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Abstract: Recently, we presented a method (the CS method) for estimating the probability distributions
of the sizes of supra threshold clusters in functional brain images [Ledberg A, Åkerman S, Roland PE.
1998. Estimating the significance of 3D clusters in functional brain images. NeuroImage 8:113–128]. In that
method, the significance of the observed test statistic (cluster size) is assessed by comparing it with a
sample of the test statistic obtained from simulated statistical images (SSIs). These images are generated
to have the same spatial autocorrelation as the observed statistical image (t-image) would have under the
null hypothesis. The CS method relies on the assumptions that the t-images are stationary and that they
can be transformed to have a normal distribution. These assumptions are not always valid, and thus limit
the applicability of the method. The purpose of this paper is to present a modification of the previous
method, that does not depend on these assumptions. This modified CS method (MCS) uses the residuals
in the linear model as a model of a dataset obtained under the null hypothesis. Subsequently, datasets
with the same distribution as the residuals are generated, and from these datasets the SSIs are derived.
These SSIs are t-distributed. Thus, a conversion to normal distribution is no longer needed. Furthermore,
no assumptions concerning the stationarity of the statistical images are needed. The MCS method is
validated on both synthetical images and PET images and is shown to give accurate estimates of the
probability distribution of the cluster size statistic. Hum. Brain Mapping 9:143–155, 2000.
© 2000Wiley-Liss, Inc.
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INTRODUCTION

The detection of regional changes in tissue blood
flow and blood oxygenation level is one of the main
goals of functional brain imaging. This goal is often
accomplished in two steps: In the first step, a linear

model is fitted to each and every voxel. Then, hypoth-
eses are tested on the fitted parameters. Each tested
hypothesis results in a statistical image (SI). These
images are usually so called t-images, where the “t”
refers to the fact that the obtained statistics (one for
each voxel) are distributed as Student’s t. In the sec-
ond step, the purpose is to decide which regional
changes in the SIs are “true” changes and which are
the result of random fluctuations. This way of analyz-
ing functional brain imaging data was introduced by
Friston and colleagues [Friston et al., 1990, 1991] and is
usually referred to as statistical parametric mapping.
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To find the “true” changes, one usually derives a test
statistic from the SI (e.g., global maximum or cluster
size) and then compares the value of this statistic with
values of the same statistic obtained under the null
hypothesis. However, the exact probability distribu-
tions (pds) of these statistics are usually unknown,
even under the assumption that the data is normally
distributed. One therefore has to resort to some kind
of estimation of the pd. This is a problem faced by all
existing methods of statistical analysis of functional
imaging data. Furthermore, the way in which this
estimation is made constitutes the main differences
between the different methods. One commonly used
approach is to estimate the smoothness of the SI and
then to use results from random field theory to obtain
expressions for the pds of the different statistics:
global maxima [Worsley et al., 1992, 1996] and cluster
size (for Gaussian SI) [Friston et al., 1994; for a review,
see Cao, 1997]. Recent developments in this field have
enabled an approximate expression for the pd of clus-
ter sizes also for t-images [Cao, 1997, 1999]. For a
stationary t-image, this expression only is dependent
on the smoothness and the degrees of freedom (df) of
the t-image. However, since the smoothness usually is
unknown, it has to be estimated, and the pds of the
test statistics are dependent on this estimate. Another
approach to obtain probabilities of different test sta-
tistics is the nonparametric method described in
Holmes et al. [1996]. Here, a randomization approach
is used to test hypotheses on the test statistics, and this
approach is basically free from assumptions.

The fact that the pd of the test statistic is dependent
on parameters that are difficult to estimate makes the
statistical analysis of functional imaging data different
from the traditional usage of statistical tests where the
pd of the test statistic is known and often even tabu-
lated. It is therefore an important task to find good
estimators of the pd of test statistics in functional brain
image analysis.

