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Abstract: According to Friston, brain dynamics can be modelled as a large ensemble of coupled nonlinear
dynamical subsystems with unstable and transient dynamics. In the present study, two predictions from
this model (the existence of nonlinear synchronization between macroscopic field potentials and itinerant
nonlinear dynamics) were investigated. The dependence of nonlinearity on the method of measuring
brain activity (EEG vs. MEG) was also investigated. Dataset I consisted of 10 MEG recordings in 10 healthy
subjects. Dataset II consisted of simultaneously recorded MEG (126 channels) and EEG (19 channels) in 5
healthy subjects. Nonlinear coupling was assessed with the synchronization likelihood S and dynamic
itinerancy with the synchronization entropy Hs. Significance was assessed with a bootstrap procedure
(“surrogate data testing”), comparing S and Hs with their distribution under the null hypothesis of
stationary, linear dynamics. Significant nonlinear synchronization was detected in 14 of 15 subjects. The
nonlinear dynamics were associated with a high index of itinerant behaviour. Nonlinear interdependence
was significantly more apparent in MEG data than EEG. Synchronous oscillations in MEG and EEG
recordings contain a significant nonlinear component that exhibits characteristics of unstable and itinerant
behaviour. These findings are in line with Friston’s proposal that the brain can be conceived as a large
ensemble of coupled nonlinear dynamical subsystems with labile and unstable dynamics. The spatial scale
and physical properties of MEG acquisition may increase the sensitivity of the data to underlying
nonlinear structure. Hum. Brain Mapping 19:63–78, 2003. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Synchronization of activity within and between
neuronal networks in the brain is currently the focus

of intense research efforts [Bhattacharya 2001; Fries et
al., 1997; Tallon-Baudry et al., 2001; Varela et al., 2001].
This interest is due to the idea that synchronous oscil-
lations may be an important mechanism by which
specialized cortical and subcortical regions integrate
their activity into a functional whole [Singer, 2001].
Thus, they are an important candidate solution for the
so-called “binding problem.” Synchronous oscillations
in different frequency bands may correspond to dif-
ferent functions and different spatial scales of integra-
tion [Basar et al., 2001]. By and large, low frequencies
in particular in the theta band, are hypothesized to
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play a role in coupling between distant brain regions
(for instance prefrontal and post rolandic association
cortices) whereas high frequencies are thought to be
more important for short-range interactions [von Stein
and Sarnthein, 2000].

The importance of synchronous gamma band activ-
ity for object representation was first reported in ani-
mal studies in the early 1990s [Eckhorn et al., 1988;
Engel et al., 1991; Gray et al., 1989]. This basic result
has now been replicated many times, also in awake
human subjects using EEG [Rodriguez et al., 1999;
Tallon Baudry et al., 2001]. Synchronous gamma os-
cillations may provide a mechanism whereby complex
objects are temporarily represented in working mem-
ory [Bertrand and Tallon-Baudry, 2000] or a way to
bind brain regions involved in associative learning
into Hebbian cell assemblies [Miltner et al., 1999].

Local synchronization in the theta band has been
associated with encoding and retrieval of information
in episodic memory [Burgess and Gruzelier, 1997,
2000; Klimesch et al., 1994; Klimesch 1996, 1999]. Theta
band coupling between frontal and post rolandic cor-
tical regions has been reported during the retention
interval of visual working memory tasks [Anokhin et
al., 1999; Sarnthein et al., 1998; Stam, 2000] as well as
during an N-back working memory task [Ross and
Segalowitz, 2000]. According to Anokhin et al. [1999]
stronger theta band coherence is associated with a
higher intelligence. Local desynchronization in the
lower alpha band has been associated with attentional
processes and upper alpha band desynchronization
with semantic memory in a number of studies by
Klimesch and coworkers [reviewed in Klimesch 1996,
1999]. The functional meaning of long distance cou-
pling in the alpha band is less clear. Despite the fact
that the importance of synchronous oscillations at dif-
ferent spatial scales and in different frequency bands
for integrating brain activity is increasingly accepted,
several questions need to be addressed. These ques-
tions relate to the origin and nature of synchronous
oscillations and their relationship to optimal informa-
tion processing in the brain. We discuss two ambitious
models of brain dynamics that have attempted to deal
with these issues.

