
mal adults lies in the range 15 to 45 mV when recorded
from the posterior bipolar electrodes P4–O2 (6.5 cm
spacing); amplitudes recorded from frontal electrodes
are lower [Kellaway, 1979]. A posterior rhythm of
approximately 4 Hz develops in babies in the first 3
months after birth. It increases in amplitude with eye
closure and is believed to be the precursor of alpha
rhythm [Bickford, 1973; Niedermeyer, 1999b]. Poste-
rior scalp alpha amplitudes in children older than
about 3 years are substantially larger than adult am-
plitudes, perhaps partly because of volume conduc-
tion effects, e.g., incomplete skull closure. Maturation
of the alpha rhythm is characterized by increased al-
pha frequency (between ages of about 3 and 10). A
corresponding reduction in delta activity (0–4 Hz) is
also common. Such delta reductions may continue
through age 25 to 30 [Pilgreen, 1995; Niedermeyer,
1999a], a time when myelination of cortico-cortical
fibers is nearly complete [Yakovlev and Lecours, 1967;
Courchesne, 1990].

Normal awake alpha rhythms may be “blocked”
(substantially reduced in amplitude) by eye opening,
drowsiness, and moderate to difficult mental tasks.
EEG phenomena typically exhibit an inverse relation-
ship between amplitude and frequency [Barlow, 1993].
Hyperventilation and some drugs often cause reduc-
tions of alpha frequencies together with increased am-
plitudes [Bickford, 1979]. This effect may occur with
alcohol, for example [Shichijo et al., 1999]. Other drugs
(e.g., barbiturates) are associated with increased am-
plitude of the small amount of beta activity often
superimposed on scalp alpha rhythms [Niedermeyer
and Lopes da Silva, 1999]. The physiological bases for
inverse relations between amplitude and frequency
and most other salient characteristics of EEG are un-
known, although several physiologically based theo-
ries have been proposed to account for such proper-
ties.

2.2. Frontal alpha

The EEG literature sometimes treats alpha primarily
as a occipital-parietal rhythm. In extreme cases, a few
“equivalent alpha dipoles” have been proposed. Yet in

the classical studies by Jasper and Penfield [1949],
alpha rhythms were recorded from nearly the entire
upper cortical surface (including frontal and prefron-
tal areas) in a large population of patients awake prior
to surgery [reviewed in Nunez, 1995]. The exceptions
involved regions close to the central motor strip where
beta activity (. 13 Hz) appeared to be dominant, at
least by visual inspection (before spectral methods
came to EEG). Furthermore, our own studies of
healthy young subjects (and some not so young) in
relaxed states show substantial frontal alpha [Nunez,
1995].

Some discrepancy of views about the spatial distri-
bution of alpha can be explained as follows. First, EEG
clinical populations are biased toward patients who
are older, have neurological problems, or may be anx-
ious during the recording. These factors tend to work
against production of robust, widespread alpha. Sec-
ond, the clinical definition of alpha is based on raw
waveforms rather than spectra. With this view, “alpha
rhythms” have quasi-sinusoidal waveforms, i.e., dis-
tinct peak (or peaks) between 8 and 13 Hz in ampli-
tude spectra. Often alpha is identified clinically by
simply counting the number of zero crossings. While
this definition of alpha is apparently appropriate clin-
ically, it can provide misleading views of possible
physiological bases. The reason is that raw EEG com-
posed of broad frequency bands can appear very
“nonalpha” to visual inspection, even though ampli-
tude spectra show substantial contribution from the
alpha frequency band. This potential misconception
can be especially pronounced when the raw record
contains substantial beta activity, which tends to at-
tract the eye and increase the number of zero cross-
ings, perhaps leading to overemphasis in qualitative
descriptions. A third reason for differing views about
spatial properties of alpha is that the human alpha
band contains multiple rhythms that apparently inter-
act to varying degrees in different brain states. Some
alpha phenomena are widely distributed and some are
more localized.

We demonstrate these ideas in Figure 1, which
shows amplitude spectra for EEG recorded from four
scalp locations of a normal (age 38) female subject.
Potentials were recorded with respect to a (symmetric)
averaged-ears potential reference in the eyes closed,
relaxed state. The scalp locations are left and right
frontal (upper row) and left and right parietal (lower
row). Spectral peaks in the alpha band are dominant at
all scalp locations, with delta, theta, and beta activity
also evident. Theta rhythm is most notable in frontal
regions. The small amount of delta activity is believed
to be brain generated, although it is difficult to sepa-
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rate from subtle, low amplitude, low frequency arti-
fact (movement, EKG, and so on). These are normal
alpha spectra for a healthy subject.

When these raw scalp data are passed through high-
resolution algorithms (dura image or spline-Lapla-
cian), power in the alpha band is typically reduced
relative to power in other bands. High-resolution al-
gorithms spatially filter potentials so that they only
record activity from sources within a few centimeters
of the electrode (both tangentially and in depth). They
are “conservative” estimates in the sense that they
mostly eliminate volume conduction effects, but they
also remove genuine low spatial frequency source dy-
namics generated in cortex or subcortical regions, as
shown in Section 3. Data presented in Section 6 sug-
gest that alpha rhythms consist of spatially coherent
global dynamic activity (partly removed by high-res-
olution methods) plus local activity that remains after
spatial filtering.

In scalp recordings, larger frontal alpha is often
observed as subjects become more relaxed, e.g., while
slowly counting breaths or with other relaxation tech-
niques. Alpha rhythm of unusually large amplitude,
occurring over the entire scalp and sometimes exhib-
iting frontal dominance, may be associated with men-
tal retardation in children [Bickford, 1973] or some
types of epilepsy [Kellaway, 1979]. Large amplitude

frontal alpha rhythms may also be recorded in coma
and anesthesia states [Nunez, 1981, 1995; Niederm-
eyer and Lopes da Silva, 1999]. In summary, frontal
alpha rhythms of moderate amplitude are common in
healthy relaxed subjects with closed eyes. Widespread
alpha of large amplitude (often larger in frontal re-
gions) may occur with trauma, disease or anesthesia.
The physiological relationships between these dispar-
ate alpha phenomena are unknown. But, because they
have similar frequencies, one may conjecture that they
share some underlying physiology.

2.3. Synaptic action is imperfectly related to
measured potentials

Cortical and scalp alpha potentials are believed gen-
erated through (millisecond scale) modulations of
synaptic current sources at the surfaces of neocortical
neurons [Lopes da Silva and Storm van Leeuwen,
1978; Nunez, 1981, 1995, 2000a, 2000b; Lopes da Silva,
1999]. Here we distinguish these millisecond “modu-
lations” of synaptic current sources about background
synaptic action from much longer time-scale modula-
tions associated with neurotransmitters (neuromodu-
lators). For example, we might imagine the 40 Hz
natural frequency of a local neural network (due to
millisecond synaptic source modulations) to change as
network parameters vary over relatively long time
scales because of neurotransmitter action. A physical
analog may help to distinguish modulation time
scales. Sound waves in air are short time-scale pres-
sure modulations about background pressure, analo-
gous to modulations of synaptic action in neocortex.
But, sound properties (e.g., propagation speed) may
be changed by external influences like long time scale
modulations in air temperature, analogous to chemi-
cal modulations of neocortex.

The existence of such millisecond modulations does
not, however, guarantee that corresponding scalp (or
even cortical) surface potentials will be observed. Call-
ing on our physical analog, the presence of sound
waves does not guarantee that they will be recorded.
Recordable surface potentials (cortex or scalp) require
sufficient modulation depth of synaptic action, which
can be measured as relatively large potential differ-
ences between deep and superficial cortex, e.g., sev-
eral hundred microvolts [Lopes da Silva and Storm
van Leeuwen, 1978; Petsche et al., 1984]. Recordable
scalp potentials also require substantial source activity
at low spatial frequencies, i.e., the sources must be
“synchronously active” at scales of at least several
centimeters [Cooper et al., 1965; Delucchi et al., 1975;
Nunez, 1981; Ebersole, 1997].

Figure 1.
Amplitude spectra based on 5 min of resting EEG (0.2 Hz resolu-
tion) with eyes closed, referenced to the (symmetric) digitally
averaged potential of the ears. The subject KR is a 38-year-old
female engineering graduate student. The four locations corre-
spond to left and right frontal and left and right posterior scalp
(nose up), roughly sites F3, F4, P3, and P4.
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In considering possible physiological bases for EEG,
this imperfect connection between source modulations
and measured potentials should be fully appreciated.
In particular, many dynamic systems with finite spa-
tial extent (e.g., with boundary conditions) and sup-
porting signals that propagate with finite speed,
exhibit global modulations of field variables. Physio-
logic-based theory has suggested that global synaptic
action modulations (synaptic action fields) can occur
naturally in human neocortex in the general range of
EEG frequencies [Nunez, 1974a, 1981, 1995]. Do such
global modulations actually occur in human brains? If
so, do they help to explain EEG origins? Do synaptic
action fields (number densities of active excitatory and
inhibitory synapses), which cause but are distinct
from electric and magnetic fields, play a part in the
processing of information, e.g., brain binding [Nunez,
2000a, 2000b]? While we cannot now provide defini-
tive answers, these questions are central to the theory
and experiments reported here and appear to have
important implications for more general studies of
brain function as well.

Many physical and biological processes can be rep-
resented by a field variable P(r, t), where r represents
a vector location (in one, two, or three coordinates) in
some medium, and t is time. The word “field” can be
used to describe nearly any well-behaved mathemat-
ical function of space and time; however, it is most
useful when related to measurable variables. Surface
potential differences (or macroscopic electric fields),
which are measured as EEG, are believed generated
by millisecond modulations of large-scale synaptic ac-
tion fields, which are not generally measured, but
provide a convenient theoretical connection to neural
sources. The synaptic action fields are defined simply
in terms of the numbers of active excitatory or inhib-
itory synapses per unit volume of tissue, in a manner
similar to definitions of physical macroscopic vari-
ables like mass density, temperature, or pressure.
These synaptic action fields are purposely defined
independently of brain function because of their direct
connection to measured scalp potentials. The spatial-
temporal patterns of synaptic action fields developed
in neocortex constitute one measure of its dynamic
behavior. A dynamic theory may involve many such
fields; but only some are directly accessible to exper-
imental measure. The synaptic action fields proposed
here involve concepts similar to early ideas about
neural mass action [Lashley, 1931; Freeman, 1975;
Freeman and Skarda, 1985].

We know of no convincing evidence that the small
macroscopic electric fields in the EEG range substan-
tially influence neural firing patterns. However, one

can easily envision cell assemblies (e.g., neural net-
works) operating within a background environment
of synaptic action fields [Nunez, 2000a, 2000b]. In this
picture, neural networks may be defined in terms of
strong preferential connections, strengthened by Heb-
bian mechanisms, and continuously reformed on mil-
lisecond time scales [Gevins and Cutillo, 1986, 1995;
Silberstein, 1995b; Ingber, 1995a, 1995b; Nunez, 1995,
2000a; Jirsa and Haken, 1997; Haken, 1999; Edelman
and Tononi, 2000]. However, such networks are likely
to remain partly (functionally) connected to other tis-
sue not part of the same network. This external tissue
may be modeled in terms of synaptic action fields. The
idea is analogous to the formation of social networks
(neural networks), which are continuously influenced
by the global culture (synaptic action fields) in which
they are immersed.

2.4. Alpha coherence

Coherence structure of EEG provides clues about
local versus global dynamic behavior [Livanov, 1977;
Nunez, 1981; Thatcher et al., 1986; de Munck et al.,
1992; Petsche and Etlinger, 1998; Nunez et al., 1997,
1999]. Coherence is a correlation coefficient (squared);
it measures the phase consistency between pairs of
signals in each frequency band. For example, the co-
herence between the voltages of any two nodes of a
linear, isolated, and noise-free electric circuit is equal
to one at all source frequencies since all node voltage
phases are fixed over time. By contrast, the coherence
between voltages recorded in two noninteracting cir-
cuits is generally zero. Thus, coherence provides one
important measure of functional interactions between
oscillating systems. EEG coherence may yield infor-
mation about network formation and brain binding.

EEG coherence is a somewhat different measure
than EEG synchrony, which refers to sources oscillat-
ing roughly in phase with individual contributions to
EEG added by superposition. Thus, desynchroniza-
tion is often associated with amplitude reduction
[Pfurtscheller, 1992; Pilgreen, 1995; Pfurtscheller and
Lopes da Silva, 1999]. Sources that are synchronous
(small phase differences) over substantial times will
also tend to be coherent. But, the converse need not be
true; e.g., coherent sources may remain approximately
180 degrees out of phase, so their individual contribu-
tions to EEG tend to cancel.

Measured EEG scalp coherence is typically moder-
ate to large up to roughly 8–10 cm distances caused
only by volume conduction effects [Nunez, 1981;
Srinivasan et al., 1996, 1998; Srinivasan, 1999]. It was
shown recently that the effects of volume conduction
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and reference electrode are largely removed using
high-resolution EEG. Resting alpha coherence, esti-
mated with high-resolution methods, is typically
small at distances of a few centimeters or more, except
in a narrow band near the peak alpha frequency
[Nunez, 1995; Nunez and Pilgreen, 1991]. But, within
a bandwidth of perhaps 2 Hz near the spectral peak,
alpha often produces moderate to large coherence
(e.g., 0.3–0.8) over large interelectrode distances, e.g.,
10–25 cm [Nunez et al., 1997, 1999]. This implies that
dynamic behavior of neocortical source activity (occu-
pying several cm2 of mainly local gyri) exhibits cross-
correlations (square root of coherence) in roughly the
0.5–0.9 range between many distant electrode sites.
Thus, normal resting alpha has somewhat of a global
character in addition to its local aspects.

Long-range (e.g., 1 Hz band) alpha coherence may
fall near zero during mental activity, even in subjects
with minimal reduction in alpha amplitude [Nunez,
1995, 2000a; Nunez et al., 1999]. Upper and lower band
alpha coherence can change in opposite directions.
Furthermore, reductions in long-range alpha coher-
ence during mental activity can be concurrent with
increases in short-range coherence in both theta and
alpha bands [Sarnthein et al., 1998; Nunez et al., 1999;
Wingeier et al., 1999]. Other studies have shown that
alpha band activity may increase in one region while
decreasing in another in a motor task [Pfurtscheller
and Neuper, 1992], i.e., blocking of the so-called “mu
rhythm” near motor cortex. These data are consistent
with formation of cell assemblies (or networks) oper-
ating in theta and alpha bands, perhaps immersed in a
global synaptic action field. The contrasting behavior
of long- and short-range coherence, the contrasting
behavior of upper and lower band alpha coherence
(typically with only 1–3 Hz frequency differences) and
the complex amplitude, phase, and coherence behav-
ior of local and global alpha phenomena call into
question oversimplified interpretations of alpha ori-
gins. Thus, we challenge attempts to dismiss alpha by
generic labeling like “pacemaker,” “idling,” or even
“epiphenomenon,” labels that tend to explain away
(e.g., with tautology) complex brain phenomena be-
cause they are poorly understood or don’t fit precon-
ceived notions about brain function.

Increases in coherence with maturation have been
observed in a large population of children and young
adults using reference recordings [Thatcher and
Walker, 1985; Thatcher et al., 1986, 1987; Marosi et al.,
1992]. However, it is difficult to distinguish the con-
tributions of volume conduction from source coher-
ence with conventional reference recordings [Nunez et
al., 1997, 1999; Srinivasan et al., 1996, 1998]. To address

this issue, Srinivasan [1999] studied alpha coherence
in two groups: 23 normal young adults (age 18–23)
and 20 normal children (age 6–11) using a 128-channel
system and high-resolution algorithm. Larger poste-
rior amplitudes were observed in children than adults
with both raw potential and high-resolution (spline-
Laplacian) estimates, consistent with the classical lit-
erature [Kellaway, 1979; Niedermeyer, 1999b]. By con-
trast, higher anterior-posterior coherence (e.g., at
10–25 cm electrode separations) was observed in
adults than children with both raw potential and high-
resolution estimates. The spline-Laplacian eliminates
most volume conduction (and all reference) effects.
Because the higher coherence in adults occurred with
(mostly) lower amplitudes, such high coherence is
apparently not a volume conduction effect. Rather, it
may result from increased cortico-cortical fiber myeli-
nation. This work then supported several of the earlier
conclusions about coherence maturation by Thatcher,
Marosi and others.

Other studies of EEG coherence involved prepara-
tion for motor movements. Changes in EEG coherence
between ipsilateral and contralateral sensorimotor re-
gions during planning of finger movements were mea-
sured. During one such planning, upper alpha band
(10–12 Hz) coherence decreased while gamma band
(38–40 Hz) coherence increased in the same data [An-
drew and Pfurtscheller, 1996]. Other studies by this
group showed that alpha band activity consisted of a
mixture of coherent activity (suggesting global mech-
anisms) with incoherent mu activity (suggesting local
mechanisms), which were separately manipulated us-
ing motor tasks [Andrew and Pfurtscheller, 1996, 1997;
Florian et al., 1998]. In some subjects, “local” and
“global” alpha frequency peaks were matched within
1 Hz. In others, spectral peaks were separated by 2–3
Hz. A third kind of alpha rhythm has been recorded
from temporal cortex, considered independent of oc-
cipital alpha in the sense that it is not blocked by eye
opening [Niedermeyer, 1999a]. An apparently similar
rhythm with reactivity to sound has also been re-
ported in MEG studies [Hari and Salmelin, 1997; Hari,
1999]. These data may be interpreted in terms of spe-
cific local networks that can generate rhythms in the
alpha and gamma bands.