In a recent paper, we described a method (referred
to as the CS method) that can be used to estimate the
pd of cluster sizes [Ledberg et al., 1998]. This method
utilizes a linear model to test hypotheses and thus to
generate SIs (t-images). These images are subse-
quently converted to normal distributed images (i.e.,
Gaussianized). The cluster size (i.e., the number of
connected voxels above a certain threshold) is the
statistic used to detect the regional changes. The pd of
this statistic is estimated with Monte Carlo simula-
tions. In these simulations, a large number of random
images (referred to as simulated statistical images,
SSIs) are generated to represent SIs under the null
hypothesis. These simulations are based on the as-

sumption that the Gaussianized t-images can be ap-
proximated by stationary normally distributed im-
ages. This is a good approximation for t-images with
many degrees of freedom but is less good for t-images
with few df and thus limits the usage of the CS
method. Furthermore, the approach adopted to gen-
erate the SSIs, although technically correct is difficult
to implement due to the relatively small size (i.e.,
number of voxels in each dimension) of the images,
especially when the images are heavily smoothed.

The purpose of the present paper is to present a
more robust method for generating the pd of the clus-
ter size statistic under the null hypothesis. This
method requires the statistical images to be neither
normally distributed nor stationary. The main steps of
the proposed method are: (i) fitting a linear model to
the data, (ii) testing hypotheses on the parameters in
the model, (iii) generating many SSIs having the same
pd as the observed SI would have under the null
hypothesis, and (iv) searching these generated SSIs for
clusters above a certain threshold in order to estimate
the pd of the cluster size statistic. The difference be-
tween this modified CS method (henceforth MCS
method) and the CS method of Ledberg et al. [1998]
concerns the generation of the SSIs (i.e., step iii). The
SSIs are now generated from datasets having the same
distribution as the residuals in the linear model. The
variates in each and every voxel of these SSIs are
t-distributed; thus, the original t-image need not be
Gaussianized. Furthermore, the SIs need not be sta-
tionary for this approach to be applicable. Detailed
descriptions of each step is given in the next section.
The method is validated on two different sets of im-
ages: synthetical and real PET images. A comparison
between the MCS and the CS method also is made.
The validation shows that the MCS method gives re-
liable estimates of the pds, and the comparison with
the CS method shows that the MCS method is indeed
a significant improvement of the CS method.

THEORY

Notation

Let the following boldface upper case letters denote
matrices and boldface lower case letters denote vec-
tors. Sometimes, where appropriate, vectors will be
referred to as images and the components of the vec-
tors as voxels of the image. Let A9 denote the trans-
pose of A, let A2 denote a generalized inverse of A.
Let R denote the Kronecker product. Let N(M, Fn ^

Sv) represent the multivariate normal distribution
with mean value matrix M and covariance matrix Fn
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^ Sv, where Fn is a symmetric nonnegative definite
n 3 n matrix and Sv is a symmetric nonnegative
definite v 3 v matrix. This notation means that if U
5 (u1u2

. . . un)9 is a n 3 v random matrix, then to
say that U is distributed as N(M, Fn ^ Sv) means
that the nv 3 1 vector (u1, u2, . . . , un)9 is normally
distributed with mean vector (m1, m2, . . . , mn)9 and
covariance matrix Fn ^ Sv, where mi is the ith row
of the n 3 v matrix M. Let tr represent the univariate
Student’s t distribution with r df. An image in which
the variables in each and every voxels are distributed
as tr is called a t-image and the values in the voxels in
this image are called t-values. With the df of a t-image
is meant the df of the t-distributed values in each
voxel. Let diag(A) be a matrix operation that sets all
the off diagonal terms of A to zero. Finally some
notation concerning clusters. If t is a t-image with a
certain df, let clu(t, a) denote the sets of connected
voxels in t in which all voxels have a t-value equal to
or higher than the t-value corresponding to a p-value
of a. Note that this t-value is dependent on the df of
the image. For example, if t has 53 df and a 5 0.01 then
clu(t, a) are the sets of connected voxels in t in which
all voxels have a t-value equal to or higher than 2.399.
a and the corresponding t-value will be referred to as
the “threshold” of t interchangeably. These sets of
connected voxels are called “clusters,” and the size of
a cluster is the number of voxels it consists of. Let
s(clu(t, a)) denote the set of sizes of the clusters in t
above the threshold a and let max{s(clu(t, a))} denote
the maximum of these sizes.