In a series of studies, Edelman and co workers
stressed that optimal information processing in the
brain requires a delicate balance between local special-
ization and global integration/synchronization of
brain activity [Tononi et al., 1994, 1998a,b]. They in-
troduced a measure, the neural complexity or CN,
which quantifies how optimal the balance between
local specialization and global integration is [Tononi et
al., 1994]. This measure was applied to fMRI data in

Friston et al. [1995]. According to the model of Tononi
et al., the neural complexity is expected to decrease
during states of lower consciousness and impaired
brain function. However, increased rather than de-
creased neural complexity has been reported during
epileptic seizures and in Alzheimer’s dementia, which
is in disagreement with the predictions of the model
[Van Cappellen van Walsum et al., unpublished data;
Van Putten and Stam, 2001].

A different concept of integrative brain dynamics
has been put forward by Friston [2000a–c]. Friston
models the brain as a large number of interacting
nonlinear dynamical systems. The elementary states of
such a system are designated “neural transients,”
which can be thought of as brief spatiotemporal pat-
terns of synchronous brain activity. Friston stresses
the “labile” nature of normal brain dynamics, which
consists of a rapid succession of neural transients and
itinerant jumping between different marginally stable
dynamical states (The terms “nonstationary,” “tran-
sient,” “unstable,” and “itinerant” may have different
meanings in different contexts. To clarify the present
use of these terms, we include a short list of definitions
in the Appendix). In this model interactions between
subsystems can be linear (as in the case of synchro-
nous oscillations) as well as nonlinear. Nonlinear in-
teractions between brain regions may reflect the un-
stable nature of brain dynamics including the
changing modulatory influences of one frequency
band on another (“asynchronous coupling”). In a
modeling and experimental study, Breakspear [2002]
demonstrated how interactions between coupled non-
linear dynamical systems can give rise to some of the
phenomena described by Friston, and how such activ-
ity may contribute to the varying waveform of the
alpha rhythm. In the model of Friston, optimal infor-
mation processing is not obtained by a static balance
between specialization and integration, but rather by
unstable, nonlinear dynamics with rapidly fluctuating
interactions [Friston, 2000b]. The model of Friston thus
predicts that at least some of the interactions between
brain regions will be nonlinear and transient. In con-
trast, the theory of Tononi et al. is compatible with
linear and stationary dynamics.

There is some empirical evidence for (nonlinear)
coupling between theta and gamma frequencies in
EEG [Schack et al., 2001, 2002] and MEG recordings
[Friston, 2000a]. Several studies have attempted to
demonstrate nonlinear dynamics in normal EEG re-
cordings. In most cases, nonlinearity was studied with
measures that characterize local dynamics [Pritchard
et al., 1995; Stam et al., 1999] or global dynamics
[Rombouts et al., 1995]. The convergent finding of
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these studies is that nonlinear activity is present in
scalp EEG data, at strong levels of significance, albeit
only weakly and/or intermittently. Recent investiga-
tions of nonlinear interdependence between scalp
EEG channels similarly report robust statistical evi-
dence for nonlinear effects in approximately 5% of
windowed epochs [Breakspear and Terry, 2002]. There
is some evidence for nonlinear structure in MEG data
[Kowalik et al., 2001] but nonlinear interactions be-
tween channels have not been studied.