We don’t deny that rhythms in one cortical region
are partly independent from rhythms in other regions;
i.e., they exhibit local properties. However, we suggest
that such local rhythms can occur simultaneously with
global oscillations in the same frequency ranges,
which in some states may facilitate and synchronize
local rhythms [Nunez, 1989, 1995, 2000a, 2000b; Silber-
stein, 1995b]. Such top-down interactions are well
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known in a variety of complex physical systems hav-
ing spatial extent [Haken, 1983; Ma, 1985; Ingber, 1995;
Nunez, 1995].

2.5. Alpha, theta, cognitive tasks and
working memory

At least two prominent features of human scalp
EEG show robust correlations with mental effort. First,
broadband alpha amplitude often tends to decrease
(desynchronization) with increases in mental effort
[reviews by Pfurtscheller et al., 1996; Gevins et al.,
1997]. Second, frontal theta band amplitude tends to
increase as tasks require more focused attention [Gun-
del and Wilson, 1992; Gevins et al., 1997]. In addition
to the amplitude changes, recent coherence studies
have shown that mental tasks with working memory
components can cause robust reductions in long-range
coherence in narrow (1 or 2 Hz) alpha bands, while
theta coherence increases [Nunez, 1995; Petsche and
Etlinger, 1998; Sarnthein et al., 1998; Nunez et al., 1999;
Wingeier et al., 1999]. Large alpha coherence reduc-
tions can occur even with no appreciable reduction in
alpha amplitude.

At least superficially, some of these data appear to
support the common view of alpha rhythms as simple
brain idling [Pfurtscheller et al., 1996]. However, the
idling picture has recently been challenged from sev-
eral disparate directions [Nunez, 1995, 2000a, 2000b;
Klimesch, 1996; Basar et al., 1997; Silberstein, 1997;
Petsche and Etlinger, 1998]. For example, upper and
lower alpha band amplitude may change indepen-
dently, depending on scalp location and task [Gevins
et al., 1997; Petsche et al., 1997]. Some tasks cause
lower alpha band amplitude to decrease while upper
alpha band amplitude increases [Petsche and Etlinger,
1998; Klimesch et al., 1999]. It has been suggested that
local reductions in alpha amplitudes occur in task-
relevant brain areas, whereas task-irrelevant regions
may be unchanged or even produce larger alpha am-
plitudes [Klimesch et al., 1999].

Increases in alpha amplitudes have been observed
in short-term memory tasks. In particular, higher
memory demands were associated with increases in
upper alpha band activity at frontal and temporal sites
[Petsche and Etlinger, 1998; Klimesch et al., 1999].
Similar increases in amplitude of 13-Hz steady state
visual-evoked potentials at frontal and occipital sites
in a working memory task have been observed [Sil-
berstein, 1997]. One interpretation of such increases in
upper alpha band amplitude is reduced neural net-
work activity (implying transition to larger scale syn-
chronization) in regions not participating in the task,

consistent with the idling hypothesis [Pfurtscheller
and Lopes da Silva, 1999]. But another hypothesis is
that increases in upper alpha and steady state-evoked
potential amplitudes in the upper alpha band (e.g., 13
Hz) indicate a specific memory processing function
(and by implication, associated neural network) and
not simple idling. Such hypothesis is consistent with
findings of enhanced prefrontal upper alpha ampli-
tude in a short-term memory task known to activate
the prefrontal cortex [Goldman-Rakic, 1996].

Some data support the alpha idling idea, but other
data refute it. However, all these data appear to fit
naturally into a local-global picture in which global
modulations of synaptic action in multiple frequency
bands (especially alpha) cooperate with local oscilla-
tory dynamics to produce recordable EEG. This frame-
work, which directly addresses the so-called binding
problem, is discussed in Section 2.6. Another common
view, that alpha rhythm is caused by a thalamic pace-
maker, has been severely challenged [Lopes da Silva et
al., 1980, 1997; Nunez, 1981, 1995; Lopes da Silva, 1991,
1995, 1999; Basar et al., 1997; Steriade, 1999]. The re-
cent data reviewed here and new data presented in
Section 5 appear to render nonviable the idea of a
simple thalamic alpha pacemaker. Rather, we suggest
these data support the early (1964) description by EEG
pioneer Grey Walter [quoted in Basar et al., 1997]
based on extensive intracranial recordings: “We have
managed to check the alpha band rhythm with intra
cerebral electrodes in the occipital-parietal cortex; in
regions which are practically adjacent and almost con-
gruent one finds a variety of alpha rhythms, some are
blocked by opening and closing the eyes, some are
not, some respond in some way to mental activity,
some do not. What one can see on the scalp is a spatial
average of a large number of components, and
whether you see an alpha rhythm of a particular type
or not depends on which component happens to be
the most highly synchronized processes over the larg-
est superficial area; there are complex rhythms in ev-
erybody.”

2.6. Phase synchrony and the binding problem

Reduction in alpha amplitude at the scalp is com-
monly referred to as desynchronization, implying that
phase matching of cortical source activity over at least
several cm2 contributes more to large scalp ampli-
tudes than the other obvious factor, source modula-
tion depth (or amplitude of transcortical potential).
This general view is supported by volume conductor
theory and comparisons between EEG and simulta-
neous cortical recordings [reviews by Nunez, 1981,
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1995]. We have discussed the importance of EEG co-
herence, but coherence and synchrony are not the
same measure. Coherent activity need not be synchro-
nous. However, as a general rule, synchronous source
activity over long times (e.g., tens of seconds) and
large distances (several cm or more) can generally be
expected to produce substantially higher EEG coher-
ence estimates than desynchronized sources.

Any study of synchrony or coherence in brains must
consider spatial scale. High synchrony at one scale
need not occur with high synchrony at a different
scale [Nunez, 1995; Nunez and Silberstein, 2000]. Mi-
crosource synchrony in directions along cortical col-
umn axes will generally have a much different effect
on scalp potential amplitude than mesoscopic syn-
chrony between different columns as discussed in Sec-
tion 3. Here, it is useful to distinguish short-range
synchrony (mm scale associated with intracranial mi-
croelectrodes), intermediate range synchrony (roughly
the 1–3 cm scale), and long-range synchrony (10–25
cm scale associated with scalp EEG). In animals, short-
range gamma synchrony [Singer and Gray, 1995] and
long-range synchrony over broad frequency bands at
small scales [Bressler, 1995; Roelfsema et al., 1997]
were measured in connection with various behavioral
conditions.

In humans, increases in long-range covariance (pre-
sumably related to synchrony at relatively low tem-
poral frequencies, e.g., theta and alpha) has been as-
sociated with correct performance on working
memory and other tasks using high spatial resolution
scalp EEG [Gevins and Cutillo, 1995]. In another high-
resolution scalp EEG study, consistent reductions in
long-range alpha coherence together with increases in
long-range (e.g., frontal to frontal and frontal to cen-
tral) theta coherence occurred during a mental calcu-
lation task with a memory component [Nunez et al.,
1999]. Similar theta (4–7 Hz) coherence increases be-
tween prefrontal and posterior cortical association ar-
eas were reported during working memory retention
using a digitally linked-ears reference [Petsche and
Etlinger, 1998; Sarnthein et al., 1998].

In MEG studies, binocular rivalry experiments (with
dissimilar objects presented to the two eyes) have
shown substantial increases in intrahemispheric and
interhemispheric (driven) theta coherence during pe-
riods of perceptual dominance, i.e., conscious percep-
tion of a single object [Srinivasan et al., 1999; Edelman
and Tononi, 2000]. Intracranial human recordings
have associated long-range gamma synchrony be-
tween hippocampus and frontal gyrus with perfor-
mance of a visual discrimination task [Lachaux et al.,
1999]. This later study estimated phase synchrony as a

function of time by convoluting EEG time series with
a Gabor wavelet, a synchrony measure more accurate
than coherence when applied to the short time series
obtained in these experiments.

While scalp coherence and covariance measures are
not direct measures of source synchrony [Lachaux et
al., 1999], robust increases in these estimates during
task performance implies increases in large-scale
source synchrony. (It should be noted, however, that
cross-checking of physiological hypotheses with dif-
ferent data reduction measures is generally a good
idea.) Furthermore, with many cognitive tasks, coher-
ence (or perhaps just coherence based on standard FFT
methods) may not be sensitive enough to measure
subtle changes in phase synchrony, especially when
such changes occur over short times [Andrew and
Pfurtscheller, 1995; Schack and Krause, 1995]. The ev-
idence for synchronous cortical source activity (direct
or indirect) may be interpreted in terms of both “per-
ceptual binding” at short range (e.g., within a single
sensory area) and overall binding of cognitive func-
tions involving sensory, motor, and memory systems
at long range [Bressler, 1995; Silberstein, 1995a, 1995b;
Singer, 1993; Singer and Gray, 1995; Gevins and
Cutillo, 1995; Castelo-Branco, 1998; Lachaux et al.,
1999; Edelman and Tononi, 2000].

Increases in scalp amplitude in particular frequency
bands are believed to occur largely as a result of
increases in intermediate range synchrony between
cortical columns (discussed in Sec. 3.4). Our experi-
ments show that decreases in long-range alpha coher-
ence may occur simultaneously with increases in
short-range alpha coherence during a cognitive task.
Also, upper alpha band coherence may increase while
lower alpha band decreases. These data imply forma-
tion of local alpha and theta networks partly distinct
from, but perhaps interacting with, global alpha
rhythms. Generally, they challenge the ideas that cog-
nitive events are exclusively associated with the
gamma band, or that frequency bands associated with
behavior are necessarily the same in different animal
species and humans.

2.7. Possible physiological bases for alpha rhythms

A picture of multiple alpha rhythms similar to Grey
Walter’s description (Sec. 2.5) was also reported in
dogs [Lopes da Silva and Storm van Leeuwen, 1978].
Some may interpret these multiple alpha rhythms as
evidence for multiple isolated networks (generators)
with different properties at different brain locations,
e.g., the purely local interpretation. Perhaps this is the
simplest explanation, but such application of Occam’s
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razor should be used cautiously. Here we take a
broader and more cautious view. We consider the
isolated sources (or local) interpretation to be a special
case of a more general picture consisting of local,
regional, and global mechanisms, in which interac-
tions between nonlocal sources may (or may not) be
an essential aspect of the dynamics, depending partly
on brain state. In particular, source oscillation frequen-
cies may or may not be partly determined by meso-
scopic (e.g., column) source interactions [van Rotter-
dam et al., 1982]. If such regional and global
interactions turn out to be negligible for experiments
conducted with electrodes of certain size and location
(determining the spatial scale of measurement), for
particular brain states or for certain animal species,
then the isolated sources explanation is correct for
these experimental conditions. If not, then regional or
global influences should be considered.

We use the term “local theory” specifically to indi-
cate networks in which fundamental time delays are
independent of system size, as in simple electric cir-
cuits. Thus, the term “local” may include cortical or
thalamic interactions with time delays caused mainly
by rise and decay times of postsynaptic potentials
[Wilson and Cowan, 1973; Freeman, 1975; 1992; van
Rotterdam et al., 1982; Lopes da Silva, 1999]. The term
“local” indicates that characteristic network frequen-
cies can, in theory, be predicted from physiologic mea-
surements in a small (local) tissue mass. We use the
term “global theory” to indicate that characteristic (or
resonant) frequencies depend on the entire neocortex/
cortico-cortical fiber system in which delays are
caused by finite propagation speeds of action poten-
tials [Nunez, 1974a, 1981], somewhat analogous to
standing waves in closed transmission line networks
and many other spatially extended systems [Nunez,
1995]. Thus, characteristic global frequencies depend
on system size. Our use of the terms “local” and
“global” is consistent with their use in various physi-
cal theories. By “regional” we mean intermediate net-
works in which both postsynaptic potential and ax-
onal delays are in the same general range [Silberstein,
1995b]. Such networks might involve long-range cor-
tical-cortical interactions, thalamocortical feedback, or
both.

Several mathematical theories indicate that within
the range of experimental error, both local and global
delays can produce oscillations with frequencies in the
range of human EEG frequencies. The theoretical
models have also suggested several (partly overlap-
ping) bases for other properties of EEG, including
relations between: (1) Frequency and postsynaptic po-
tential rise and decay times [Wilson and Cowan, 1973;

Lopes da Silva et al., 1974; Freeman, 1975, 1992; van
Rotterdam et al., 1982; Zhadin, 1984; Freeman and
Skarda, 1985; Nunez, 1989; Robinson et al., 1997,
1998a, 1998b; Wright and Liley, 1996; Liley et al.,
1999]; (2) Amplitude and frequency [Nunez, 1995,
2000a, 2000b; Lopes da Silva, 1999]; (3) Spatial fre-
quency and temporal frequency, e.g., wave dispersion
relations [Nunez, 1974b, 1981, 1995; van Rotterdam et
al., 1982; Ingber, 1985; Robinson et al., 1997, 1998]; (4)
Alpha maturation [Lopes da Silva et al., 1974; van
Rotterdam et al., 1982; Nunez, 1995, 2000a]; (5) Fre-
quency and brain size [Nunez et al., 1977; Nunez,
1981, 1995]; (6) Human and other mammalian EEG
[Lopes da Silva and Storm van Leeuwen, 1978; Nunez,
1995, 2000a, 2000b; Wright and Liley, 1996]; (7) Fre-
quency and phase or group velocity [Nunez, 1974b,
1995, 2000a, 2000b; Lopes da Silva and Storm van
Leeuwen, 1978; Burkitt et al., 2000]; (8) Local versus
global effects [Nunez, 1989, 1995, 2000a; Ingber, 1982,
1995; Jirsa and Haken, 1997; Robinson et al., 1997,
1998a, 1998b; Haken, 1999; Kelso et al., 1999]; (9) Fre-
quency and neurotransmitter action [Lopes da Silva,
1995; Silberstein, 1995b; Wright and Liley, 1996; Liley
et al., 1999]; (10) Brain state transitions [Nunez, 1995,
2000a, 2000b; Lopes da Silva, 1995; Silberstein 1995b;
Jirsa and Haken, 1997; Kelso et al., 1999].

Of particular note in supporting global views is that
unequivocal progressive phase shifts in anterior-pos-
terior and posterior-anterior directions across the
scalp have been observed in human alpha rhythm
[Nunez, 1995] and steady state visually evoked poten-
tials [Silberstein, 1995a; Burkitt et al., 2000]. The cor-
responding phase velocities closely match characteris-
tic cortico-cortical propagation speeds of 6–9 m/sec
[Katznelson, 1981; Nunez, 1995]. These data plus stud-
ies showing reduced alpha coherence in children with
incomplete myelination [Thatcher et al., 1986, 1987;
Srinivasan, 1999], in split-brain patients [Nunez, 1981]
and in agenesis of corpus callosum [Nielsen et al.,
1993; Koeda et al., 1995; Pilgreen, 1995] suggest an
important role for cortico-cortical fibers in EEG. In
addition, the negative correlation between alpha fre-
quency and head size (highly correlated with brain
size) provided early evidence for global effects on EEG
[Nunez et al., 1977].

Additional data on the likely role of cortico-cortical
fibers in EEG is provided by white matter tumors.
These tumors cause the production of irregularly
formed arrhythmic delta waveforms (0.5–2.5 Hz) at
scalp locations in the general vicinity of the tumor
[Gloor et al., 1968; Goldensohn, 1979a]. Delta activity
is generally not observed if the tumor is confined only
to gray matter. Delta activity may or may not occur
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with suppression of alpha rhythms. We are not sug-
gesting that EEG current sources are located in white
matter. Rather, it appears that white matter is in-
volved in determining both EEG coherence and fre-
quency of cortical source oscillations. It is generally
believed that delta activity is generated by cortical
tissue near the periphery of the tumor. White matter is
composed of cortico-cortical, thalamocortical and cal-
losal fibers [Brattenberg and Schuz, 1991]. The relative
importance of cortico-cortical and thamocortical fiber
destruction to the appearance of tumor-related delta
activity is not known. However, we note that in hu-
mans about 95–98% of the axons entering (or leaving)
the underside of any large region of neocortex are
cortico-cortical fibers [Braitenberg, 1977, 1978]. Only a
few percent are thalamocortical fibers.

The issue of relative importance of thalamocortical
and cortico-cortical fibers appears to be quite different
in lower mammals. It has been estimated that only
about 50% of the fibers entering (or leaving) the un-
derside of rat neocortex are cortico-cortical [Bratten-
berg, 1977, 1978; Katznelson, 1981; Nunez, 1995]. We
suggest that delays in cortico-cortical fiber propaga-
tion may play a global role in determining human
EEG frequencies. These frequencies are called global
because signal delays between pairs of cortical loca-
tions increase with separation distance up to t >
10–30 ms along the long myelinated cortico-cortical
fibers [Nunez, 1995]. A crude first guess for the lowest
modes of such spatially extended system with this
characteristic delay is vt ' 1, or ƒ ' 5–16 Hz [Nunez,
1981, 1995]. Much longer delays, implying frequencies
in the delta range, may occur if some fibers are unmy-
elinated or only partly myelinated, as appears to be
the case [Tomasch, 1954].