Fitting a linear model to the data

Consider a set of functional images obtained in a
number of subjects. As an example take six subjects,
ten scans per subject, five obtained under the condi-
tion TEST and five under CONTROL. All images are
assumed to be in the same anatomical format so that
voxel-wise comparisons make sense. Let Y be a n 3 v
matrix where n is the number of scans (i.e., 60 in the
example) and v is the number of voxels in each scan.
That is, each scan is represented as a row in Y. Let X be
a n 3 p design matrix; thus, there are p parameters in
the model. A linear model for the data is then

Y 5 XB 1 E (1)

Here B is a p 3 v matrix that contains the parameters
for each voxel and E is a n 3 v matrix of error terms.
The df of this model is g 5 n 2 rank (X). This model
is equivalent to the design model described in Ledberg

et al. [1998] but formulated for all voxels at the same
time. Figure 1 shows the design matrix for the exam-
ple case. Only two factors, condition (two levels) and
subject (six levels), are used in this case. Let B̂ be the
matrix containing the parameter estimates (i.e., B̂ 5
(X9X)2X9Y) and let R 5 Y 2 XB̂ be the matrix
containing the residuals. To proceed, the following
assumption is needed: E is distributed as N(0, In ^

S) and rank (S) 5 v.

Testing hypotheses on the estimated parameters

Almost all hypotheses of interest can be formulated
as linear combinations of the estimated parameters, so
called contrasts. In the example, consider the contrast
TEST-CONTROL. That contrast would be implemented
by hB̂, with h 5 [0 1 21 0 0 0 0 0 0]. The
variance of this contrast can be estimated as
var̂~hB̂! 5 diag$R9R~h~X9X! 2 h9!%/g [Graybill, 1976;
Muirhead, 1982]. If hB̂ is divided with the square root
of this estimated variance we get a SI t say,

Figure 1.
This figure shows the design matrix used. The columns refer to
mean value (one column), task factor (two columns) and subject
factor (six columns). The rows represents the scans.
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t 5 ~hB̂!~var̂~hB̂!! 2 1/2 (2)

Such a SI is referred to as a t-image, because the
variable in each and every voxel is distributed as tg.

To detect the significant regional changes in t,
s(clu(t, a)) is compared to the pd of max{s(clu(tnull,
a))} where tnull denotes a t-image obtained under the
null hypothesis. A cluster of size s is classified as
significant at the 0.05 level if

p(max{s(clu~tnull, a!)} $ s),0.05 (3)

The next issue then concerns how to estimate the pd of
max{s(clu(tnull, a))}. This pd will be estimated by gen-
erating many images having the same pd as t would
have had under the null hypothesis and sampling
these simulated t-images for the largest clusters. How
these SSIs are generated is the issue of the next section.

Generating the images

This is the most important step in the MCS method
and is also the step where the MCS method differs
from the CS method. The generation of the images is
based on a very simple idea described below. Some of
the more technical aspects are dealt with in the Ap-
pendix.

The main idea is to generate a set of images having
the same distribution as the real images would have
under the null hypothesis and then to derive a t-image
from these images. The original data matrix Y should
not be a realization of the null hypothesis (because
there should be differences between TEST and CON-
TROL). Instead, the residuals R will be used as a
model for a dataset obtained under the null hypothe-
sis. This is intuitively appealing since if B 5 0 in the
linear model (Eq. 1), then R . Y. The issue is then to
generate datasets having the same distribution as R.
To do this, one can use the fact that distributions of the
type N(0, In R S) are invariant under left multiplica-
tion with orthogonal matrices [i.e., if Z is distributed
as N(0, In ^ S)] and G is an orthogonal n 3 n
matrix then GZ will also be distributed as N(0, In ^

S). However, the situation is slightly more compli-
cated since R is distributed as N(0, M ^ S) where M
5 (I 2 X(X9X)2X9), so it has to be transformed into
a distribution of the N(0, In ^ S) type for the invari-
ance argument to work. How this can be done is
shown in the Appendix. Thus, a matrix, R̃ say, distrib-
uted as N(0, Ig ^ S) is generated. From this matrix,
new matrices, Ri say, with the same distribution, are
derived as follows: R̃i 5 GiR̃ where Gi is a random

orthogonal matrix of size g 3 g. From these R̃i images,
t-images are generated by, for each column, dividing
the estimated mean value with the estimated standard
deviation. This will generate a t-image with g 2 1 df.