To test the predictions of Friston a measure is
needed that is sensitive to nonlinear interdependen-
cies between time series and can deal with transient
dynamics. Measures based upon the concept of gen-
eralized synchronization seem to be suited for this
goal [Le van Quyen et al., 1998; Rulkov et al., 1995;
Schiff et al., 1996]. In the pathological case of epileptic
seizure activity nonlinear coupling between EEG sig-
nals has been demonstrated with this class of synchro-
nization measures [Le van Quyen et al., 1998]. Re-
cently, we introduced the synchronization likelihood,
which is also based upon the concept of generalized
synchronization but avoids some of the shortcomings
of the other methods [Stam and van Dijk, 2002]. The
synchronization likelihood characterizes linear as well
as nonlinear synchronization between time series and
can be computed with a high temporal resolution.
From the synchronization likelihood a second mea-
sure, the synchronization entropy, can be computed.
This measures the spatio-temporal variability of syn-
chronization, and thus reflects the presence of unsta-
ble dynamics. With the synchronization likelihood, a
loss of functional connectivity in upper alpha, beta,
and gamma frequency bands could be demonstrated
in MEG recordings of Alzheimer patients [Stam et al.,
2002b]. In healthy subjects, theta band synchroniza-
tion likelihood as well as synchronization entropy
were increased during the retention interval of a
working memory task [Stam et al., 2002a].

The present study was undertaken to further ex-
plore the nature of synchronous activity in the brain
and to test some of the predictions of the model pro-
posed by Friston [2000a–c]. Three questions were ad-
dressed: (1) Is there evidence for nonlinear interac-
tions between different neural networks in the brain?
(2) If there is evidence for nonlinearity, to what extent
is this related to transient or itinerant brain dynamics
with rapidly fluctuating synchronization levels? (3)
Are MEG recordings better able to detect nonlinear
interactions than EEG recordings? To examine these
questions, MEGs and EEGs recorded in 10 elderly and
5 young healthy subjects during a no-task, eyes-closed
condition were studied with the synchronization like-

lihood and the synchronization entropy. The presence
of nonlinear structure was tested statistically with
phase randomised, multichannel surrogate data [Pri-
chard and Theiler, 1994; Rombouts et al., 1995].

SUBJECTS AND METHODS

Subjects

In this study, recordings of two groups of healthy
subjects were investigated. The first group (dataset I)
consisted of ten healthy subjects (control subjects
taken from a study on MEG changes in Alzheimer’s
disease). Mean age was 64.5 year (range: 53–74 years);
three subjects were male. Three subjects were left-
handed (1 male). All subjects disavowed a history of
cognitive dysfunction, and were screened for signs of
cognitive decline/dementia. The protocol of this study
was approved by the medical ethical Review Board of
the Vrije Universiteit Medical Centre. All subjects or
their relatives gave written informed consent after the
nature of the procedure was explained. The second
group (dataset II) consisted of five healthy subjects, all
co-workers of the MEG centre at the VU University
medical centre (two females; mean age 30.5 year,
range 25–38 years; all right-handed).

MEG and EEG recordings

Magnetic fields were recorded while subjects were
seated inside a magnetically shielded room (Vacuum-
schmelze GmbH, Germany) using a 151-channel
whole-head MEG system (CTF Systems Inc., Canada).
A third order software gradient (Vrba, 1996) was used
with a recording passband of 0.25–125 Hz. Fields were
measured during a no-task, eyes-closed condition. At
the beginning and conclusion of each recording, the
head position relative to the co-ordinate system of the
helmet was recorded by leading small AC currents
through three head position coils attached to the left
and right pre-auricular points and the nasion on the
subject’s head. Head position changes during a re-
cording condition up to approximately 1.5 cm were
accepted.

In the case of dataset I, 16-sec artefact-free epochs
(sample frequency 250 Hz; 4,096 samples) of MEG
data were chosen for analysis. Of the original 151
channels, 34 were excluded either because their loca-
tions were too inferior for the registration of neural
activity or because they contained significant artefacts
in at least one of the subjects. This exclusion criteria
permitted analysis of the same 117 channels in all
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subjects. The MEG data were band-pass filtered off
line between 0.5 and 40 Hz.

For dataset II, the MEG was recorded with the same
system and the same settings as dataset I, except for a
higher sample frequency of 625 Hz. These recordings
were down-sampled to 313 Hz and artefact-free ep-
ochs of 13 sec (4,096 samples) were selected. In the
case of dataset II, a larger number of channels (126)
were artefact free in all subjects and, hence, were
included in the analysis. For this dataset, EEG data
were acquired simultaneously with the MEG. The
EEG was recorded with Ag/AgCl electrodes from the
following 19 positions of the international 10–20 sys-
tem: Fp1, F7, F3, T7, C3, P7, P3, P1, Fz, Cz, Pz, Fp2, F8,
F4, T8, C4, P8, P4, O2. The EEG was re-referenced off
line against an average reference electrode and digi-
tally filtered between 0.5 and 40 Hz. The EEG epoch
used for analysis coincided exactly with the MEG
epoch. For both datasets, a subset of 19 MEG channels
corresponding roughly with the location of the 19 EEG
electrodes was also analysed.