Another potential experimental connection to the-
ory involves studies of closed head injury patients
[Thatcher et al., 1998a, 1998b]. MRI, EEG, and neuro-
psychological measures were significantly correlated.
Increased T2 relaxation times in cortical gray matter
and white matter were correlated with a shift in rela-
tive EEG power to lower frequencies and reduced
cognitive performance. Increased T2 times were also
correlated with long-range (28 cm) coherence in-
creases and short-range coherence decreases. Gener-
ally, these data are consistent with the idea that head
injury somehow damages the ability of brains to form
local cell assemblies within the global synaptic action
field environment.

Physiologically based theory has predicted that in-
teractions across spatial scales are likely, implying that
local networks can strongly influence global dynamics
(bottom up) and that the global system can strongly

influence local networks (top down) [Ingber, 1982;
1995; Nunez, 1989, 1995]. The imagined dynamic sys-
tem may be likened to multiple social networks im-
mersed in a global culture, a system in which both
bottom-up and top-down influences determine dy-
namic behavior [Nunez, 1995, 2000a, 2000b]. This pic-
ture also directly addresses the so-called brain-bind-
ing problem, as nonoverlapping social (or neural)
networks can easily exhibit correlated behavior as a
result of top-down influences from the culture (or
synaptic action fields produced by the neocortical/
cortico-cortical fiber system).

An area of recent dynamic interest in EEG is chaos.
A number of reports of chaotic EEG signals have been
reported. However, proper identification of low di-
mensional chaos requires comparison of EEG data
with surrogate signals having the same power spec-
trum (but randomized phases) as the genuine data
[Theiler et al., 1992], and only a few EEG studies have
included this critical step. A comprehensive review of
this literature and study of new scalp and intracranial
(subdural) human alpha rhythm [Lopes da Silva et al.,
1997] suggests very little evidence for chaotic alpha
rhythms, except possibly in some exceptional short
bursts recorded subdurally. These authors suggest
that “most likely, alpha rhythms recorded with gross
electrodes correspond to complex signals that result
from mixing signals arising from different alpha
source generators, in such a way that even if the
underlying dynamics has chaotic components, the lat-
ter may be masked by dynamic noise.”

In connection with this picture of possible alpha
origins, we note simulations of local chaos imbedded
in noise [Ingber et al., 1996] or global deterministic
(top-down) influences [Ingber and Nunez, 1990;
Nunez and Srinivasan, 1993; Srinivasan and Nunez,
1993] in physical systems. In these examples, local
chaos was either masked or fully eliminated by top-
down influences. Spatially extended systems in which
global boundary conditions strongly influence local
properties appear to be of particular interest in this
context [Nunez, 1995]. Examples include nonlinear
physical systems where a symbiosis of temporal and
spatial structure occurs, or as expressed in one study
of a spatially extended complex system [Bishop et al.,
1983]: “Spatial patterns inhibit the temporal chaos that
occurs in the absence of spatial structure, but the
competing tendencies of temporal versus spatial struc-
ture can lead to a rich intermittency in space and time
. . . spatial coherence can be maintained even when the
temporal behavior of individual (spatial) modes be-
comes chaotic.
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The possible relevance of these complex nonlinear
phenomena to brain dynamics is largely unknown.
However, given the extreme complexity and intercon-
nectedness of brains, it appears wise to consider them
in attempts to find the physiological bases for EEG
[Ingber, 1982, 1995; Freeman and Skarda, 1985; Nunez,
1995, 1999, 2000a, 2000b; Tononi et al., 1994; Friston et
al., 1995; Tononi and Edelman, 1998; Haken, 1999;
Kelso et al., 1999].

2.8. Changes of brain state and the “zoo”
of EEG rhythms

A large variety of brain rhythms have been recorded
from human scalp, depending on subject and brain
state [Klass and Daly, 1979; Blume and Kalbara, 1995;
Niedermeyer and Lopes da Silva, 1999]. Taking into
account spectral methods and our modern under-
standing of spatial filtering by the head volume con-
ductor [Nunez, 1981, 1995], classical cortical rhythms
(ECoG) may be interpreted as follows:

1. The awake, resting ECoG shows substantial
waveform variations over the upper neocortex,
with “pure” (near sinusoidal) alpha rhythm more
usual in posterior regions and more complex
rhythms more evident in central and frontal re-
gions [Penfield and Jasper, 1954]. However, rel-
atively pure alpha rhythm (defined by visual
inspection before spectral analysis came to com-
mon use in EEG) has been recorded from almost
the entire upper cortical surface. Regions of alpha
production included frontal and prefrontal cor-
tex, excepting only regions close to the central
motor strip [Jasper and Penfield, 1949].

2. Our studies of scalp alpha rhythms recorded in
healthy, relaxed subjects show substantial power
in raw (reference) potential, dura image and
spline-Laplacian data at widespread scalp loca-
tions, including frontal scalp [Nunez, 1995;
Nunez et al., 1997, 1999]. Power in other fre-
quency bands (especially beta rhythm) is much
less evident on the scalp than on the cortex
[Pfurtscheller and Cooper, 1975; Kellaway, 1979;
Nunez, 1981], apparently because of the spatial
filtering effects discussed in Sections 3.2 and 3.3.

3. The data outlined above (1 and 2) suggest that
cortical rhythms in the relaxed waking state typ-
ically consist of a mixture of alpha rhythms with
substantial power at low spatial frequencies and
other rhythms (delta, theta, other alpha, beta, and
perhaps epileptic spikes) with spatial spectra
more dominant at higher spatial frequencies. Ear-

lier coherence studies of scalp data [Andrew and
Pfurtscheller 1996, 1997; Florian et al., 1998] and
our spherical harmonic analyses also suggest that
alpha rhythms may cover a range of low and
high spatial frequencies.

4. We interpret this mixture of cortical rhythms re-
corded in awake patients (together with the scalp
data) as evidence for combined local and global
brain dynamic processes, resulting from func-
tional segregation and integration, respectively
[Nunez, 1989; 1995; Ingber, 1995]. We suggest
that different brain states may reflect differences
between more locally dominated and more glo-
bally dominated dynamics [Silberstein, 1995b;
Petsche and Etlinger, 1998; Nunez, 2000a, 2000b].
Perhaps different states occur with different dy-
namic complexity, a measure that appears to be
maximum for intermediate states between locally
and globally dominated dynamics [Tononi et al.,
1994; Frsiton et al., 1995; Tononi and Edelman,
1998; Edelman and Tononi, 2000]. This general
description of state changes in terms of local
versus global dominance appears compatible
with other dynamic descriptions, e.g., phase tran-
sitions, bifurcations, and so on [Nunez, 1995;
Jirsa and Haken, 1997; Kelso et al., 1999]. How-
ever, our proposed general conceptual frame-
work is easily interpreted, robust, and readily
connected to a variety of quantitative theories.
For example, according to Penfield and Jasper’s
[1954] extensive studies of ECoG, “the normal
electrographic differentation between cortical ar-
eas is obliterated with anesthesia.”

Based mostly on scalp data, this general description
of transitions from a conscious to unconscious states
with anesthesia appears also to apply, at least in part,
to hypoxia, coma, some epilepsies, and (to a lesser
extent) normal deep sleep. Thus, the general local
versus global picture provides a theoretical entry
point that should facilitate study of the complex world
of brain dynamics in a more parsimonious manner
well into the future [Nunez, 2000b].

A fully satisfactory theory of alpha rhythms must
address the issue of how spatial-temporal properties
are changed by sensory input or brain state change,
e.g., as a result of neuromodulatory influences [Pil-
green, 1995; Lopes da Silva, 1995; Silberstein, 1995b].
For example, the local/global theory of Nunez
[Nunez, 1995, 2000a, 2000b], based partly on quasi-
linear standing waves of synaptic action, provides
semiquantitative predictions of abrupt frequency re-
ductions from alpha to delta ranges as a control pa-
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rameter reaches a critical value. In this model, distinct
global limit cycle modes of synaptic action modulation
are predicted. Depending on modulation depth, spa-
tial wavelength (roughly related to large-scale syn-
chrony) and locations of electrodes, these synaptic
field modulations may or may not be recordable as
EEG. Of course, such crude physiologic theory can
provide only rough ideas that, at best, apply to a
limited class of EEG phenomena.

A prolate spheroidal shell (roughly the shape of a
rugby football) provides a simple example of physical
standing waves [Morse and Feshbach, 1953], perhaps
having some common ground with putative global
synaptic modulation frequencies. A similar physical
phenomenon is Schumann resonance in the spherical
shell formed by the earth’s surface and the bottom of
the ionosphere [Jackson, 1975]. These are standing
electromagnetic waves with multiple resonant fre-
quencies determined by the velocity of light and the
radius of the earth. The standing waves occur as a net
result of interference of waves traveling away from
hundreds of near simultaneous lightning strikes (epi-
centers in EEG terminology).

The prolate spheroidal shell of size and shape ap-
proximating one brain hemisphere and wave propa-
gation speed roughly equal to the speeds of cortico-
cortical propagation provides a simple example of
resonant frequencies in a closed system. The following
preferred (or resonant) cortical synaptic modulation
frequencies (fundamental and overtones in Hz) may
be estimated as [9.1, 10.1], [15.7, 16.3, 18.1], [22.2, 22.6,
23.9, 26.0], [28.6, 29.0, 30.0, 31.7, 33.9], [35.1, 35.3, 36.2,
37.6, 39.4, 41.7] . . . and so on [Nunez, 1995, 2000a]. The
square brackets identify frequencies associated with
latitudinal spatial modes (l 5 1, 4), with frequencies
corresponding to longitudinal modes (m 5 1, l) in each
bracket. These numbers are based on a prolate sphe-
roidal shell with small eccentricity (not strictly valid
for genuine brains), but the physiologic parameters
are not known with sufficient accuracy to make abso-
lute frequency predictions closer than about a factor of
two. In any case, the general range appears a reason-
able match to EEG.

The main point is to demonstrate the general idea of
multiple global resonant modes, with higher modes
(e.g., beta and gamma) tending to be more closely
spaced. These higher modes are less likely to be dis-
tinguished experimentally. One reason is that smear-
ing of spectral peaks caused by brain nonstationary
can be expected in any EEG data recorded over peri-
ods of minutes or more, as normally required to obtain
significant statistical estimates. Another point is that
only some of these spectral peaks can be expected to

be observed in any particular experimental record,
depending on the spatial distribution of external in-
put, recording electrode pair, and so on [Katznelson,
1981; Nunez, 1995]. Most importantly, the frequencies
above are based on simple physical model for linear
and nondispersive waves. Serious EEG theory must be
physiologically based, but may retain some of the
general features of linear, nondispersive (physical)
standing waves [Nunez, 1974a, 1995].

Is there any experimental evidence for such global
modulations? The dip in spectral amplitude between
alpha and beta in Figure 1 is roughly consistent with
the gap between the l 5 1 and 2 modes of standing
waves in a spherical shell, a common but not universal
feature of EEG spectra. On the other hand, this phys-
ical metaphor provides no explanation for delta and
theta band activity, which could be caused by in-
creases in a control parameter in a quasi-linear version
of physiologic theory, locally dominated processes, or
fully nonlinear effects [Nunez, 2000a, 2000b]. In one
study, ECoG was recorded from subdural occipital
electrodes separated by 1.5 cm. A coherence spectrum
was obtained with the patient in the eyes closed, rest-
ing state [Zaveri et al., 1999]. Peaks in the coherence
spectrum were obtained at 8, 16, 22, 31, and 41 Hz,
plus several smaller peaks at intermediate frequencies.
These peaks may or may not be evidence for global
modulations of synaptic action. The frequency ranges
predicted by the metaphorical global model also bear
a rough correspondence to the low (l 5 1), medium
(l 5 2), and high (l 5 3 or 4) frequency resonance
curves obtained by driving the human visual system
with sine wave modulated light [Regan, 1989; Silber-
stein, 1995a; Nunez, 1995]. Again, we are not propos-
ing that neocortical dynamics is linear or otherwise
“simple,” but rather that such global modulations
could easily have a substantial influence on recorded
potentials.

More recently, high resolution estimates of human
scalp data have revealed complex, but quasi-stable
phase patterns, e.g., alternating regions, in phase and
180 degrees out of phase at the scale of several centi-
meters [Wingeier et al., 1999; Nunez, 2000b]. In Section
6, alpha data is examined in more detail to see if such
phase structure can be plausibly interpreted as wave
interference phenomena.

All theories attempting to model the vast complex-
ity of neocortical physiology are, at best, crude over-
simplifications of the genuine dynamics. We do not
claim that the data cited above verify any particular
model. Rather, we suggest that the general idea of
substantial global contributions (including standing
waves of synaptic action) to neocortical dynamics (in
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some brain states) is consistent with several disparate
sets of EEG data and with plausible physiologically
based theory. The main value of such models is to
focus on specific experimental methods that may fur-
ther illuminate EEG processes. For example, the stud-
ies cited above [Regan, 1989; Zaveri et al., 1999], po-
tentially supporting the existence of global modes,
were not designed for this purpose. Partly as a result,
critical questions were not addressed. For example, do
multiple ECoG coherence peaks with high statistical
significance occur over large (e.g., 15–25 cm) interelec-
trode distances, either in alpha or anesthesia states?
New studies can focus on such specific, model-related
issues.

3. RELATIONSHIP OF SYNAPTIC CURRENT
SOURCES TO CORTICAL AND SCALP

POTENTIALS

3.1. Dipole moment per unit volume at
mesoscopic scales

To illuminate connections between synaptic current
sources at small (microscopic) scales and macroscopic
potentials at the scalp, a formalism making use of an
intermediate (mesoscopic) scale is convenient. This
approach takes advantage of the columnar structure of
neocortex, believed to contain the dominant sources of
scalp potentials recorded without time averaging. The
description is readily generalized to synaptic action in
subcortical tissue if needed. For macroscopic measure-
ments, the “source strength” of a volume of tissue is
defined by its electric dipole moment per unit volume
[Nunez, 1981, 1990, 1995].

P(r9, t)5
1

W E E
W

E ws(r9, w, t)dW(w) (1)

Here dW(w) is the tissue volume element. s(r*, w, t) is
the local volume source current (microamperes/mm3)
near membrane surfaces inside a tissue volume with
vector location r*. w is the vector location of sources
within dW(w) as indicated in Figure 2. The current
dipole moment per unit volume P(r*, t) in a conductive
medium is fully analogous to charge polarization in a
dielectric [Plonsey, 1969; Jackson, 1975; Nunez, 1981;
Malmivuo and Plonsey, 1995]. Macroscopic tissue vol-
umes satisfy the condition of electroneutrality at EEG
frequencies. That is, current consists of movement of
positive and negative ions in opposite directions, but
the total charge in any mesoscopic tissue volume is

essentially zero [Schwan and Kay, 1957; Plonsey,
1969]. This point has caused substantial confusion in
the physiology literature [Nunez, 1981].

Cortical morphology is characterized by its colum-
nar structure with pyramidal cell axons aligned nor-
mal to the local cortical surface. Physiology also sup-
ports the columnar picture, e.g., correlations between
small electrode recordings taken normal to column
axes are typically much higher than correlations be-
tween recordings at different cortical depths [Abeles,
1982; Petsche et al., 1984]. Because of this layered
structure, it is often convenient to think of the volume
elements dW(w) as cortical columns (height ' 2–5
mm), as shown in Figure 2.

Figure 2.
Microcurrent (volume) sources at cell membranes s(r9, w, t) have
units microamperes/mm3 and depend on vector location w within
cortical column, located at r9, containing elemental volume ele-
ments dW(w). The sources are generally the result of synaptic and
action potential activity and include (passive) return membrane
currents. Microsources generate a dipole moment per unit volume
P(r9, t) in each column (or more generally, voxel), depending on
source magnitudes and distribution along the column axis. In this
multiscale formalism, the intermediate scale dipole moment P(r9,
t) can then be identified as the “meso-source” of the differential
scalp potential dV (r, r9, t). Total scalp potential V(r, t) is generally
the result of the integrated contribution from all columns (or
voxels), located at r*.
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For purposes of describing scalp potentials in terms
of synaptic sources, the choice of basic cortical column
diameter is somewhat arbitrary. Anything between
the minicolumn (' 0.03 mm) and macrocolumn (' 1
mm) scales appears acceptable to describe scalp po-
tentials [Nunez, 1990, 1995]. The dimensions of the
basic column should be at least three or four times
smaller than the closest distance to electrodes in order
that the usual dipole approximation (avoiding quad-
rupoles, octupoles, and so on) is valid. The minicol-
umn scale is defined in terms of lateral spread of axons
of inhibitory neurons [Szentagothai, 1978; Mount-
castle, 1979; Eccles, 1984]. At this relatively small scale,
simplifying assumptions about sources s(r*, w, t)
within each column are more easily justified, e.g., that
s(r*, w, t) is constant within each column in directions
perpendicular to column axes.

The macrocolumn scale is defined by the (intracor-
tical) spread of axon collaterals [Braintenberg, 1978;
Mountcastle, 1979]. The macrocolumn is essentially a
mesoscopic scale (between micro and macro, e.g., be-
tween synaptic sources and scalp potentials). While
this language may be somewhat confusing, it is forced
on us if the historical definition of macrocolumn is to
be retained. Each macrocolumn contains about 104

minicolumns, 106 neurons, and 1010 synapses. The
cortical surface consists of about 104 macrocolumns
[Nunez, 1995].