Estimating the probability distribution

The df of the simulated t-images generated as de-
scribed above, is g 2 1, whereas the df of the original
t-images is g. However, by using thresholds corre-
sponding to the same a, this discrepancy should not
matter. Thus, each of the simulated t-images is
searched for clusters above the threshold given by a at
g 2 1 df, whereas the real t-images are searched for
clusters above the threshold given by a at g df. The
estimation of the pd of max{s(clu(t, a))} from the
simulated t-images is done as follows: the probability
of obtaining a cluster of size s say, is estimated by
dividing the number of simulated t-images in which a
cluster of size s or larger occurred with the total num-
ber of simulated t-images [see Eq. 11 in Ledberg et al.,
1998].

VALIDATION

In this section, the MCS method is validated and
compared to the CS method. This validation/compar-
ison is made on two different sets of data. The first set
consists of synthetical (i.e., computer-generated) noise
images, and the second set consists of real PET data.
Because the true pd of the cluster size statistic is
unknown, the validity of the pd estimated with MCS
method will be investigated by a comparison with a
reference pd derived by a randomization procedure.
The choice of reference pd is important, and is the
issue of the next section.

Generating the reference distribution

To see whether the MCS method gives an accurate
estimation of the pd of the cluster size statistic, one
would like to know the true distribution. Because this
distribution is unknown, it also needs to be estimated
by some means. I have chosen to use a nonparametric
randomization procedure to derive the reference dis-
tribution. A randomization procedure is not depen-
dent on any strong assumptions about the data (as-
sumptions that might be wrong) and is in this respect,
a good way to generate the reference distribution. A
general introduction to randomization tests is given in
Edgington [1980], and for an applications to PET im-
ages, see Holmes et al. [1996] and Ledberg et al.
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[1998].1 As argued in Ledberg et al. [1998], a random-
ization procedure might lead to conservative esti-
mates of the pd of the cluster size statistic. This is
because some of the randomizations will be close to
the original ordering of the scans, and thus the de-
rived t-image will contain signal. One way around this
problem is to use a step-down procedure [Holmes et
al., 1996]. In the step-down procedure, one starts with
a randomization on the whole image (the first step).
The voxels belonging to significant clusters (if any) are
then removed and a new set of randomizations is
performed on the remaining voxels (the second step).
The significant clusters (if any) are again removed and
a new set of randomizations are performed (the third
step). In principle, one can continue as long as there
are any significant clusters in the original t-image.

Synthetical images

Three different sets of synthetical images of size
64 3 64 3 64 voxels were generated, with the value of
each voxel distributed as N(0, 1). The images in the
first set were smoothed with a Gaussian kernel of
three voxels FWHM and those in the second set with
a kernel of six voxels FWHM. The images in the third
set were smoothed with a Gaussian kernel of three
voxels FWHM in the central part and with a kernel of
six voxels FWHM in the peripheral parts. The purpose
of using two filters of different widths in the same
image was to generate nonstationary images (Fig. 2).
To the first two sets of images, three linear models of
14, 30, and 62 df, respectively, were applied. For each
combination of smoothness and df, the pd of the clus-
ter size statistic at two different thresholds was deter-
mined with the MCS method using 5000 SSIs. The
reference distribution was calculated by the random-
ization procedure. The results are shown in Figures 3
and 4. Because in this case there are no signals in the
images, the randomizations will give the correct dis-
tribution without using the step-down approach.
However, for low df, only very few randomizations
can be made, which makes the estimates noisy (as can
be seen in the figures). It is clear from the figures that
the MCS method gives accurate estimates for p-values
above 0.01 for both filter widths and all df. For smaller
p-values, the lack of fit between the MCS and the