Synchronization likelihood

The synchronization likelihood is a measure of the
degree of synchronization or coupling between two or
more time series [Stam and van Dijk, 2002]. An in-
depth description of the method and its performance
with a variety of test and experimental signals can be
found in the Stam and van Dijk study; here we give a
more comprehensive description. The measure is
based upon the concept of generalized synchroniza-
tion as introduced by Rulkov et al. [1995]. Generalized
synchronization is said to exist between two dynami-
cal systems X and Y if there exists a continuous one-
to-one function F such that the state of one of the
systems (the response system) is mapped onto the
state of the other system (the driver system): Y � F(X)
[Abarbanel et al., 1996; Kocarev and Parlitz, 1996;
Rulkov et al, 1995]. Intuitively, this means that gener-
alized synchronization exists between two systems X
and Y if the following holds: if X is in the same state at
two different times i and j, Y will also be in the same
state at times i and j. To make this concept operational,
we need some concept of the state of a system, and a
metric for the similarity of two states. This can be
achieved by using the framework of nonlinear dynam-
ical systems theory and state space embedding (a very
accessible introduction can be found in Pritchard and
Duke [1992]; a more recent but rather technical review
is Schreiber [1999]).

We assume time series of measurements xi and yi (i
� 1, . . . , N) recorded from X and Y. From these time

series, we reconstruct vectors in the state space of X
and Y (these vectors correspond to the “states” of both
systems) with the method of time-delay embedding
[Takens, 1981]:

Xi � �Xi, Xi � l, Xi � 2l, . . . ,Xi � �m � 1�l� (1)

Here l is the time lag and m the embedding dimen-
sion. In a similar way vectors Yi are reconstructed
from the time series yi. Now if the state of Y is a
function of the state of X, each Xi will be associated
with a unique Yi. Also if two vectors Xi and Xj are
almost identical (the distance between Xi and Xj is very
small) then, because of the continuity of F, Yi and Yj
will also be almost identical. Thus, the distance be-
tween two vectors in state space is a metric of their
similarity. We now have the required concepts of
“state” and “similarity between states” and can con-
tinue to define a measure of synchronization in terms
of these concepts.

The synchronization likelihood expresses the
chance that if the distance between Xi and Xj is very
small, the distance between Yi and Yj will also be very
small. For this, we need a small critical distance �x,
such that when the distance between Xi and Xj is
smaller than �x, X will be considered to be in the same
state at times i and j. �x is chosen such that the likeli-
hood of two randomly chosen vectors from X (or Y)
will be closer than �x (or �y) equals a small fixed
number pref. It is important to note that pref is the same
for X and Y, but �x need not be equal to �y. (Please
note, that pref has nothing to do with a significance
level; it is simply a way to control the value of S in the
case no synchronization between the two systems ex-
ists.) Now the synchronization likelihood S between X
and Y at time i is defined as follows:

Si �
1
N �

j

���y � �Yi � Yj��if��Xi � Xj� � �x� (2)

Here we only sum over those j satisfying w1 ��i-j��
w2, and Xi-Xj� �x. N is number of j fulfilling these
conditions. The value of w1 is the Theiler correction
for autocorrelation and w2 is used to create a window
(w1 � w2 � N) to sharpen the time resolution of Si
(Theiler, 1986). When no synchronization exists be-
tween X and Y, Si will be equal to the likelihood that
random vectors Yi and Yj are closer than �y; thus Si
� pref. In the case of complete synchronization Si �1.
Intermediate coupling is reflected by pref � Si � 1.
Because pref is the same for X and Y, the synchroniza-
tion likelihood is the same considering either X or Y as
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the driver system. Choosing pref the same for X and Y
is necessary to ensure that the synchronization likeli-
hood is not biased by the degrees of freedom or di-
mension of either X or Y [Stam and van Dijk, 2002].