The sources s(r*, w, t) are generally positive and
negative because of local inhibitory and excitatory
synapses, respectively [Freeman, 1975; Lopes da Silva
and Storm van Leeuwen, 1979]. In addition to these
active sources, the s(r*, w, t) include passive mem-
brane (return) current required for current conserva-
tion. Dipole moment per unit volume P(r*, t) has units
of current density (microamperes/mm2). For the ide-
alized case of sources of one sign confined to a super-
ficial cortical layer and sources of opposite sign con-
fined to a deep layer, P(r*, t) is the diffuse current
density across the column [Nunez, 1981, 1990, 1995].
This corresponds roughly to superficial inhibitory
synapses and deep excitatory synapses, for example.
More generally, column source strength P(r*, t) is re-
duced as excitatory and inhibitory synapses overlap
along column axes. Increased membrane capacity
tends to confine the microsources s(r*, w, t) within
each column [Nunez, 1981, 1995] to produce smaller
effective pole separations, i.e., smaller meso-source
strengths P(r*, t). However, once this effect is fixed at
the mesoscopic scale (column), capacitive effects at
macroscopic scales may be neglected at EEG frequen-
cies [Schwan and Kay, 1957; Plonsey, 1969; Nunez and

Silberstein, 2000]. This provides still more motivation
to adopt the multiscale formalism.

Human neocortical sources may be viewed as a
large dipole sheet of perhaps 1,500 to 3,000 cm2 over
which the function P(r*, t) varies continuously with
cortical location r*, measured in and out of cortical
folds. In limiting cases, this dipole layer might consist
of only a few discrete regions where P(r*, t) is large,
e.g., focal sources. But, more generally, P(r*, t) is dis-
tributed over the entire folded surface. The question of
whether P(r*, t) is distributed or localized in particular
brain states has been the subject of controversy. It
should be noted that averaging of evoked potentials
(or PET or fMRI signatures) over trials can substan-
tially alter the nature of this issue. Such time averag-
ing strongly biases experimental measures toward (tri-
al to trial) time stationary sources, e.g., sources
confined to primary sensory cortex [Nunez, 1995;
2000b; Nunez and Silberstein, 2000].

Scalp potentials are believed to be generated by the
summed activity of P(r*, t), mainly from upper regions
of cortex. For convenience of description, we first con-
sider columnar source regions confined to a smooth
model cortex at fixed radial location in an idealized
spherical head. Future extensions of this model to
account for realistic folded cortex are considered in
Section 3.7. In the idealized spherical model, the vec-
tor dipole moment per unit volume P(r*, t) has only a
radial component (although this approximation is not
required for most of this description). Any distribu-
tion of this scalar “dipole source strength” P(u, f) over
the cortex may be expanded in a series of spherical
harmonic functions.

P(u, f, t)5O
l50

` O
m5 2l

l

plm(t)Ylm(u, f) (2)

Equation (2) is a generalized Fourier series where the
basis functions are the (orthogonal) spherical harmon-
ics Ylm(u, f) replacing sine and/or cosine terms of
common Fourier series [Morse and Feshbach, 1953;
Jackson, 1975]. The angles (u, f) are essentially (lati-
tude, longitude) on a spherical surface. The double
sum in Eq (2) is over “spatial frequencies” in the (u, f)
directions with indices (l, m).

The (generally unknown) functions plm(t) are deter-
mined by the dynamic properties of neocortical
sources. These are known as order parameters in the
field of complex systems theory or, more specifically,
the field of synergetics [Haken, 1983, 1999]. The gen-
eral idea of synergetics is that many disparate complex
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systems can be adequately approximated by a few
such order parameters, thereby greatly simplifying
quantitative descriptions. State changes in complex
systems generally involve new order, i.e., new sets of
order parameters [Friedrick et al., 1992; Fuchs et al.,
1992; Kelso, 1995]. An example of such state change is
the switch from out-of-phase to in-phase finger tap-
ping in response to an auditory stimulus [Kelso et al.,
1999]. The measured MEG dynamics in this study was
described as a competition between two spatial modes
(the spherical harmonics used here or spatial functions
determined by principal components analysis or other
criteria). The time-dependent coefficients of these
modes, analogous to our plm(t) functions, were the
order parameters. One order parameter dominated
the pretransition state and oscillated with the stimulus
frequency. A second order parameter, with twice the
stimulus frequency, dominated the posttransition
state. A theoretical model, based on a combination of
local and global dynamics, was able to reproduce
essential features of the observed MEG dynamics
[Jirsa and Haken, 1997].

Regardless of the nature of the underlying neocor-
tical dynamics, Eq (2) is general in the sense that it
applies to localized sources, distributed sources, or
anything in between. Furthermore, Eq (2) applies to
linear or nonlinear dynamic processes, as discussed in
[Haken, 1983; Nunez, 1995; Kelso et al., 1999]. The
plm(t) are functions that weigh different parts of the
spatial spectrum differently. Widespread synchronous
sources are generally described accurately by a rela-
tively small number of terms in Eq (2), i.e., the plm(t)
tend to be small for large l and m. More focal sources
require more terms in the sums, i.e., more contribution
from higher spatial frequencies.

3.2. Spatial filtering of cortical source activity by
the head volume conductor

EEG potentials are spatially low-pass filtered be-
tween neocortex and scalp. The filtering is caused by
the physical separation of cortical sources and sensors
and by passive spread of currents by tissues in the
head volume conductor, especially skull having an
average electrical resistivity estimated to be roughly
80 times that of brain or scalp tissue [Rush and
Driscoll, 1968, 1969; Nunez, 1981]. Potentials recorded
with intracranial electrodes may also be spatially fil-
tered by similar effects but typically to a much lesser
degree. Rather, nonzero electrode size often deter-
mines the high spatial frequency cut-off. By contrast,
electrode size has minimal effect on scalp potentials,

which have undergone severe spatial filtering by the
volume conductor.

It is readily shown that the outer surface (scalp)
potential generated by the source function P(u, f, t)
may be expressed [Srinivasan et al., 1996, 1998].

V(u, f, t)5O
l50

`

Tl O
m5 2l

l

plm(t)Ylm(u, f) (3)

Here, Tl is the spatial transfer function of the spherical
volume conductor. It depends on the resistivities and
radii of spherical surfaces, e.g., brain, CSF, skull, and
scalp, independent of frequency in the EEG range. The
scalp surface Laplacian, involving second spatial de-
rivatives of V(u, f, t) with respect to u and f on a
sphere of radius R may be expressed similarly to Eq
(3), but with transfer function Tl replaced by l(l 1 1)Tl,
that is

L(u, f, t)5
1
R2 O

l50

`
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plm(t)Ylm(u, f) (4)

Comparison of Eqs (3) and (4) shows that the time
dependencies of scalp potential and Laplacian are
both obtained by linear superposition of dynamic
source behavior plm(t) but with different weighting
coefficients reflecting different spatial filtering by the
head volume conductor. This formalism involving lin-
ear superposition applies to both linear and nonlinear
systems; however in nonlinear systems, the order pa-
rameters plm(t) will typically satisfy coupled (between
different l, m) nonlinear differential equations. The
weighting coefficients (transfer functions Tl) are inde-
pendent of temporal frequency in the EEG range. The
scalp potential and Laplacian transfer functions are
plotted versus the spherical harmonic order l in Figure
3 for the case of radial dipoles at fixed depth. For /m/
small, latitudinal wave number or spatial frequency k
on a spherical surface is approximately related to the
l index and sphere radius R by

k >
l

~2p!R (5)

Here, spatial frequency is expressed in cycles/cm if
the factor (2p) is included in the denominator or cm-1

if not included. For example, on a spherical cortex of 8
cm radius, l 5 8 corresponds to a wave number k > 1
cm-1 or a spatial wavelength of 2p cm. The longitudi-
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nal (f ) spatial frequency index /m/ in the orthogonal
expansion Eq (2) is limited to latitudinal (u) index l (so
that the resulting eigenfunctions of the Laplacian op-
erator are finite everywhere on the sphere). This fea-
ture of spherical harmonics allows concise expression
of spatial filtering by the head volume conductor, i.e.,
in terms of only the l index. Figure 3 shows the ex-
treme spatial filtering of (raw) unprocessed scalp po-
tentials, which together with reference electrode dis-
tortions and sparse spatial sampling, accounts for the
very poor spatial resolution of conventional EEG.

3.3. Differences between EEG and ECoG
waveforms and spectra

It has been long appreciated that scalp EEG and
underlying ECoG (cortical) waveforms are often quite
different [Penfield and Jasper, 1954; Goldensohn,
1979b]. For example, the ECoG may contain epileptic
spikes not observed at the scalp [Ebersole, 1997]. Or,
the ECoG may exhibit substantially more beta activity
than the corresponding scalp EEG [Pfurtscheller and
Cooper, 1975; Kellaway, 1979]. Differences in EEG
waveforms (and temporal spectra) between cortex and
scalp cannot be explained by passive volume conduc-
tion effects because tissue conductivities (and as a
result, the transfer function Tl) are approximately in-
dependent of temporal frequency over the normal
range of EEG frequencies [Schwan and Kay, 1957].
This was demonstrated explicitly by Cooper et al.
[1965] who showed that the attenuation of potential

between cortex and scalp due to implanted dipole
sources is independent of source frequency in the EEG
range.

Differences in temporal frequency spectra between
cortex and scalp are plausibly explained as by-prod-
ucts of spatial filtering by the volume conductor in
dynamic brain states where cortical source dynamics
tends to associate temporal and spatial frequencies
[Nunez, 1981, 1995]. This association would not be
expected in a brain medium conforming to the simple
view, often expressed in the EEG literature, of isolated
EEG generators. However, in nonlinear dynamic
physical media with spatial extent (bearing some com-
mon ground with neocortex), a large variety of dy-
namic behavior is possible caused by interactions be-
tween current sources (Nunez 1995; Lopes da Silva,
1999]. One obvious example is provided by physical
wave phenomena. In the case of physical waves, tem-
poral frequency nearly always increases with spatial
frequency. For electromagnetic waves in a vacuum or
simple sound waves, temporal frequency is propor-
tional to spatial frequency. With other waves (e.g.,
transmission line, water, plasma, quantum), the dis-
persion relation (the equation relating spatial and tem-
poral frequency) is more complicated, but temporal
frequency still tends to increase with spatial fre-
quency. The temporal Fourier transform of scalp po-
tential Eq (3) is given by

V(u, f, v)5O
l50

`

Tl O
m5 2l

l

plm(v)Ylm(u, f) (6)

The Fourier transform of the Laplacian L(u, f, v) fol-
lows similarly from Eq (4). Suppose (for what ever
physiological reasons) neocortical dynamic behavior
tends to associate higher temporal frequencies with
higher spatial frequencies, say over the alpha, beta
and gamma ranges as reported by Nunez [1974b] and
Shaw [1991] for the resting alpha state in humans. This
means that the Fourier transformed coefficients plm(v)
in Eq (6) with higher order (larger spatial frequencies
l, m) tend to have more relative contributions at tem-
poral frequencies v in the higher alpha, beta, and
gamma bands. But the effect of the volume conductor
transfer function Tl is to filter out high spatial frequen-
cies between cortex and scalp, associated by dynamic
processes in neocortex to high temporal frequencies.

In strongly nonlinear systems with substantial in-
teractions between different regions (as in neocortex),
a large variety of relations between spatial and tem-
poral frequency is possible. For example, such systems

Figure 3.
The spatial transfer functions 4Tl (potential) and l(l11)Tl (Lapla-
cian) for a four-sphere volume conductor model of the head,
defined by Eqs (3) and (4). Radial dipole source location is 7.8 cm.
Radii of spherical shells are: brain (8.0), CSF (8.2), skull (8.7), and
scalp (9.2). Conductivity ratios: brain/CSF (0.2), brain/skull (80.0)
and brain/scalp (1.0).
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may exhibit turbulence (spatial-temporal chaos) rather
than quasi-linear wave phenomena or only temporal
chaos. Perhaps turbulent dynamic brain states corre-
spond to generalized seizures, for example. Very little
is known about the detailed spatial-temporal charac-
teristics of human EEG. A reasonable conjecture is that
such relations are very complicated and change with
brain state. However, independent studies of human
scalp alpha rhythm have demonstrated robust rela-
tionships between spatial and temporal frequency for
frequencies within the alpha band [Nunez, 1974b,
1981, 1995] and for frequencies larger than the alpha
peak frequency, i.e., about 10–30 or 40 Hz [Shaw,
1991; review in Nunez, 1995]. These studies indicate
that higher spatial frequencies tend to occur with
higher temporal frequencies (at the scale of scalp re-
cordings) in the normal resting “alpha state” of hu-
mans. We have recently reconfirmed this result by
calculating spherical harmonic spectra at different
temporal frequencies with 131-channel recordings of
spontaneous EEG.

To demonstrate that temporal filtering between cor-
tex and scalp is an indirect result of spatial filtering by
the volume conductor, an example waveform was
constructed to represent simulated ECoG. In Figure 4,
the upper waveform consists of 51 closely spaced fre-
quency components with amplitudes inversely pro-
portional to square root of frequency. Spikes occur in
this record every few seconds when distinct wave-
forms are synchronous such that linear superposition
produces very short periods with large amplitudes.
This may or may not be similar to physiological mech-
anisms underlying genuine epileptic spikes, but this
issue does not preclude our arguments here. The
lower plot shows the corresponding simulated scalp
potential (with scale change), obtained as follows: As-
sume that cortical dynamics satisfies the linear disper-
sion relation, i.e., spatial frequency is proportional to
temporal frequency. Use the transfer function of the
volume conductor model, shown in Figure 3, to spa-
tially filter the simulated ECoG. The spike is much less
evident in the simulated scalp record and might not be
recognized as a spike in clinical EEG.

Examples of temporal filtering of physical standing
waves as a byproduct of spatial filtering are shown in
[Nunez, 1995, Chap. 9]. While these examples proba-
bly represent, at best, vast oversimplifications of com-
plex neocortical dynamic behavior, they provide a
rough idea of why scalp EEG can look so different
from the underlying ECoG with no passive temporal
filtering by tissue. Similar analyses can be directed to
the different measurement scales of intracortical re-
cordings themselves, because of different size elec-

trodes. The measured dynamics of EEG can be very
sensitive to spatial scale.

3.4. Amplitude differences between
EEG and ECoG

The linear scale of an EEG measurement refers to
the cube root of the volume of tissue (or square root of
cortical area) to which the measurement applies. Scalp
measurements of raw EEG apply to weighted aver-
ages of neural activity at the scale of at least several
cms (e.g., several tens of cm2 of gyri surface). This has
been studied with a simulation of radial dipole
sources uniformly distributed over the upper (inner)

Figure 4.
(Upper) A waveform composed of 51 unequally spaced frequency
components (roughly 10–175 Hz) with pseudorandom phases
simulating an epileptic spike recorded on the dura surface (ECoG).
(Lower) The corresponding spatially filtered waveform simulating
scalp potential. Obtained from the transfer function Tl and the
assumption that temporal frequency is inversely proportional to
spatial frequency (as in linear, nondispersive waves). Note scale
change. There is no temporal filtering by the volume conductor
(consistent with experimental evidence). Rather, the temporal
filtering is a byproduct of spatial filtering.
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sphere of concentric spheres models [Nunez et al.,
1997]. In this idealized model, only about half the
contribution to potentials measured by an electrode at
the “north pole” were generated by sources within a
surface distance of 3 cm from the electrode center. The
other half contribution to scalp potential came from
sources over the entire upper hemisphere (3–14 cm
from the electrode center). The short explanation for
this is that while sources close to an electrode make
the largest individual contributions to potential, the
number of distant sources is much larger if sources are
widely distributed. A large number of weaker source
contributions can be as large or larger than a small
number of stronger contributions, an effect substan-
tially enhanced by field spreading in the head volume
conductor, especially skull.

A four concentric spheres model of the human head
may also be used to estimate the ratio of dura to scalp
potential [Nunez, 1981, 1995]. Estimates of this ratio
for three different head models are plotted versus the
area of synchronous gyri source activity in Figure 5.
Although the details of these estimates depend on
model assumptions as expected, the general idea that
large regions of synchronous source activity are
weakly attenuated between dura and scalp is correctly
predicted by spherical models. Ratios of roughly 2–6
have been widely reported for widespread cortical
activity [Penfield and Jasper, 1954; Abraham and Aj-
mone-Marsan, 1958; Cooper et al., 1965; Goldensohn,
1979b; Nunez, 1981]. By contrast, the attenuation fac-
tor for focal cortical spikes can be 60 or more. We have
found minimal quantitative information on the atten-
uation factor as a function of active cortical area; the
only two experimental points providing both attenu-
ation and corresponding cortical surface of which we
are aware are the triangles in Figure 5. The arrow
corresponds to the general clinical observation that a
spike area of at least 6 cm2 must be synchronously
active in order to be observed on the scalp, or at least
identified as a “spike” clinically [Cooper et al., 1965;
Ebersole, 1997]. This point corresponds roughly to the
steep upturn in the curves of Figure 5, providing
addition confidence in the spherical head models.