randomization method is probably because of the low
number of randomizations used. This is because esti-
mating the tails of the pd requires many simulations/
randomizations. To verify that the two estimates do
converge, a large number of simulations/randomiza-
tions were made on a set of smaller images. These
images were the central 39 3 39 3 39 voxels of the
images comprising the three voxel FWHM dataset.
15000 simulations/randomizations were made on
these images with a model of 62 df. The results are
shown in Figure 5. It is clear that the two estimates are
very similar if enough simulations/randomizations
are made.

For the third set of images, the nonstationary set, a
model of 62 df was applied. The pd of the cluster size
statistic was estimated with the MCS method as well
as with the CS method. The reference distribution was
calculated with the randomization procedure. The re-
sult is shown in Figure 6. It is clear that the MCS
method gives very accurate estimates also on these
nonstationary images. However, the CS method per-
formed less well, as expected.

Real PET data

To evaluate the performance of the MCS method on
real PET data, it was applied to the same dataset used
in the evaluations in Ledberg et al. [1998]. A short
description of the experiment and image preprocess-
ing is given on the next page.

1Note that, in this paper, the randomization procedure is used as a
tool to estimate the “true” underlying pd. This differs from the
usage of the same procedure in randomization tests where one is
not interested in any underlying pd and where the “distribution” of
the test statistic obtained by the randomizations always (by defini-
tion) is the “true” distribution.

Figure 2.
This figure shows a section from one of the nonstationary images
used in the validation. The central part was filtered with a Gaussian
filter with three voxels FWHM and the peripheral part with a
Gaussian filter with six voxels FWHM.
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Six subjects participated in this study. They all gave
informed consent. The study was approved by the
local Ethics Committee and the Radiation Safety Com-
mittee of the Karolinska Hospital. Each subject was
scanned in a PET scanner (SIEMENS-CTI ECAT

EXACT HR) during ten injections of 15-O labeled bu-
tanol. The experimental paradigm consisted of two
conditions each repeated five times. The conditions
will be referred to as TEST and CONTROL. For each
subject, the ten injections were divided into five blocks

Figure 3.
This figure shows the estimated probabilities of the cluster size
statistic. The data are from the synthetical images filtered with a
Gaussian filter of three voxels FWHM. Two different thresholds
were used for each df. The dashed line shows the reference

distribution as determined by randomizations. The solid line
shows the probabilities estimated with MCS method. Please note
that a logarithmic scale is used for the y-axis.
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of two injections each. In each block, the order be-
tween TEST and CONTROL was randomized with the
restriction that each block had to contain one TEST
and one CONTROL condition. The TEST consisted in
a two alternative forced choice tactile discrimination
paradigm [Roland and Mortensen, 1987]. The subjects
discriminated which of two aluminum parallellepi-
peda was the most oblong. They made the discrimi-

nation using active palpation with their right hand. In
CONTROL, the subjects were lying in the PET scanner
with their eyes closed and were instructed not to do or
think anything in particular. Arterial radioactivity was
continuously monitored during all injections. All data
was acquired with the PET scanner operating in 3-D
mode. The images were reconstructed with a ramp
filter having a cutoff frequency of 0.5 to a voxel size of

Figure 4.
This figure shows the estimated probabilities of the cluster size
statistic. The data are from the synthetical images filtered with a
Gaussian filter of six voxels FWHM. Two different thresholds
were used for each df. The dashed line shows the reference

distribution as determined by randomizations. The solid line
shows the probabilities estimated with the MCS method. Please
note that a logarithmic scale is used for the y-axis.
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2 3 2 3 3.125 mm. In all images, only data in voxels
contained inside the brain were used for further anal-
ysis, all other voxels were set to zero. This zeroing was
done to prevent filtering in spurious data located out-
side the brain. The images were then filtered with a
Gaussian filter of 6 mm FWHM in all dimensions. For
each individual, the images from injections two to ten
were aligned to the image from the first injection using
the AIR-software [Woods et al., 1992]. Regional cere-
bral blood flow (rCBF) was calculated using an auto-
radiographic method [Meyer, 1989]. Subsequently, we
used information obtained from individual MR scans
to reformat all images into a standard anatomical
space [Roland et al., 1994] with cubic voxels of 2 3 2 3
2 mm. The global cerebral blood flow was normalized
to 50 ml/100 gmin by multiplication by a constant.