From the basic definition of Si as given in equation
(2), we can derive several variations by averaging over
time, space or both. First, we can consider the average
synchronization likelihood between X and two or
more other systems. If we denote the index channel by
k, Ski is the average synchronization between channel
k and all other channel at time i. By averaging over all
time points i we obtain Sk. Averaging over all channels
k gives S, the overall level of synchronization in a
multi channel epoch.

In the present study, the synchronization likelihood
was computed with the following parameter settings:
l � 10; m � 10; w1 � 100 (product of lag and embed-
ding dimension); w2 � 400; pref � 0.05. The length of
w1 and w2 is expressed in samples. There is no unique
way to choose these parameters; however, the present
parameter choices proved to be effective in distin-
guishing between experimental conditions in a work-
ing memory task [Stam et al., 2002a] and between
MEG recordings of healthy controls and Alzheimer
patients [Stam et al., 2002b].

Synchronization entropy

The strength of synchronization in an array of cou-
pled nonlinear oscillators may be highly heteroge-
neous in both temporal and spatial domains, even if
the coupling strength is constant. For example, in the
setting of weakly coupled chaotic oscillators, the pres-
ence of intermittent bursts of desynchronization due
to unstable periodic orbits has been the focus of much
research [Heagy et al., 1998; Pecora, 1998; Pikovsky
and Grassberger, 1991; Rulkov and Suschik, 1997].
This phenomenon results in an irregular pattern of
phase synchrony over a wide range of temporal scales
[Breakspear, 2002]. To characterize the variability of
the synchronization likelihood Sk,i as a function of
space as well as time we introduce the synchroniza-
tion entropy Hs. The synchronization entropy is com-
puted in a similar way as the Shannon information
entropy. First the interval between pref and 1 is equi-
partitioned into N bins (in the present study, we used
N � 100). Then we define pi as the likelihood that the
value of Sk,i will fall in the ith bin. The entropy Hs is
then obtained as,

Hs � � �
i � 1

N

pi log pi (3)

When a logarithm with a base of 2 is used, the unit of
Hs is bits. If there is no spatial and temporal variability
in Sk,i then pi will equal 1 for one value of i, and 0 for
all other i. In this case the entropy Hs will be zero. If
there is maximal variability Sk,i can take all values in
the interval between pref and 1 with equal probability
and pi will equal 1/N for all i. The entropy Hs will
then take its maximal value of log(N).

Multivariate surrogate data testing

The basic idea of surrogate data testing is to com-
pute a nonlinear statistic Q from the original data, as
well as from an ensemble of surrogate data [Theiler et
al., 1992]. The surrogate data have the same linear
properties (in particular power spectrum and coher-
ence) as the original data, but are otherwise random.
This permits testing of the null hypothesis H0 that the
original data are linearly filtered Gaussian noise. This
hypothesis is tested by computing a Z-score:

Z �
�Q � Qsurrogates�

S.D.surrogates
(4)

The Z-score expresses the number of standard devia-
tions Q is away from the mean Qs of the surrogate
data. Assuming that Q is approximately normally dis-
tributed in the surrogate data ensemble, the null hy-
pothesis can be rejected at the P � 0.05 level when Z
� 1.96. In the present study, we used two different
nonlinear test statistics: the synchronization likelihood
S (averaged over time and over all channels) and the
synchronization entropy Hs. In both cases, an ensem-
ble of 20 surrogate data was constructed from each
original epoch.

The linear information in a time series is described
completely by its power spectrum; in this case, the
phases of the different frequencies are irrelevant.
However, in the case of nonlinear structure within or
between time series phase information is important.
Thus, to test the null hypothesis that the original data
only have linear information we need surrogate data
that have exactly the same powerspectrum as the orig-
inal data but random phases (thereby destroying any
nonlinear information that may have been present).
This type of surrogate data can be constructed by
applying a Fourier transform to all MEG channels,
adding a random number to the phase of each fre-
quency, and then applying an inverse Fourier trans-
form. For each frequency, the same random number
was added to the phases of the different channels,
thereby preserving exactly not only the power spectra
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of the individual channels but also the coherence be-
tween the channels [Prichard and Theiler, 1994; Rom-
bouts et al., 1995].