Figure 5 has important implications for changes in
intermediate range and long-range phase synchrony
of cortical sources on scalp potential amplitudes. Con-
sider a hypothetical cortex where phase synchrony
spreads over time, starting with a synchrony scale
(square root of synchronous area) of less than 1 cm to
more than 4 cm. From the exponential parts of curves
in Figure 5, we expect large increases in amplitude
between the 1–2 cm scales, but minimal amplitude
changes at scales larger than about 4 cm. Thus, we

might anticipate transitions between brain states for
which long-range coherence (in some frequency band)
can either increase or decrease independent of scalp
amplitude, an effect reported for a variety of mental
tasks [Petsche and Etlinger, 1999]. On the other hand,
we expect intermediate range (, 1 or 2 cm) synchrony
changes to result in large scalp amplitude changes, as
shown in simulations [Nunez, 1995].

3.5. Multiple spatial scales and the fractal-like
character of brain dynamics

There is still another way in which spatial filtering
dictated by experimental choices can influence mea-
sured dynamics. Neocortical morphology exhibits a
hierarchical structure, composed of neurons within
microcolumns within cortico-cortical columns within
macrocolumns within lobes [Mountcastle, 1979;
Eccles, 1984; review in Nunez, 1995]. Complex nonlin-
ear physical systems often exhibit dynamic behavior
that is very scale-dependent, even in the absence of
fixed multiscale physical structure to support the hi-
erarchical dynamics [Wilson, 1979; Haken, 1983; Ma,
1985; Ingber, 1982, 1995]. Scale-dependent neocortical
dynamics has been often reported [Abeles, 1982;
Petsche et al., 1984; Steriade, 1999]. The physical struc-
ture of neocortex together with its potential for highly

Figure 5.
Theoretical estimates of the ratio of dura potential to scalp po-
tential, expressed as a function of “synchronous area” of cortical
sources. The three curves were generated by assuming cortical
dipole layers of constant (mesoscopic) sources in the head model.
The assumed skull-to-brain (or scalp) resistivity ratios are shown
(40, 80, 120), bracketing the usual estimate of 80. The two trian-
gles are experimental points [Abraham and Ajmone-Marsan, 1958;
Goldensohn, 1979b]. The large arrow near the steep upturn in the
curves indicates the clinical observation that epileptic spikes must
be synchronous over at least 6 cm2 of cortex to be recognized on
the scalp [Cooper et al., 1965; Ebersole, 1997].
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nonlinear interactions strongly suggests scale-depen-
dent dynamics [Ingber, 1982, 1995; Nunez, 1981, 1995;
Lopes da Silva et al., 1997].

This scale dependence is partly demonstrated in the
simulations of Figures 4 and 5. EEG recorded from the
scalp is a measure of very large-scale dynamics. ECoG
represents dynamics mainly at smaller scales. But,
because all electrodes measure potentials averaged
over their tip volumes, electrodes on the dura or in-
side cortex may also record quite different dynamics,
depending on electrode size [Abeles, 1982; Petsche et
al., 1984; review in Nunez, 1995]. To illustrate this, we
extended the spatial filtering idea to the case of an
electrode on the dura surface. The spatial transfer
function is plotted versus the spherical harmonic in-
dex l in Figure 6; this is an extension of the volume
conduction filtering shown in Figure 3. For the low
spatial frequencies observed on the scalp [roughly l ,
5), electrode size is of minimal importance. However,
a dura electrode of diameter d is only able to record
dynamic activity at spatial wavelengths longer than
about 2d. On a sphere (brain) of 8 cm radius, l 5 40
corresponds to a wavelength of 1.2 cm. As shown in
Figure 6, an electrode of diameter d 5 1.5 cm (lower
curve) cannot “see” this activity at 1.2 cm or shorter
wavelengths. The smaller electrode with diameter d 5
1 cm is able to record activity near the 1.2 cm wave-
length, but with only about half the sensitivity of a
point electrode.

Dura potential, scalp potential and scalp Laplacian
waveforms all involve linear combinations of the

source coefficients plm(t), as indicated in Eqs (3) and
(4). However, the weighting of these source terms can
be quite different for different experimental measures,
including different references and different electrode
sizes. For this reason, measured neocortical dynamics
can be a sensitive function of experimental method.
Different dynamics occurs at different spatial scales.
We challenge the notion (sometimes implicit in EEG
literature) that any particular scale (e.g., dura record-
ings with electrodes of a particular size) can be con-
sidered the gold standard to measure the dynamic
behavior of neocortical function. Of course, if one is
particularly interested in focal activity (e.g., in epi-
lepsy surgery patients), dura potential distribution
contains much more high-spatial frequency content
than scalp potential and will provide much more ac-
curate localization of focal sources. However, other
phenomena (e.g., cognition) may be more strongly
correlated with large-scale dynamics, e.g., the very
large scales of scalp EEG. In this case, ECoG may be so
dominated by small-scale dynamics that the large-
scale is not observed, essentially “failing to see the
forest for the trees.” This failure to observe large-scale
dynamics will generally be more pronounced for
smaller intracranial electrodes, which can be expected
to record mainly large amplitude local potentials
[Abeles, 1982].

3.6. Multiscale coherence measures

Subdural human coherence measured with 2-mm
diameter electrodes typically falls to zero at all fre-
quencies for electrode separations greater than about 2
cm [Bullock et al., 1995]. Such data may appear to
conflict with large human alpha coherence estimates
even with all reference and volume conduction effects
removed [Nunez et al., 1997, 1999]. We suggest that
such differences are easily explained by the large dif-
ferences in spatial scales distinguishing extracranial
and intracranial measurements. Dura image or spline-
Laplacian methods are believed to estimate coherence
between synaptic action in pairs of cortical regions
occupying perhaps 10–30 cm2 of cortical surface,
while standard potential-based coherence estimates
correspond to pairs of surface areas of perhaps 100
cm2 [Nunez, 1995]. By contrast, intracranial coherence
estimates typically apply to millimeter scales. Coher-
ence between large neural populations may be large,
while at the same time, coherence between specific
subpopulations is close to zero. Again, picturing met-
aphorical human activity at the multiple scales of
neighborhoods, cities, and nations helps to visualize
such complex dynamic behavior.

Figure 6.
Theoretical dura electrode sensitivity is plotted as a function of
spherical harmonic order l for two electrode diameters, d 5 1 and
1.5 cm. Sensitivity (vertical axis) is normalized with respect to its
value for a point electrode. Curves are obtained by averaging
potentials generated by different spherical harmonic functions (of
source distribution, as given by Eq [2]) over the surface area of the
electrode.
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3.7. Transformations between folded cortical
surfaces and topologically equivalent spheres

In Sections 3.1 and 3.2, cortical source strength (di-
pole moment per unit volume) was expressed as a
sum of spherical harmonic functions, most appropri-
ate for sources in a spherical shell. A similar expansion
may be applied to realistic cortical surfaces of individ-
ual subjects that have been mapped onto a sphere
[Fischl et al., 1999]. Such transformations were al-
lowed without need of surface cuts because the corti-
cal surface of each hemisphere is topologically equiv-
alent to a sphere (after closing the surface medially
across subcortical structures). Application of these
methods to models of dynamic processes will require
further developments but appear feasible. In particu-
lar, dynamics might be described for two (spherical)
cortical hemispheres by expansions similar to Eq (2).
Spherical shells representing cortex would be coupled
through a model of the corpus callosum. Sampling of
this dynamics with EEG would occur on a much larger
surface (scalp), obtained by appropriate transforma-
tion of the genuine head surface containing the two
smaller cortical spheres.

4. HIGH-RESOLUTION EEG

4.1. Spline-Laplacian and dura imaging

A convenient definition of scalp spatial resolution is
the minimum distance between cortical sources for
which two sources can be distinguished from a single
source [Wikswo and Roth, 1988; Nunez, 1995]. This
distance is substantially larger than dipole localization
accuracy, which normally refers to accuracy for a sin-
gle implanted source. For example, 1 or 2 cm accuracy
has typically been reported for implanted dipoles lo-
cated with sophisticated EEG or MEG methods [Co-
hen et al., 1990; Leahy et al., 1999]. However, the
number and nature of sources underlying EEG are
nearly always unknown, and the spatial resolution
obtained with the conventional 10/20 EEG methods is
typically in the 6–10 cm range [Nunez et al., 1991,
1993, 1994]. This implies that one cannot distinguish
spatial patterns at scales smaller than 6–10 cm with
conventional EEG. Simply increasing the number of
electrodes adds very little to accuracy in the absence of
computer measures either to locate equivalent dipoles
or, more generally, to improve spatial resolution by
reducing reference and volume conduction effects. Be-
cause of the very modest increase in information yield
and the extra time involved in electrode placement,
clinical electroencephalographers have often resisted

implementation of dense electrode arrays. However,
when high-resolution algorithms [Gevins and Cutillo,
1986, 1995; Nunez and Westdorp, 1991; Nunez et al.,
1993, 1994; Nunez, 1995] are combined with high-
density electrode arrays, the amount of detailed infor-
mation available in the EEG can be substantially in-
creased. In special cases where EEG sources can be
accurately characterized by a few isolated dipoles,
combined high-electrode density and sophisticated al-
gorithms can provide accurate dipole localization
[Mosher et al., 1993].

Two general approaches have been applied to im-
prove EEG spatial resolution, the spline-Laplacian and
dura imaging. As shown in Figure 3, the transfer
function of the analytic surface Laplacian provides a
broader and often more satisfactory spatial frequency
response than raw potential. Furthermore, the Lapla-
cian is independent of head model (except for surface
shape) and entirely free of reference effects [Hjorth,
1975; Nunez, 1981]. Simulation studies over the past
13 years have shown that spherical and three-dimen-
sional spline approximations to surface Laplacians ob-
tained with 64 or more electrodes provide reasonably
accurate and robust estimates of inner surface poten-
tial patterns at scales larger than about 2–4 cm. Posi-
tive dura potentials are closely related to negative
scalp Laplacians (relative not absolute magnitudes).
Such simulations have studied uncorrelated noise and
(correlated) artifact generated outside the electrode
array using spherical and more realistically shaped
head models [Perrin et al., 1987, 1989; Nunez, 1988,
1990; Nunez et al., 1991; Law et al., 1993; Srinivasan et
al., 1996, 1998; Babiloni et al., 1996].

The second approach, dura imaging, depends on a
concentric spheres [Sidman, 1991; Cadusch et al., 1992,
Silberstein, 1995a; Edlinger et al., 1998] or finite ele-
ment models of the head [Le and Gevins, 1993; Gevins
et al., 1991, 1994; Le et al., 1994]. Dura imaging meth-
ods have been presented with several labels (spatial
deconvolution, software lens, deblurring, cortical im-
aging). But, such algorithms are all based the same
principle. In a closed volume conductor, there is a
unique relationship between outer surface potential
and potential on an inner closed surface, provided that
no current sources exist between the surfaces [Ya-
mashita, 1982]. While the general inverse problem of
locating brain sources from scalp potentials is funda-
mentally nonunique, the problem of calculating dura
potential from scalp potential distribution is limited
only by engineering issues, e.g., accuracy of the vol-
ume conductor model, density of spatial sampling,
and noise.
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The issues of head model error, sampling, and noise
are partly addressed by most dura imaging algorithms
(including the Melbourne version, Cadusch et al.,
1992) by using an adjustable smoothing parameter. As
the smoothing parameter is increased, less detail is
accepted in spatial patterns. The rejected detail may
not be reliable, depending on experimental circum-
stances. The New Orleans spline-Laplacian [Nunez,
1988; Law et al., 1993; Srinivasan et al., 1996, 1998] has
inherent spline-based smoothing based on choosing
the order of the spline to match (approximately) the
volume conductor and electrode density [Perrin et al.,
1987]. As a consequence of choosing a (conservative)
third-order spline in three spatial dimensions, high
spatial frequencies are severely attenuated by the New
Orleans spline-Laplacian. When the Melbourne dura
image smoothing parameter is set in the range 0–10-9,
estimated dura potential patterns closely match those
of the New Orleans spline-Laplacian. These engineer-
ing details are very important, but unlike the circum-
stance of true inverse solutions like dipole localiza-
tion, they do not provide fundamental limitations on
accuracy. For this reason, progressively more accurate
high-resolution EEG methods to estimate dura poten-
tial can be expected as head models are improved. But,
even with today’s models, accurate dura imaging of
somatosensory evoked potentials separately recorded
from cortical surface has been achieved using dense
scalp electrode arrays [Gevins et al., 1994; van Burik,
1999].

4.2. Simulations: head model

A four-concentric spheres theoretical head model
simulates scalp surface potentials caused by distrib-
uted cortical gyri sources. Simulated gyri rather than
sulci sources were adopted here partly for conve-
nience, but also because contributions to most EEG
phenomena by distributed gyri sources are believed to
be substantially larger than contributions by sulci
sources [Nunez, 1981, 1995; Nunez and Silberstein,
2000].

An example source distribution is shown in Figure
7 (upper left). Filled spaces indicate positive sources,
i.e., positive ends of dipoles or synaptic currents flow-
ing out of local membranes near outer cortical surface.
Empty spaces indicate negative sources. Magnitudes
vary with location (not shown). The corresponding
outer surface (scalp) potential was calculated at 131
locations and plotted using a standard MATLAB soft-
ware routine [MathWorks, Inc., Natick, MA, upper
right). These outer surface locations correspond to our
experimental electrode positions projected to the sur-

face of a best-fit sphere. Solid lines indicate positive
and dashed lines indicate negative isopotentials. The
131 surface potentials were submitted to the New
Orleans spline-Laplacian and Melbourne dura imag-
ing algorithms. These algorithms provide indepen-
dent estimates of inner surface (dura) potential at the
131 electrode locations.

Figure 7.
Simulation study using cortical source distributions at radial loca-
tion 7.8 cm, each consisting of 3,602 randomly clumped dipole
sources. Similar source patterns were used to construct parts 1–3
of Table I. For each source distribution, outer surface potentials
were calculated at 131 locations corresponding to electrode po-
sitions of EEG experiments. Forward solutions were based on the
four-sphere model used in Figures 3–6. Inner surface (dura) po-
tentials were estimated with the New Orleans spline-Laplacian
(multiplied by negative sign, lower left) and Melbourne dura image
algorithm with zero smoothing parameter (lower right). Point-by-
point comparisons with actual inner surface potential at 131 dura
locations were used to obtain correlation coefficients. Shell radii
used by the three-sphere dura imaging algorithm were 7.9, 8.45,
and 9.2 cm, and conductivity ratios were brain/skull (80) and
brain/scalp (1). Spline-Laplacian estimates of dura potential are
independent of head model, except for the assumption of a spher-
ical scalp.
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Contour plots of dura potential estimated with the
spline-Laplacian (lower left) and with the dura imag-
ing algorithm (lower right) and are shown. The actual
inner surface potential was also calculated directly
from source distribution. By both visual inspection
and the correlation coefficients listed under each fig-
ure, the two high-resolution methods clearly yield far
more accurate estimates of dura potential than raw
scalp potential. Correlation coefficients between inner
surface potential (dura potential calculated directly
from the source distribution) and the inner surface
potential estimated from sampled outer surface poten-
tial were obtained from point-by-point comparisons at
131 inner surface locations for 100 different source
distributions (Table I, Group 1). These correlation co-
efficients also apply approximately to predicted corti-
cal source distribution, provided it is assumed in ad-

vance that all sources are radial dipoles at fixed depth
(thereby providing for unique solutions to the con-
strained inverse problem).

For each of Groups 1–3 in Table I, 100 different
source distributions were generated. Each source dis-
tribution involved 3,602 radial dipoles of strength P(u,
f) representing neocortical gyri source activity at
roughly the macrocolumn scale (several mm). For-
ward solutions were calculated from the four-sphere
head model. In Group 1, dura image estimates based
on a three-sphere head model (no CSF layer) with
brain to skull conductivity ratio equal to 80 were
obtained from the 131 surface samples for each source
distribution. A similar procedure yielded dura poten-
tial estimates by the spline-Laplacian algorithm.
Group 1 simulations assess the combined effects of
limited spatial sampling and imperfect head model
(CSF was included only in forward solutions). For
practical purposes, these are essentially perfect fits
and there is no obvious reason to choose one method
over the other. Another comparison is between 64-
and 131-channel high-resolution methods. With 64
channels, correlations between estimated and actual
inner (dura) surface potentials were typically in the
0.80–0.85 range with zero noise [Nunez et al., 1993].
This range may be compared with the average corre-
lation of 0.96, obtained with 131-channel simulations,
shown in Group 1 of Table I.

For Group 2 correlation coefficients, ratios of brain
to skull conductivity were varied randomly (uniform
distribution) over the range 40–120, bracketing the
commonly cited ratio 80 [Rush and Driscoll, 1968,
1969; Nunez, 1981]. Raw simulated scalp potential was
only moderately correlated with dura potential (r >
0.6) even though no reference effects were included in
this simulation. Other studies have shown that refer-
ence effects are typically substantial [Nunez, 1981;
Nunez et al., 1991], so the advantage of the spline-
Laplacian is underestimated by this comparison. Both
simulated spline-Laplacian (r > 0.96) and dura images
(r > 0.96), estimated only from scalp data, were
strongly correlated with dura potential. Earlier simu-
lations using finite element forward solutions indi-
cated that accuracy is not substantially degraded by
nonspherical surface geometry [Yan et al., 1991; Cao
and Nunez, unpublished data].