The design matrix used to model the data is shown
in Figure 1. The pd of the cluster size statistic for this
model was estimated with the MCS and CS methods
at two different thresholds corresponding to a 5 0.01
and a 5 0.0005. The reference pd in this case was also
generated using the randomization procedure. Unlike

the above case of synthetic images, however, these real
PET images do contain a strong signal that will make
the distributions generated by the randomizations too
conservative. However, by using the step-down pro-
cedure described above, this bias can be minimized.
For the present dataset, three steps were used and, at
each step, the significant clusters at 0.05 level were
removed. The number of randomizations was 5000 at
each step. The pd obtained in the third step was used
as the reference distribution. Because this pd is ob-
tained from a subset of the original voxels (the voxels
of the significant clusters in the previous two steps
have been removed), the MCS and CS methods were
also applied to the same subset of voxels. Thus, the pd
derived from the CS and MCS methods and the refer-
ence pd were generated from the same set of voxels,
and because these voxels do not contain any signal,
the distributions should be the same. For the MCS and
CS methods, 5000 simulations were used to estimate
the pds. The results are shown in Figure 7. It is clear
that, at both thresholds, the MCS method gives reli-
able estimates of the probabilities for probabilities

Figure 5.
This figure shows the estimated probabilities of the cluster size
statistic on a subset of the three voxel FWHM dataset. 15,000
simulations/randomization were made. The solid and dashed lines
refer to the MCS and randomization methods, respectively. The

top figure shows cluster sizes above a threshold of 2.0 and the
lower figure above thresholds of 3.457 and 3.454 for the MCS and
randomization methods, respectively.
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higher than 0.01. Furthermore, it is clear from Figure 7
that the MCS method is better than the CS method
because it gives an estimate closer to the one obtained
by the randomizations.

DISCUSSION

MCS vs. CS

This paper has presented a novel way of estimating
the probabilities of cluster sizes in PET images. The
method is a modification of a previously presented

method, the CS method of Ledberg et al. [1998]. Al-
though very similar in spirit, there are some important
differences between the two methods. In the CS
method, it is assumed that the t-images obtained un-
der the null hypothesis are stationary and that they
can be converted to a normal distribution (Gaussian-
ized). These assumptions are not always valid. Fur-
thermore, the relatively small sizes (i.e., number of
voxels in each dimension) of the images makes the CS
method less well suited for images with a broad au-
tocorrelation function (acf) (i.e., smooth images). This
is because the estimator of the acf [Eq. 2 in Ledberg et

Figure 6.
This figure shows the estimated probabilities of the cluster size
statistic for the nonstationary dataset. In the upper figure, the
threshold used was 2.0, and in the lower it was 3.457 and 3.454 for

the MCS and randomization methods, respectively. The solid,
dashed, and dotted lines refer to the MCS, randomization, and CS
method, respectively.

r Robust Estimation of the Probabilities of 3-D Clusters r

r 151 r



al., 1998] is noisy at large lags and smooth images will
have a nonzero acf at large lags. Another drawback of
the CS method (at least in its current implementation)
is that it requires the user to set the value of a param-
eter used to scale the filter kernel used to generate the
SSIs, so that the result can in this respect be dependent
on the particular user. In the MCS method, on the
other hand, the t-images need not be stationary, they
are not converted into a normal distribution, and there
are no parameters to be set by the user. The only

assumption needed in the MCS method is that the
error terms in the model (Eq. 1) are distributed as N(0,
In ^ S).