Large variations in local skull resistance (caused by
some combination of thickness and resistivity varia-
tion) can fool interpretation of data obtained with any
EEG method. However, many EEG applications, espe-
cially those concerned with cognitive processing, are
primarily concerned with robust changes in large-
scale (several cms) spatial-temporal dynamics be-

TABLE I. Correlation coefficients for various dura
measures using both simulated scalp potentials and

EEG data

Correlation
Coefficient

1. Simulations: 100 Source
distributions with perfect
skull model, imperfect CSF

Spline-Laplacian/Inner Surface 0.965 6 0.010
Dura Image0/Inner Surface 0.957 6 0.012
Spline-Laplacian/Dura Image0 0.986 6 0.006

2. Simulations: 100 Source
distributions with skull
resistivity variations (40 to
120)

Spline-Laplacian/Inner Surface 0.963 6 0.010
Dura Image0/Inner Surface 0.957 6 0.014
Spline-Laplacian/Dura Image0 0.983 6 0.007

3. Simulations: 100 Source
distributions with 15% noise
added to surface potentials

Spline-Laplacian/Inner Surface 0.736 6 0.082
Dura Image0/Inner Surface 0.692 6 0.087
Dura Image9/Inner Surface 0.835 6 0.030
Spline-Laplacian/Dura Image0 0.970 6 0.006

4. EEG data: 600 time slices of
alpha rhythm

Spline-Laplacian/Dura Image0 0.950 6 0.017
5. EEG data: Twenty 1-sec epochs.

Phase estimates with and
without 15% noise added to
raw data

Spline-Laplacian clean/noise 0.950 6 0.040
Dura Image0 clean/noise 0.952 6 0.032
Dura Image9 clean/noise 0.978 6 0.015
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tween brain states. For example, state changes corre-
sponding to changes in amplitude, phase, coherence,
or covariance patterns are of interest [Gevins and
Cutillo, 1986, 1995; Rapplelsberger and Petsche, 1988;
Silberstein et al., 1990; Gevins et al., 1991, 1994; Petsche
et al., 1993, 1997; Silberstein, 1995a; Nunez et al., 1997,
1999; Sarnthein et al., 1998]. In such applications, mod-
erate errors in dura potential distribution caused by
head model errors (fixed over time) do not prevent
meaningful and robust measures of brain state
changes, even if the locations of such changes are
inexact and dynamic details at scales smaller than 2 or
3 cm cannot be measured.

4.3. Simulations: noise

High-resolution algorithms can be sensitive to noisy
data [Le et al., 1994; Edlinger et al., 1998]. However,
the importance of noise varies widely with EEG ap-
plication. One issue is, of course, the signal-to-noise
ratio of the raw data. Often this is known only very
approximately and rarely published, except perhaps
for hand-waving statements about “artifact-free” data.
An equally important consideration involves the
methods used to transform the raw data. In any study,
the bottom-line question is: Are the final results sen-
sitive to the maximum noise level likely to have con-
taminated the raw data? Perhaps the most convincing
test of this question involves purposeful addition of
(separately recorded) artifact or other noise at a power
level believed to be substantially larger that the gen-
uine experimental noise [Silberstein, 1995a].

In Group 3 of Table I, the effects of adding 15%
uncorrelated noise to forward solutions (fixed head
model) are summarized. These simulated correlations
provide a severe test since these dura potential esti-
mates were all based on single time slices, and we
avoid studies of single slices of genuine EEG data.
With this level of noise, the accuracies of single slice
high-resolution EEG are substantially reduced. It
should be appreciated, however, that the correlation
coefficients obtained with this noisy, simulated 131-
channel data using high-resolution EEG are somewhat
larger than the equivalent correlations obtained from
raw potentials (typically ' 0.6) with no noise and no
distortions from the reference electrode. As expected
with such noisy data, the smoothed version (parame-
ter 5 10-9) of the Melbourne dura imaging algorithm
(average correlation 5 0.835) performs better than
either unsmoothed dura imaging (average correla-
tion 5 0.692) or spline-Laplacian (average correla-
tion 5 0.736).

The alpha data described in Section 5 have ampli-
tudes typically in the 30–40 microvolt range and are
free of obvious artifact. EEG system noise is estimated
to be less than a few microvolts. Thus, the signal-to-
noise ratio was apparently very high. However, we
know of no way to accurately estimate such low noise
levels as many subtle biological artifacts can contrib-
ute over broad frequency bands. We did, however,
check the self-consistency of the two high- resolution
methods. This check was obtained from 600 time slices
of the raw (ear reference) EEG from two subjects with-
out regard to amplitude. The data were transformed
to average reference (for benefit of the dura imaging
algorithm) and passed through Melbourne dura im-
aging and New Orleans spline-Laplacian (reference
independent) algorithms to estimate dura potential
independently. A correlation coefficient comparing
the two estimates was obtained for each of the 600
time slices. The average correlation coefficient was
0.950, showing the high self-consistency of the two
high-resolution estimates (Group 4 of Table I) when
applied to 131-channel data. Such self-consistency falls
off sharply with sparser spatial sampling, e.g., corre-
lation coefficients comparing the two high-resolution
methods for 64 channel EEG are typically in the 0.75–
0.90 range.

Several of the analyses of Section 5 are based on
Fourier transforms of 1-sec EEG epochs with a 500
Hz/channel sampling rate. The real and imaginary
parts of Fourier transforms were used to obtain am-
plitude, phase, and coherence estimates. With E% ran-
dom noise in the raw data, the corresponding ex-
pected error level in the Fourier coefficients based on
statistical fluctuation is E/=500%. This effect is dem-
onstrated in Group 5 of Table I, obtained by estimating
alpha rhythm phases at each electrode site (relative to
phase at Cz) for each of 20 one-second epochs. This
process was repeated with uncorrelated noise (15% of
RMS scalp potential magnitude) added to each mea-
sured scalp potential. The estimated phases with and
without added noise were then compared for each
epoch. Correlation coefficients were calculated for
each of the 20 epochs. As shown in Table I (Group 5),
the addition of this noise level to raw potentials (a
level believed to be substantially higher than actual
EEG noise) had minimal effect on phase estimates. In
the experiments involving multiple time slices in Sec-
tion 5, we have chosen zero smoothing parameter for
dura imaging because this is the appropriate choice
for data with low effective noise. These images closely
match spline-Laplacian estimates.
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5. EXPERIMENTAL METHODS

5.1. Choice of experiments

Several experimental measures of EEG are pre-
sented here as part of a larger ongoing study. The
motivation for presenting these particular data and
analyses methods is to demonstrate: (1) high-resolu-
tion EEG, (2) quantitative measures emphasizing both
local and global dynamic behavior, (3) quasi-stable
global phase structure of alpha rhythm, (4) the fractal-
like sensitivity of EEG dynamic properties to measure-
ment scale, and (5) upper alpha and theta phase lock-
ing during mental calculations. The cognitive task was
chosen here mainly as a convenient means to manip-
ulate EEG properties rather than to focus on specific
cognitive functions. Our experimental measures ad-
dress directly theoretical dynamic models, brain bind-
ing ,and the functional significance of EEG. We show
that different measures of EEG dynamics can substan-
tially bias physiological interpretations toward either
extreme local or extreme global physiological interpre-
tations.

5.2. Recording spontaneous EEG

Spontaneous EEG was recorded from six healthy
subjects with eyes closed. The resting state was alter-
nated each minute with a mental calculation task (cog-
nitive period, eyes also closed). Resting and cognitive
periods were each repeated 4–6 times (depending on
subject) to obtain a series of 1-min alternating periods
with 7–11 transitions between distinct brain states. In
two subjects, EEG recordings were repeated after sev-
eral days to test reproducibility. Three subjects (in-
cluding the two repeaters) were chosen for detailed
analyses based on data being nearly free of obvious
artifact in all channels.

A commercial electrode cap with 131 embedded
electrodes (diameter 5 0.5 cm) was used to record
EEG. Electrode placement and impedance checks re-
quired approximately 1 hour. Average center-to-cen-
ter and edge-to edge electrode spacing were 2.2 and
1.2 cm, respectively. Because of gel spreading beyond
electrodes, the effective edge-to-edge separation was
somewhat less than 1 cm. (Each data channel was
tested individually to insure that no salt bridges be-
tween electrode pairs occurred.) Electrode positions
are shown in Figure 8. Signals were band-pass filtered
with cutoffs at 0.5 and 80 Hz and subsequently digi-
tized at 500 Hz. Data were recorded with respect to a
right ear reference with amplifiers grounded to the
nose. A separate channel recorded left ear potential

with respect to the right ear. Prior to analyses, data
were transformed to a symmetric reference equal to
the instantaneous digital average potential of the two
ears (mainly to provide data consistent with many
other studies). Artifact rejection was by visual inspec-
tion of raw data. For the three subjects discussed here,
very few data were excluded because of artifact.

Recording sessions started with a 5-min period
when subjects were asked to relax with eyes closed,
using slow breath counting or other personal relax-
ation exercises. Each 1-min mental calculation period
was “seeded” with a two-digit integer X, and involved
summing the series X 1 (X 1 1) 1 (X 1 2) 1 (X 1 3) 1
. . . to sums of several hundred. A break of 10 sec
between each 1-min period allowed subjects to make
comfortable transitions between states, i.e., to get back
into relaxed states after each “cognitive pressure” pe-
riod. This mental task had several important technical
features making it easy to implement with EEG: min-
imal artifact because of closed eyes and lack of motor
components, ease of task lengthening to improve sta-
tistics, and robust changes of amplitude and coher-
ence with brain state changes [Nunez, 1995; Nunez et
al., 1997, 1999]. On the other hand, the task was not
“clean” from a cognitive science viewpoint. That is,
the task combined a short-term memory component
(holding both the last number and the partial sum of

Figure 8.
Electrode cap with 131 electrodes. The electrode positions were
used in both simulations and EEG recordings. The cap was pur-
chased from Electro-Cap International, Inc.
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the series in short term memory) and an active com-
ponent (adding the partial sum to the next largest
integer). Obtaining fine distinctions between these
mental processes is appropriate for separate studies,
hopefully putting the methods and data reported here
to good use. Here we were mainly concerned with the
study of robust dynamical properties of human spon-
taneous EEG, which were easily and reliably manip-
ulated with the simple mental task.

5.3. Data analyses

Standard (MATLAB release 11) fast Fourier analysis
was applied to each data channel using a Hanning
window, typically with 1-sec epochs providing 1.0 Hz
frequency resolution. Other studies involved 5-sec ep-
ochs to obtain 0.2 Hz frequency resolution. Real and
imaginary Fourier coefficients yielded magnitude,
phase, and coherence estimates based on the average
potential of the two ears or global average reference.
In a few cases, phase estimates were based on the
Hilbert transform (also MATLAB release 11) for com-
parative purposes. For dura imaging calculations, raw
data were transformed to potentials referenced to the
instantaneous average potential of all 131 electrode
sites. With large electrode arrays, the average refer-
ence potential normally approximates the theoretical
potential at infinity [Bertrand et al., 1986; Srinivasan,
1999]. As such, it is the appropriate reference for sub-
mission to the Melbourne dura imaging algorithm.
But transformation to average reference had minimal
effect on dura images in spot checks and no effect on
spline-Laplacian estimates, which are always refer-
ence free.

The average reference data were passed through the
Melbourne dura imaging algorithm to obtain spatially
filtered (high-resolution) estimates of amplitude,
phase, and coherence. Some Melbourne dura esti-
mates were checked against the New Orleans spline-
Laplacian algorithm (using ear reference data), which
also provided estimates of dura potential. No substan-
tive differences between Melbourne dura image (with
zero smoothing parameter) and New Orleans spline-
Laplacian estimates of dura potential were found in
spot checks (see Table I).

Peak power plots, used to supplement information
obtained from average amplitude spectra, were ob-
tained as follows. Four to 6-min records correspond-
ing to estimates of resting scalp potential, resting dura
potential, cognitive scalp potential, and cognitive dura
potential were divided into 5-sec epochs for each of
the 131 channels. Fourier transforms then yielded es-
timates of amplitude (or power) versus frequency

with 0.2 Hz resolution for each channel and for each
epoch. The frequency component on the interval (3 #
ƒ # 20 Hz) with maximum power for a particular
channel and epoch was stored for plotting. The lower
delta range (ƒ # 2.8 Hz) was excluded from the peak
power test because delta artifact and/or genuine brain
dynamics can dominate the other frequency bands.
Power at frequencies greater than 15 or 20 Hz was
very low. We were not confident that we could reli-
ably distinguish beta and gamma brain rhythms from
artifact in the spontaneous EEG so results for these
frequency ranges are not reported here. However,
comprehensive studies of steady state visually evoked
potentials in theta, alpha, beta, and gamma bands
(narrow bands centered at the driving frequency) are
planned in the future at the Brain Sciences Institute.

The method of peak power defines each five-second
epoch at each electrode site by a single frequency that
best characterizes that epoch. Use of this procedure
had several motivations. First, a better feeling for non-
stationary EEG behavior was obtained than by using
only average amplitude spectra. Second, it allowed
spectral properties over the entire scalp to be viewed
in a single graph. Most importantly, the dominant
frequency components in low amplitude signals
showed up nicely. This feature was more important
for frontal regions, which often exhibit lower EEG
amplitudes over most frequency bands.

Phase estimates were obtained at each electrode site
for each 1-sec epoch by transforming real and imagi-
nary Fourier coefficients so that zero phase angle was
obtained at Cz (site 88 in Fig. 1). Thus for each epoch,
phase angle at each electrode site was measured with
respect to phase at Cz. Without such transformation,
“phase” would be physiologically meaningless, de-
pending on the arbitrary separation times of records
into epochs. Phase estimates are often sensitive to
noise, especially near locations with low amplitude
signals or when based on short time segments. To test
this sensitivity, phase estimates presented here were
spot-checked by purposely adding 15% uncorrelated
noise directly to raw EEG data and, in separate tests,
by first passing the noise through a forward head
model to simulate intracranial, biologic “noise,” which
was spatially correlated only because of the head vol-
ume conductor. Thus, our conclusions about EEG
phase estimates are based on the conservative propo-
sition that genuine noise of this magnitude might have
contaminated raw data. Delta, beta, and gamma fre-
quency ranges typically have much lower signal to
(artifact) noise ratios than theta and alpha bands. Delta
or beta “phase” appeared to be less well-defined in
our data, apparently because of lack of phase stability,
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low signal-to-noise ratio, or some combination of these
factors.

Coherence is a correlation coefficient (squared); it
provides one important measure of dynamic relations
between activity recorded at pairs of electrode sites.
We defined phase based on records over a range of
periods, between 1 sec and 1 min with FFT methods.
In addition, a 1-Hz band “instantaneous phase,” based
on the Hilbert transform, was also used to check FFT-
based phase estimates. Tests for consistency of such
phase estimates over time and frequency band pro-
vided supplementary information about accuracy and
stability of neocortical phase structures.

Our coherence estimates are based on Fourier coef-
ficients for 1-sec epochs, averaged over 5- min periods.
Such averages over 300 epochs provide high statistical
confidence, but fail to provide information about vari-
ations in phase synchrony over time. Coherence issues
relating to statistical significance, volume conduction,
reference electrode, high-resolution estimates, and in-
terpretation at multiple spatial scales were studied in
connection in an earlier project [Nunez, 1995; Nunez
et al., 1997; 1999]. In the current study, each coherence
estimate was associated with 5 min of data (resting or
cognitive periods) for each of the 131 3 130/2 5 8,515
electrode pairs and each 1 Hz band. Many coherence
changes were fully consistent with all (8–11) transi-
tions between brain states, as demonstrated in an ear-
lier study [Nunez et al., 1999].

6. EXPERIMENTAL RESULTS

6.1. Resting alpha topography

Scalp amplitude distributions of resting alpha
rhythm at eight successive times are displayed in Fig-
ure 9. Individual plots are separated by about 50 ms
and correspond to alternating positive and negative
peaks in the average reference potential recorded by
posterior-midline electrode 130. Each plot was con-
structed by averaging over five adjacent time slices
(about 10 ms with the 500 Hz sample rate) to minimize
noise effects. This step was not critical for raw poten-
tials since single time slices (2 ms averages) were very
similar to the 10 ms averages. The short-time averag-
ing step was directed more to the Melbourne dura
image plots shown in Figure 10. Dura spatial patterns
show far more complexity than the corresponding raw
scalp potentials as a result of filtering out the very low
spatial frequencies associated with volume conduc-
tion. New Orleans spline-Laplacian estimates yielded
similar patterns as expected.

All magnitudes in Figures 9 and 10 were normal-
ized with respect to potential extrema observed within
the 0.4-sec period to facilitate comparisons between
scalp and dura estimates. This is an appropriate step
because, in simulations, dura imaging and spline-
Laplacian algorithms accurately estimate relative but
not absolute potential magnitudes. Two reasons for
this are apparent: absolute scalp potentials depend
strongly on skull conductivity and Laplacians (micro-
volts/cm2) do not even have electric potential units.

Figure 9.
Amplitude distributions of (average reference) resting alpha
rhythm at 8 successive times separated by about 50 ms are shown.
The times correspond to alternating positive and negative peaks in
the potential recorded by posterior-midline electrode 130. Each
plot was constructed by averaging over five adjacent time slices
with 2 ms separation between adjacent slices. Amplitudes were
normalized with respect to the maximum positive and negative
potentials (yellow and blue, respectively). Subject BMW.