The validation showed that the MCS method gives
accurate estimates of the pd of the cluster size statistic
independent of the df of the models and the smooth-
ness of the images. Furthermore, it was shown that the
MCS method also gives good estimates on nonstation-
ary images. This was in contrast to the CS method that
did not work so well on these images (Fig. 6). That the

Figure 7.
This figure shows the estimated probabilities of the cluster size
statistic for the real PET dataset. The thresholds in the upper
figure are 2.399, 2.400, and 2.33 for the randomization, MCS, and
CS methods, respectively, and in the lower figure 3.484, 3.488, and
3.29. The dashed line corresponds to the reference distribution as

determined with the randomization procedure (step three). The
solid line shows the results of the MCS method and the dotted line
shows the estimate obtained by the CS method. Please note that
a logarithmic scale is used for the y-axis.
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CS method performed less well on the nonstationary
images is not surprising because the estimator of the
acf used assumes that the image is stationary. The
impact of nonstationarity on the estimated pds will
most likely vary depending on the source nonstation-
arity. Because it is unknown whether the SIs obtained
in real PET experiments are stationary or not, one
should perhaps be a little careful in using methods
assuming stationarity. The comparison between the
MCS and CS methods on the real PET data showed
that the MCS method generated pds closer to the ones
obtained by the randomizations. The CS method gen-
erated too conservative estimates, something that was
observed also in Ledberg et al. [1998]. That the MCS
method performed better on the real PET image might
be because the assumption of stationarity is violated in
these images. It could, however, have other explana-
tions as well.

Because the MCS method gave better results than
the CS method on both nonstationary and real PET
data, it is indeed a significant improvement.

MCS vs. randomizations

Because both the randomization and MCS methods
require quite massive computations to estimate the
pds for each dataset and, as shown in the validation,
gives very similar estimates of the pds, it might seem
that the MCS method is superfluous: why not always
use the randomizations? However, the randomization
approach has two drawbacks: (i) The number of pos-
sible randomizations can be very low for designs with
a low df. This implies that the estimates might be
conservative. (ii) Not all designs are suitable for ran-
domization tests. Furthermore, if the images contain a
signal, especially a strong signal, the estimated pds
will be too conservative unless a (time-consuming)
step-down approach is used. The MCS method does
not suffer from these shortcomings. On the other
hand, the MCS method relies on the assumption that
the error terms in the linear model have a multivariate
normal distribution. This assumption is not needed in
the randomization approach. Another difference be-
tween the MCS and randomization methods is that the
SSIs generated in the MCS method have df 5 l 2 1,
whereas the original t-images as well as the SSIs from
the randomization have df 5 l. However, this differ-
ence did not seem to matter if the appropriate thresh-
olds were used, as shown in the validation.

Thus, the applicability of the MCS method comple-
ment that of the randomizations. The only limiting
factor is the assumption of multivariate normality of
the residuals. This assumption can probably be weak-

ened to any distribution invariant under left multipli-
cation by orthogonal matrices.

Random field and nonstationarity

To be able to apply the distributional results from
random field theory, the SI need to be stationary.
However, a technique developed recently by Keith
Worsley and colleagues [Worsley et al., 1999] might be
a way out of this limitation. Given a nonstationary SI,
the idea is to warp this image into a new space where
it is stationary. In this new space, one calculates the
threshold corresponding to a desired a, applies this
threshold, and then warps the image back to the orig-
inal space.

Implementation

The MCS requires an estimation of the pd for each
study where it is applied. These estimations are time
consuming and require a computer with much mem-
ory. The current implementation required 512 Mbyte
fast (100 MHz) RAM and the 5000 simulations on the
real PET dataset took approximately 24 h on a com-
puter with an Intel™ Pentium™ II processor of 400
MHz clock frequency. Probably, in studies with a very
similar design and data preprocessing, the same clus-
ter size thresholds will turn out to be significant. How-
ever, with small groups of subjects, some variance can
be expected. The time to do one simulation is propor-
tional to the square of the number of voxels times the
number of scans (i.e., double the number of scans and
the time it takes to make one simulation will increase
by a factor of four). The software is available for Sun
Solaris and Linux operative systems on request to the
author.