Figure 10.
Estimates of dura potential for the same data shown in Figure 9,
obtained by passing average reference data through the Melbourne
dura imaging algorithm (with smoothing parameter set to zero).
Normalized dura potentials are plotted, as in Figure 9. The New
Orleans Spline-Laplacian yields similar patterns of dura potential,
e.g., correlation coefficients ' 0.95. Addition of uncorrelated 15%
noise to the raw data had minimal effect. Subject BMW.
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Subject BMW exhibited distinct spectral peaks in the
alpha band, at 8.5 and 10.0 Hz. Figure 11 shows am-
plitude (upper row) and cosine phase plots (lower
row) at 8.5 Hz for average reference potential (left
column) and dura image (right column), obtained by
Fourier transforms of 60 successive 1-sec epochs (1 Hz
resolution). Figure 12 shows amplitude and phase
plots from the same data in Figure 11, but at the 10.0
Hz peak. The 10.0 Hz rhythm shows mainly anterior-
posterior variations in both amplitude and phase of
the (low spatial frequency) potential plots. By contrast,
the 8.5 Hz rhythm shows more right-left variations in
potential and phase. In other words, the coefficients
plm(v) in the spherical harmonic expansion, Eq (6)
have substantially different weights at 8.5 versus 10.0
Hz. Dura images indicate much more detail at smaller
spatial scales.

The plots in Figures 9–12 demonstrate that alpha
rhythms present quite different maps when viewed at
different spatial and temporal scales. Each time slice of
scalp potential exhibits a generally different spatial
distribution, although anterior-posterior phase rever-
sal patterns tend to dominate, in a manner superfi-
cially similar to long-standing waves in a drum sur-
face. This behavior is indicated by Figure 9 and by
earlier alpha studies using 64 electrodes [Nunez,

1995]. The corresponding dura image estimates in Fig-
ure 10 show that when low spatial frequency scalp
potentials (caused by some combination of volume
conduction and genuine source dynamics) are filtered
out, the remaining spatial patterns are complex and
quite variable over time. This complex dynamic be-
havior is even more apparent in a high-resolution
video that we constructed from 64 channel resting
alpha [Cao et al., 1994, unpublished research].

Either averaging over time with Fourier transform
methods (the examples in Figs. 11 and 12) or space
averaging by the head volume conductor (all scalp
potential plots) generally produces a greatly oversim-
plified and potentially misleading picture of the spa-
tial-temporal alpha source dynamics produced by
neocortex. That is, the better the time and spatial
resolutions, the more detail is observed in amplitude,
phase, and coherence patterns.

Lower (8.5 Hz) and upper (10.0 Hz) alpha peaks
generally have different spatial distributions over the
scalp, as shown by earlier studies [Nunez, 1974b, 1981]
and comparison of Figure 11 with Figure 12. Further-
more, these plots suggest that cross-frequency dura
amplitude estimates are more similar to each other
than the corresponding cross-frequency scalp ampli-
tudes. To investigate this further, we computed cross-
frequency correlation coefficients for 300 successive

Figure 11.
Magnitude (upper row) and cosine phase (lower row) at BMW’s
lower alpha peak (8.5 Hz) for the average reference potential (left
column) and dura image estimate (right column). Plots were ob-
tained by Fourier transforms of 60 successive 1-sec epochs (1 Hz
resolution). Dura image phase plot shows alternating regions at
the scale of several centimeters that are 180 degrees out of phase,
apparently similar to a wave interference pattern.

Figure 12.
Amplitude (upper row) and phase (lower row) at BMW’s upper
alpha peak (10.0 Hz) for average reference potential (left column)
and dura image estimate (right column). Plots were obtained by
Fourier transforms of 60 successive 1-sec epochs (1 Hz resolu-
tion). Produced from the same raw data used to produce Figure
11.
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1-sec epochs, for both log (scalp potential amplitude)
and log (dura image amplitude). Correlation coeffi-
cients were obtained from 92 electrode-by-electrode
comparisons, excluding the outer ring of 39 electrodes
where estimates are less accurate. The average (over
300 epochs) cross-frequency scalp potential correlation
was 0.169, whereas the average cross-frequency dura
image potential correlation was 0.307.

At least one tentative explanation for BMW’s data is
consistent with several dynamic theories [overview in
Nunez, 2000a, 2000b] and other data obtained here:
The alpha process may consist of global modes (e.g.,
standing waves of relatively long wavelength) having
generally distinct spatial distributions at different fre-
quencies plus more localized alpha activity. Locations
of large amplitude local sources may be less frequency
dependent. By filtering out part of the global activity
using the dura image algorithm, we were left with
more locally dominated dynamics, as indicated by
comparison of potential and dura plots in Figures 11
and 12. Comparison of cross-frequency potentials and
dura images was not studied in the other subjects
because they did not produce clear double alpha
peaks.

6.2. Spectral properties of resting alpha

The global effects of spatial filtering are illustrated
by the peak power scalp (left) and dura (right) esti-
mates for three subjects in Figure 13. The smaller
electrode numbers on vertical axes near the upper
parts of these plots correspond to more frontal scalp
locations (see Fig. 8). Each peak power plot contains 60
(5-sec epochs) 3 131 (electrodes) 5 7,860 points. The
dominance of alpha band activity over the entire scalp
is evident in all three subjects in the average reference
potential plots. All three subjects show two or three
distinct bands (vertical patches) of global alpha
rhythm in the scalp potential plots. By contrast, the
corresponding dura image plots show more sparsely
patched alpha activity.

These and other data [Nunez, 1995, 2000a, 2000b;
Andrew and Pfurtscheller, 1996, 1997; Nunez et al.,
1997, 1999; Florian et al., 1998] suggest that the usual
eyes closed resting EEG in humans has at least several
distinct contributions: Long wavelength (low spatial
frequency) activity near the alpha peak frequency that
often exhibits moderate to high coherence over large
scalp distances (e.g., 10–25 cm) and more localized,
incoherent delta, theta, alpha, and (some) beta activity
contributing mainly to dynamics at shorter spatial
wavelengths.

These data may be interpreted naturally in the con-
text of cortical source activity expressed in the spher-
ical harmonic expansion Eq (2) for the idealized case
of spherical scalp and cortical surfaces. Cortical

Figure 13.
Peak power scalp potential (left column) and corresponding dura
image (right column) estimates for the three subjects (BMW, CVR,
and RS in rows 1–3, respectively). Smaller electrode numbers on
vertical axes near the upper parts of plots correspond to more
frontal scalp locations (see Fig. 8). For each 5-sec epoch and each
electrode site, the frequency component (0.2 Hz resolution) with
the largest power (or amplitude) in the range 3.0 # f # 20.0 Hz
was selected by the FFT. Other frequency components at each site
are not plotted, even though they may be nearly as large as the
peak components. The test was repeated with the same data first
passed through the dura image algorithm (right column). Each plot
contains 60 epochs 3 131 electrodes 5 7,860 points. The dom-
inance of alpha band activity over the entire scalp is evident in all
three subjects in the average reference potential plots but some-
what less evident in the dura image plots.
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“source strength,” i.e., dipole moment per unit vol-
ume P(u, f, t), at surface locations (u, f) is expressed as
a sum over spherical harmonic functions (a sum over
characteristic spatial functions or eigenfunctions) with
progressively higher spatial frequencies. The coeffi-
cients in this expansion plm(t) are generally deter-
mined by the underlying dynamics.

Figure 3 shows the theoretical effects of spatial fil-
tering by the volume conductor and high-resolution
estimates on such source activity. The data in Figures
10–13 then illustrate the effects of filtering out the very
lowest spatial frequencies (mainly the l 5 0 and 1
modes of the spherical harmonics) with dura imaging.
That is, measured EEG in an idealized spherical head
may be generally expressed as a sum over the spher-
ical harmonic functions, but with weighting coeffi-
cients plm(t) depending partly on spatial filtering. By
mostly removing the lowest modes (e.g., l 5 0, m 5 0
and l 5 1, m 5 -1, 0, 1) with dura imaging, we shifted
the weighting away from the more global toward
more local dynamics. Whereas measured globally
dominated dynamics occurred mostly in the alpha
band, more locally dominated dynamics also occurred
in delta, theta, alpha, and beta bands.

6.3. Changes of peak power with
brain state changes

Figure 14 shows peak power estimates obtained
from average reference potentials (left) and dura im-
age estimates (right) for the cognitive periods. Com-
parison with the corresponding resting plots in Figure
13 indicates that alpha blocking of scalp potential in
subjects BMW and RS was minimal and occurred
mainly in the lower alpha band. Alpha blocking was
more evident in subject CVR but also occurred more in
the lower alpha band.

Subject RS showed a robust theta rhythm at many
frontal and central sites in the resting state. His theta
was enhanced, and it became more narrow band and
widespread during cognition. The other two subjects
produced dominant theta mainly during cognitive pe-
riods. While theta activity was often evident in frontal
regions, it was more widespread than implied by the
usual description “frontal midline theta,” reported in
several working memory studies [review by Gevins et
al., 1997]. If theta were very localized, we would ex-
pect locally dense clusters of points in the peak power
dura image plots. But, upper theta (5–6 Hz) was ac-
tually quite evident in the peak power potential plots,
indicating dynamics at relatively low spatial frequen-
cies. Of course, theta could have multiple origins,
occur in both low and high spatial and temporal fre-

quency bands, be sensitive to task details, or some
combination of all these effects.

Subject RS showed some alpha blocking during cog-
nition in the lower alpha band while his upper alpha
band had increased peak power points in both poten-
tial and dura image plots. Subject BMW produced
somewhat similar behavior. Subject CVR, female and
physically smaller than the other two subjects, showed
a substantial number of peak power points in the beta
band, especially during the cognitive state. This could
have been due to subtle muscle artifact, an indirect
consequence of more alpha blocking, genuine cortical
source activity in the beta band that was more evident
because of a lower resistance (e.g., thinner) skull, or a

Figure 14.
Peak power estimates obtained from average reference potentials
(left) and dura image estimates (right) for the cognitive periods.
Methods are identical to those used in Figure 13, except for some
small changes in the number of total epochs.
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combination of these factors. CVR’s cognitive peak
power plots (Fig. 14) indicate a number of sites with
sparse points in the approximate range 13 # ƒ # 16
Hz, but a much higher density of peak power points in
the range 17 # ƒ # 20 Hz. This suggests contribution
from brain rather than muscle sources in the beta
range, because muscle spectra are normally relatively
flat over 13 # ƒ # 20 Hz, falling off slowly with
increasing frequency. On the other hand, many of
these channels were located near temporal muscles.
Thus, our best guess is that these beta points reflect a
combination of brain activity and subtle muscle arti-
fact.

One should keep in mind that the peak power plots
present a very conservative view of dominant fre-
quencies of cortical source activity. That is, each plot-
ted point in the theta or beta band means for that
particular electrode site and 5-sec epoch, a particular
frequency was the single component (with 0.2 Hz
resolution) with the largest power in the range 3 # ƒ #
20 Hz. Thus, absence of theta or beta points (especially
in posterior regions) does not necessarily mean ab-
sence of substantial theta or beta activity. Generally, it
means that whatever theta or beta power produced
was dominated by larger alpha or high-end ($ 3 Hz)
delta power.

6.4. Stability and accuracy of phase structure of
resting alpha rhythm

Dura image phase plots (Figs. 11, 12) indicate many
alternating regions out of phase. Regions of constant
phase (zero phase lag) were typically separated by
about 4–6 cm. In other words, regions 180 degrees out
of phase were typically separated by about 2–3 cm., or
roughly the spatial resolution of the high-resolution
methods. Many alpha phase structures based on dura
imaging with epochs ranging from one second to one
minute were studied. All dura phase structures ob-
tained with zero smoothing parameter showed quali-
tatively similar complex structures at the same ap-
proximate scale of the EEG spatial resolution,
suggesting even more complexity at scales too small to
observe from the scalp. Dura image with nonzero
smoothing parameters had levels of detail intermedi-
ate between those of raw scalp potential and dura
image with zero smoothing parameter.

To test whether these phase structures genuinely
represented cortical source dynamics, the accuracy
and stability of dura phase estimates were studied as
follows:

(1) Correlation coefficients comparing successive
estimates of cosine phase (over the 131 electrode
sites at all integer frequencies on 3 # ƒ # 40 Hz)
were calculated for 5 min of resting alpha using
1-sec epochs. Correlation coefficients, averaged
over all 299 successive epoch pairs, are plotted
versus frequency in the upper part of Figure 15.
The correlation coefficients were all less than 0.2,
reflecting large second-to-second dynamic
changes in dura phase structure as expected.
However, these correlation coefficients were
substantially larger in the approximate range
6 # ƒ # 11 Hz, indicating much more stability of
dura phase estimates in this frequency range.

(2) Phase stability at the peak alpha frequency was
also studied by using different epoch lengths in
5-min records of resting alpha. Correlation coef-
ficients comparing successive epochs at individ-
ual alpha peaks 10 Hz (subject BMW) and 10 Hz
(subject RS) are plotted versus epoch length in
lower part of Figure 15. Correlation coefficients,
averaged over all epoch pairs, increased mono-
tonically with epoch length, ranging between
about 0.1 for 1-sec epochs to about 0.35–0.50 for
20-sec epochs.

(3) Uncorrelated Gaussian noise with amplitude
equal to 15% of the RMS amplitude of the raw
data (averaged over all electrodes) was added
directly to raw scalp potential measurements.
The contaminated data (noise plus genuine
EEG) were then passed to the dura image algo-
rithm. All phase correlation coefficients in Fig-
ure 15 were recalculated with this purposeful
addition of noise. No substantial differences
were obtained, as suggested by Table I.

(4) Uncorrelated 1/ƒ noise with amplitude equal to
15% of the RMS amplitude of the raw data was
passed through the forward solution of the four-
sphere head model to produce simulated, spa-
tially correlated noise. This noise was then
passed to the dura image and Fourier transform
algorithms to produce phase estimates for suc-
cessive epochs of varying lengths. The circles in
the lowest plot of Figure 15 (random simulation)
show epoch-to-epoch phase correlations as a
function of epoch length resulting from this spa-
tially correlated noise. All noise-simulated cor-
relation coefficients are close to zero as ex-
pected, thereby supporting the idea that the
EEG dura phase correlations in Figure 15 genu-
inely represent brain dynamic processes.
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These phase studies suggest that the phase structure
of the alpha rhythm in these subjects may be described
as quasi stable. This stability depends on both the
temporal and spatial scales of phase estimates. That is,
phase estimated with long epochs shows less epoch-
to-epoch variation. Furthermore, phase estimated at
large scales with reference potentials shows less ep-
och-to-epoch variation than (smaller-scale) dura im-
age phase. In other words, the closer we look, the
more phase detail we observe. We conjecture that the
observed phase structures may represent interference
patterns of standing waves of synaptic action. Such
synaptic action may be superimposed on and interact
with neural networks that are embedded within the
synaptic action fields [Nunez, 2000b].

6.4. Coherence of alpha and theta rhythms

Theta and upper alpha coherence patterns in subject
RS are shown in Figure 16. Electrode pairs with dura
coherence greater than 0.1 at the 99% confidence level
[Bendat and Piersol, 1986] have connecting lines
drawn. The columns represent 5 min of relaxed (left,
RLX) and 5 min of cognitive (right, COG) state, respec-
tively. During states of mental calculation, coherence
at both 6.5 Hz and 10.0 Hz were generally higher in
subject RS (averaged over 5-min periods), whereas
lower alpha band coherence was reduced (not shown).
The coherence estimates between specific electrode
pairs with lines draw in Figure 16 vary widely, e.g., for
electrode pairs separated by 10 cm or more, coherence
estimates (with lines drawn) varied from 0.33 to 0.65.
The lower value was required to satisfy the criterion
coherence . 0.1 at the 99% confidence level. Because
coherence is a correlation coefficient squared, these
data imply estimated dynamic correlations in the
0.57–0.81 range between remote cortical locations,
providing justification for our characterization of al-
pha rhythm in terms of “more globally dominated
dynamics.”

Another point is that the general behavior of coher-
ence patterns varied substantially between the three
subjects but was robust over different periods within
the same subject. It should be further emphasized that
dura coherence estimates are conservative in the sense
that they may be artificially low because of the spatial
filtering by the dura imaging algorithm. That is, the
removal of erroneous high coherence caused by vol-
ume conduction by dura imaging may also remove
genuine source coherence associated with very low
spatial frequencies [Nunez et al., 1999]. Finally, coher-
ence can very substantially over time even with our
attempts to fix brain states over 1-min periods. Such

Figure 15.
(Upper) Correlation coefficients comparing successive estimates
of cosine dura image phase (over the 131 electrode sites) are
plotted vs. integer frequencies. Phase plots were calculated for 5
min of resting alpha using 1-sec epochs with phase at site 88 (Cz)
defined as zero for each epoch. Correlation coefficients were
averaged over all 299 successive epoch pairs. Subject BMW. (Low-
er) Dura cosine phase correlation coefficients comparing succes-
sive epochs at individual alpha peaks—10 Hz (subject BMW) and
10 Hz (subject RS) are plotted vs. FFT epoch length. Correlation
coefficients, averaged over all epoch pairs, increase monotonically
with epoch length, ranging between about 0.1 for 1-sec epochs to
about 0.4–0.5 for 20-sec epochs (frequency resolution held fixed
at 1 Hz). The lower plot (random simulation) was generated using
1/f noise passed through a head model (forward solution) to
simulate spatially correlated scalp noise, which was then passed
through the dura imaging and FFT algorithms to estimate dura phase.
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time variations in phase locking are described in Sec-
tion 6.5.

The significance of these coherence estimates was
first checked by passing random noise through the
four shell head model to simulate scalp potentials
generated by uncorrelated dura sources. These simu-
lated scalp potentials were then passed through the
dura imaging and Fourier transform algorithms to
obtain dura coherence estimates. The resulting coher-
ence plots based on the same 99% confidence level
used for the EEG data were empty as expected, except
for adjacent electrode positions on the outer ring.
These erroneous coherence estimates resulted from
inaccurate dura estimates at edge electrodes. Thus, all
lines connecting adjacent electrodes in the outer ring
were removed from the coherence plots for the genu-
ine data in Figure 16. In a second test, the coherence

pattern at 37 Hz was obtained for subject RS. Only five
pairs of electrodes passed the 99% test and all were
closer than 5 cm. This result shows that 37 Hz gamma
activity was globally incoherent and that volume con-
duction did not substantially inflate dura coherence
estimates, a finding consistent with earlier high-reso-
lution coherence studies [Nunez et al., 1997, 1999;
Srinivasan et al., 1996, 1998; Srinivasan, 1999].

6.5. Theta phase synchronization during the
cognitive task

Subjects BMW and RS displayed more coherent
theta band activity at many frontal and frontal-parietal
electrode pairs during mental calculations than in the
resting state. Several such electrode pairs were se-
lected for more detailed phase analyses so that
changes over shorter times could be observed. Phase
estimates for each signal were obtained by Fourier
transforms at the (observed) maximum coherent theta
frequency. A Hanning window and overlapping 1-sec
epochs were used. The window was stepped by 0.1 sec
to obtain successive phase estimates. A series of rela-
tive phase offsets between pairs of recording sites was
calculated for signals over the entire (roughly) 10-min
recording. To visualize the phase offsets, phase distri-
butions were computed in a series of 10-sec sliding
windows. When phase offset was near random over
the immediate 10-sec window, phase distributions
were relatively uniform. But when phase offset was
more consistent over multiple phase measurements
within the 10-sec window, phase distribution was
peaked at this phase offset.

In Figure 17, the upper rows of each plot pair dis-
play 10-sec phase distributions (represented as gray-
scale histograms) through successive 1-min periods of
constant state, alternating between resting and cogni-
tive states, the latter indicated by shaded bars and the
word “cog.” The subject is BMW and the electrode
sites are 9–55 (upper plot pair) and 16–55 (lower plot
pair), roughly phase locking of the frontal midline
theta reported in other studies. In Figure 18, similar
plots are presented for subject RS for electrode sites
45–54 (cross hemispheric frontal-central) in the upper
plot pair, and sites 9–55 (frontal-central) in the lower
plot pair. In these examples, phase offset distributions
peak in roughly the 140–180 degree range.

A synchronization index r, adopted by Tass and
colleagues [1998], was used to quantify divergence of
these distributions from uniformity. For each distribu-
tion, r 5 (Smax – S) / Smax, where Smax 5 ln N. Here N
is the number of bins in the distribution. S is the

Figure 16.
Dura image interelectrode coherence in the relaxed state for
subject RS (RLX, left column, averaged over 5 min) and cognitive
state (COG, right column, averaged over 5 min). All interelec-
trode coherences greater than 0.1 at the 99% confidence level are
indicated by lines between the appropriate electrode pair, exclud-
ing nearest-neighbor edge electrodes. Actual coherence estimates
vary widely, e.g., from about 0.3 to 0.7 for electrode separations
greater than 10 cm. Both upper 6.5 Hz theta coherence (upper
row) and 10.0 Hz upper alpha coherence (lower row) generally
increased during the cognitive task. However, lower alpha band
coherence decreased during the cognitive task (not shown). Sim-
ulations confirmed that these patterns represent genuine source
coherences rather than volume conduction or statistical artifact.
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entropy, defined in the context of information theory
as

S 5 O
i 5 1

N

qi log2qi (7)

where qi is the probability that a phase estimate falls
within bin i.

The synchronization index r ranges from 0 to 1,
where r 5 0 indicates no synchronization, and r 5 1
indicates perfect synchronization. Theta synchroniza-
tion index (or phase offset consistency) increased with
mental calculation in these electrode pairs, as shown
in the lower row plots of each pair. The synchroniza-
tion effect tended to increase as the 1-min cognitive
periods progressed. This was contrary to the habitua-
tion often observed in extended mental tasks. Perhaps
this can be interpreted as facilitation of cell assembly
formation by repetition of the mental task.

To check further the statistical significance of phase
estimates, phase distribution and synchronization in-
dex were also calculated for a surrogate data set with
amplitude retained and phase estimates presented in
random order, independent of brain state. The resid-
ual synchronization was low (, 0.2), so no task effect
was found in the surrogate data as expected. Finally,
instantaneous phase was estimated with the Hilbert
transform after band passing (1 Hz band) raw data, as
described in Rosenblum et al. [1996]. Comparison of
Hilbert transform and FFT methods revealed no sub-
stantial differences in several spot checks of phase
estimates.

7. CONCLUSION

7.1. The proposed dynamic framework and
coregistration with fMRI

A general working framework for experimental
study of the large-scale dynamics of EEG is suggested
here, including proper interpretation of data recorded
at different spatial and temporal scales. The frame-
work is based on combined local, regional, and global
mechanisms. We suggest that the relative importance
of these contributions to EEG dynamics can vary sub-
stantially with animal species, brain state, frequency
band, and measurement scale. This general frame-
work has an important advantage over viewpoints

Figure 17.
The upper rows of each plot pair display 10-sec phase offset
distributions (phase differences between electrode pairs) repre-
sented as gray-scale histograms. Successive 1-min periods of con-
stant brain state are shown, alternating between resting and cog-
nitive states. Cognitive periods are indicated by shaded bars and
the word “cog.” The lower row of each plot pair is the synchro-
nization index used by Tass et al. [1998]. Phase offsets peak at
approximately 180 degrees. (Upper plot pair) Electrode sites 9–55
(Lower plot pair) sites 16–55 (essentially frontal midline theta).
Subject BMW.

Figure 18.
Plots similar to Figure 17 for subject RS. (Upper pair) Electrode
sites 45–54 (cross-hemispheric precentral) (Lower pair) sites
9–55. Phase offsets peak at approximately 140 degrees.
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that may prejudge the nature of EEG dynamics,
thereby biasing experimental design. For example, di-
pole localization studies can only provide accurate
pictures of underlying dynamics when applied to EEG
phenomena that are genuinely generated by a few
isolated sources. We recognize that the physiological
bases for EEG are controversial and that several com-
peting models have been widely published. But the
general dynamic framework advocated here encom-
passes each of these models as special cases. As such it
should be relatively noncontroversial.

The proposed conceptual framework also has impli-
cations for studies involving coregistration of EEG
with fMRI. One popular approach is to constrain EEG
inverse solutions (e.g., dipole localization) to regions
where fMRI indicates relatively large hemodynamic
signatures. This approach is partly supported by stud-
ies linking metabolic and hemodynamic activity with
local neuronal synaptic and electrical events. But, EEG
is a very selective measure of current source activity,
often corresponding to small subsets of the total syn-
aptic action in tissue volumes and largely independent
of action potentials. Increases in neural firing rates can
apparently occur with reduced large-scale synchrony
of current sources and, as a result, smaller scalp po-
tentials. By contrast, hemodynamic and metabolic
measures are believed to increase with neural firing
rates. How closely do we expect these disparate mea-
sures of brain function to agree? In a recent paper
[Nunez and Silberstein, 2000], we suggest that scalp
EEG amplitudes and hemodynamic or metabolic ac-
tivity can sometimes change in opposite directions for
reasons having to do with the distinct spatial scales
and selective frequency bands of cortical synchrony.
Does coregistration of EEG with fMRI make sense?
The answer may be a sensitive function of the specific
experimental questions being asked.

7.2. Local versus global dynamics

Compelling evidence for alpha rhythm dynamics
with substantial local character comes from studies of
spatially selective reactivity to mental tasks [Petsche
and Etlinger, 1998; Sarnthein et al., 1998; Klimesch et
al., 1999], motor tasks [Pfurtscheller and Neuper, 1992;
Pfurtscheller and Lopes da Silva, 1999], eye opening
[Niedermeyer, 1999a], and auditory stimuli [Hari,
1999].

By contrast to the picture of independent alpha
band activity generated in distinct cortical regions,
global alpha activity is supported by moderate to high
alpha coherence over large interelectrode distances
(e.g., 10–25 cm) in resting states [Petsche et al., 1997;

Nunez et al., 1997, 1999; Nunez, 2000a; Srinivasan et
al., 1996, 1998, 1999; Srinivasan, 1999]. In addition,
other studies have shown that local (mu) and globally
coherent alpha band activity can be separately manip-
ulated with a motor task [Andrew and Pfurtscheller,
1996, 1997; Florian et al., 1998].

Our experiments address the local versus global
issue from several directions. The resting potential
power plots in Figure 13 (left side) show two or three
frequency bands of alpha activity occurring at all (or
nearly all) electrode sites, covering all lobes. Spatially
filtering these data with the dura image algorithm
(right side) consistently reduced global contributions
relative to local contributions. As a result, dura peak
power plots were more patchy, indicating dominant
alpha band activity in many cortical regions, but not in
all. (Recall that peak power plots are very conserva-
tive, i.e., every point on the plots indicates dominant
alpha activity over a 5-sec epoch, but absence of a
point does not mean absence of alpha.)

Comparison of the resting plots (Fig. 13) with the
corresponding cognitive plots (Fig. 14) indicates that
mental calculations may also change the relative con-
tribution of global activity. Global coherence in the
lower alpha band was reduced, whereas coherence in
theta and upper alpha bands increased during cogni-
tive periods. Comparison of the resting and cognitive
dura image coherence plots in Figure 16 provides
strong additional support for more globally or locally
dominated dynamics, depending on brain state and
narrow band frequency. The data also suggest a dis-
connection between upper and lower band alpha dur-
ing mental calculations that is less evident in the rest-
ing state. (Many earlier broadband studies of alpha
have lumped everything in the 8–13 Hz band into a
single measure, thereby apparently missing important
cognitive effects.) Our data fit the proposed concep-
tual framework and the established existence of global
human brain states in which neocortical EEG looks
very similar over its entire upper surface. Whereas
alpha rhythms appear to involve a mixture of local
and global activity, anesthetic, coma, and some epi-
leptic phenomena appear to provide the best examples
of globally dominated states.

The potential importance of global effects is also
suggested by several theoretical considerations.
Global effects may strongly influence (top-down) local
dynamics in a wide variety of complex physical sys-
tems [Haken, 1983; Bishop et al., 1983; Srinivasan and
Nunez, 1993; Nunez and Srinivasan, 1993]. The dy-
namics of such systems, as measured at any particular
location, is generally determined by the entire system.
This is typical even in systems with only nearest
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neighbor interactions, often modeled with differential
equations. Global effects may be even more important
when nonlocal interactions (often modeled with inte-
gral equations) also occur [Morse and Feshbach, 1953;
Haken, 1983; Ma, 1985]. Cortico-cortical fibers provide
such nonlocal interactions in human neocortex
[Nunez, 1995; Ingber, 1995]. Physiological models, es-
pecially those including cortico-cortical interactions,
and many data suggest that EEG recorded at different
locations can look quite different, but this can easily
occur as a result of combined local and global influ-
ences [Nunez, 1995; Ingber, 1995; Silberstein et al.,
1995a; Jirsa and Haken, 1997; Kelso et al., 1999].

7.3. Neocortical dynamics depends on spatial and
temporal measurement scales

The “snapshot” amplitude plots in Figures 9 and 10
and the magnitude and phase plots in Figures 11 and
12 demonstrate that dynamic estimates of EEG de-
pend strongly on both spatial and temporal measure-
ment scales. Very large spatial scale dynamic mea-
sures were provided by raw scalp data, whereas dura
image or spline-Laplacian algorithms measured dy-
namics at smaller scales. Comparisons of one subject’s
magnitude and phase structures for potentials and
dura images (for the same 1-min data block) are
shown in Figure 11 (8.5 Hz) and Figure 12 (10.0 Hz).

By adjusting the smoothing parameter in the dura
imaging algorithm, we were also able to estimate spa-
tial patterns at scales intermediate between scalp and
(estimated) dura potential. Smoothed (magnitude and
phase) dura estimates contained more detail than raw
scalp potential estimates but less detail than un-
smoothed dura or Laplacian estimates. In other words,
the better the scalp spatial resolution, the more detail
was observed in magnitude and phase plots. This
result is inconsistent with alpha generation exclu-
sively by a few isolated and stationary dipoles, as
often proposed. Our data suggest that alpha dipoles
(or localized alpha networks) may be partly but not
fully isolated. Models consisting of a few dipoles or
even a few tens of dipoles (e.g., less than the number
of electrodes) are not sufficient to explain the dura
phase structures or coherence patterns observed here.
Rather, a plausible conjecture is that alpha dynamics
exhibits a fractal-like (or turbulence-like) spatial struc-
ture at progressively smaller spatial scales, perhaps
down to the minicolumn scale or smaller. The spatial
structure appears to have substantial global as well as
local properties.

Figure 15 shows that global phase structure also
depends critically on both frequency and temporal

scale. Different epoch lengths for magnitude or phase
estimates provided dynamic measures at different
time scales. Within the alpha band, progressively
longer epochs yielded more stable global structures
that masked short time fluctuations. By contrast, we
did not find convincing evidence for stable global
phase structure outside the band 6–11 Hz. We did find
phase locking of upper band theta and upper band
alpha frequencies between specific electrode sites
(Figs. 16–18). Earlier studies of steady state visually
evoked potentials [Silberstein, 1995a; Burkitt et al.,
2000] at alpha band frequencies showed that cortical
phase structures depend critically on 1 Hz changes in
driving frequency [Nunez, 1995]. Related studies have
demonstrated close connections between amplitude
and phase of 13 Hz visually evoked potentials and a
working memory task [Silberstein, 1997]. Also, steady
state visually evoked magnetic field recordings (7 Hz)
during binocular rivalry studies revealed substantial
theta global coherence increases during periods of
perceptual dominance [Srinivasan et al., 1999].

7.4. Relationships to other studies
of brain function

We have proposed a conceptual framework that
distinguishes between more locally and more globally
dominated neocortical dynamic behavior. Such dy-
namic differences may occur in different brain states
or in distinct frequency bands in fixed brain states. For
example, fMRI measures brain function in the extreme
(compared to EEG) low temporal frequency range.
How much do we expect the dynamics measured in
such widely separated frequency bands to agree
[Nunez and Silberstein, 2000]? Our experiments and
data analyses methods were chosen within a frame-
work that attempts to avoid prejudging such issues.
While these experiments barely scratched the surface
of the very complex world of brain dynamic behavior,
they illustrate several experimental connections to
physiologically based dynamical theory. Our EEG
work is ongoing and includes studies of spontaneous
as well as driven activity. We are cautious about in-
terpretations of measured dynamic behavior, partly
because of the small number of subjects and limita-
tions of our experimental measures. However, all data
studied here fit naturally within the general, local/
global conceptual framework and should help to
guide studies of connections between EEG, quantita-
tive dynamics, and cognitive processing in the near
future. Our proposed framework is very much in
agreement with the following description by Mount-
castle [1979, p21] if we substitute “local network” with
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“system”—here meaning subsystem of the brain:
“The brain is a complex of widely and reciprocally
interconnected systems and the dynamic interplay of
neural activity within and between these systems is
the very essence of brain function.” The well-know
studies of event-related potentials by Gevins and col-
leagues [Gevins and Cutillo, 1995, p332] support a
similar view. Specifically, during cognitive processing,
“many (cortical) areas probably are involved in a con-
stellation of rapidly changing functional networks that
provide the delicate balance between stimulus-locked
behavior and purely imaginary ideation.” Finally, the
following view is expressed by Edelman and Tononi
[2000, p131] in the context of a quantitative complexity
measure associated with consciousness and brain
binding: “High values of complexity correspond to an
optimal synthesis of functional specialization and
functional integration within a system. This is clearly
the case for systems like the brain—different areas
and different neurons do different things (they are
differentiated) at the same time they interact to give
rise to a unified conscious scene and to unify behav-
iors (they are integrated).” In this view, complexity
(and by implication, cognition) tends to maximize be-
tween the extremes of isolated networks and global
coherence. We find this a reasonable working hypoth-
esis. It then follows that both local network dynamics
and interactions between networks are important. But
one of the central messages of this paper is that dif-
ferent experimental designs and methods of data anal-
ysis can bias EEG (or MEG or fMRI or PET) physio-
logical interpretations in either extreme local or
extreme global directions. By demonstrating this with
both theory and EEG experiment, we have hopefully
made a small step toward more thoughtful design of
future experiments, e.g., in studies involving brain
binding that reveal important long-range coherence
between regions as well as locally dominated dynam-
ics. Such studies should further facilitate our under-
standing of connections between physiology, psychol-
ogy, and dynamic theory.
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