CONCLUSIONS

The MCS method was shown to give accurate esti-
mates of the probabilities of suprathreshold clusters in
both stationary and nonstationary images. It was also
shown to give “better” estimates than the CS method
of Ledberg et al. [1998]. Thus, the MCS is a possible
alternative to randomization tests in situations where
the assumptions of the more theoretical approaches
are violated.
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APPENDIX

Here, it is described how the simulated statistical
images are generated both in the randomization and
MCS methods. The assumption about the residuals in
the randomization method is not really needed but it
is used to show how closely related the two methods
are. For proofs of some of the statements below, see
Eaton [1983].

A linear model for the data

Let Y be a n 3 v matrix containing the observa-
tions, with n scans and v voxels per scan (v @ n). Let

Y 5 XB 1 E (A1)

be a linear model for the data in Y where X is the
design matrix, B is a matrix containing the parameters,
and E is a matrix of errors. The errors are assumed to
be distributed as N(0, In ^ S). Let h be a testable
contrast, then an estimate of hB is given by

moriginal 5 h~X*X! 2 X*Y (A2)

moriginal is distributed as N(hB, h(X*X) 2 h*S) and an
estimate of the variance of moriginal is given by

var̂~moriginal! 5 ~diag~Y*MY!h~X*X! 2 h*!/g (A3)

where M 5 (I 2 X(X*X) 2 X9) and g is the degrees
of freedom of the model (i.e., n 2 rank(X)). By divid-
ing the estimate of hB with the square root of the
estimated variance, we get a t-image:

toriginal 5 moriginal~var̂~moriginal!!
2 0.5 (A4)

The two different approaches to generate simulated
statistical images having a similar distribution to what
toriginal would have under the null hypothesis are de-
scribed below.

Randomizations

Let Pi be a n 3 n permutation matrix. Assume that
the permutation described by Pi makes sense given
the present design. Then let Xi 5 PiX where X is the
same design matrix as above. Then we have a new
linear model for the data, namely, Y 5 XiBi 1 Ei.
Using the same contrast h as above we get

mrand 5 h~X*i Xi!
2 X*i Y 5 h~X*X! 2 X*P*i Y (A5)
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and under the assumption that the residuals in the
new model have the same distribution as the residuals
in the old model, we have the following distribution of
mrand: N(hBi, h(X*X) 2 h*S). Thus, mrand has the same
variance–covariance structure as moriginal. In complete
analogy of how toriginal was formed, we can now form
trand. If the null hypothesis is true, the distribution of
trand will be the same as that of toriginal.

Simulations2

Let Y, X, M, and E be as above. Let R be the resid-
uals of the model in Eq. (A1) (i.e., R 5 Y 2 XB 5
MY). R is distributed as N(0, M R S). Because M is an
orthogonal projection, it can be decomposed into the

product of two orthogonal matrices, M 5 KK*, say
with K being of size n 3 g. It then follows that K*R
is distributed as N(0, Ig ^ S) where Ig is the identity
matrix of size g 3 g. Let Gi be a random orthogonal
matrix of size g 3 g. Because distributions of the type
N(0, Ig ^ S) are invariant under left multiplication
by orthogonal matrices, it follows that GiK*R is also
distributed as N(0, Ig ^ S). By dividing the mean of
each column of GiK*R with the estimated standard
deviation of each column and multiplying with the
square root of the degrees of freedom, we obtain tsimul.
This image will have a distribution similar to what
toriginal would have had under the null hypothesis, but
the df of this image is g 2 1, whereas the df in toriginal

is g. However, by adjusting the threshold to yield the
same a for the two different df, this should not matter.
The orthogonal matrices Gi are generated by con-
structing an orthonormal basis for random normal
matrices (distributed as N(0, Ig ^ Ig)) using a sin-
gular value decomposition [Press et al., 1992].

2The derivation below was inspired by a suggestion from an anon-
ymous reviewer. An earlier version of the SSI generation was based
on a singular value decomposition of the residuals, an equivalent
but less clear approach.
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