RESULTS

The results of surrogate data testing using either the
averaged synchronization likelihood S or the synchro-
nization entropy Hs as a test statistic are shown in
Table I for dataset I and in Table II for dataset II.

In all ten subjects of dataset I, the mean synchroni-
zation of the surrogate data was lower then the syn-
chronization of the original data. The corresponding
Z-scores show that the null hypothesis could be re-
jected in all subjects, with Z-scores ranging from 2.770
to 9.163 for the analysis with 117 channels and from
2.794 to 9.404 for the analysis with a subset of 19
channels. Consequently, there is strong statistical evi-
dence in all subjects that the interdependence in the
MEG data cannot be fully described by a stationary
linear/stochastic model, and hence may contain non-
linear structure. Comparable results were obtained
with the synchronization entropy Hs as test statistic:

the mean entropy of the surrogate data was lower
than the entropy of the original data in nine of the ten
subjects for the analysis with 117 channels, and in all
subjects for the analysis with 19 channels. The null
hypothesis could be rejected in seven out of the ten
subjects for the analysis with 117 channels and in four
out of ten for the analysis with 19 channels.

Results of a more detailed analysis of a single rep-
resentative subject (C98-16EC) are shown in Figures 1
and 2. In both Figures 1 and 2, surrogate data testing
was done using the Sk (average synchronization like-
lihood between channel k and all other channels) of all
117 channels as test statistics. Figure 1 shows Sk of the
original MEG data (upper curve) and the distribution
of Sk of each of the 20 surrogate data sets. It is clear
that for most channels, Sk of the original data lies
outside and above the range of Sk of the surrogate
data. Note that this graphical comparison allows di-
rect (non-parametric) testing of the null hypothesis.
The parametric test (based on estimation of the
Z-scores) is only necessary when adjusting for re-
peated comparisons. A one-sample Kolmogorov Smir-
nov test on the distribution of S for the 20 surrogates

TABLE I. Synchronization in Elderly Subjects

Subject No. ch. S S-surr S Z-score Hs Hs-surr Hs Z-score

C98-10EC 117 0.105 0.097 8.462 4.746 4.530 6.502
19 0.103 0.091 8.502 5.355 5.058 6.721

C98-11EC 117 0.093 0.088 5.566 4.551 4.401 4.589
19 0.084 0.078 6.188 4.916 4.724 4.471

C98-12EC 117 0.098 0.092 5.535 4.558 4.479 2.018
19 0.084 0.080 3.412 4.764 4.678 1.872

C98-13EC 117 0.108 0.102 4.559 4.752 4.706 1.121
19 0.093 0.087 4.078 4.801 4.745 1.148

C98-14EC 117 0.118 0.114 2.770 5.067 5.083 �0.315
19 0.093 0.087 3.095 4.886 4.785 1.663

C98-15EC 117 0.104 0.098 5.242 4.705 4.612 2.230
19 0.085 0.079 4.815 4.717 4.567 3.242

C98-16EC 117 0.105 0.097 9.163 4.756 4.490 7.498
19 0.086 0.077 9.404 4.675 4.388 9.968

C99-17EC 117 0.110 0.101 7.506 4.941 4.711 5.054
19 0.093 0.088 3.104 4.882 4.829 1.024

C99-18EC 117 0.105 0.098 5.700 4.802 4.671 3.101
19 0.086 0.082 3.727 4.635 4.594 0.763

C99-EC19 117 0.093 0.089 3.492 4.415 4.347 1.384
19 0.084 0.081 2.794 4.690 4.686 0.071

Mean 117 0.104 0.098 6.190 4.729 4.616 3.908
19 0.090 0.080 4.912 4.832 4.705 3.764

Data set I. Synchronization likelihood (S) of original MEG data; mean synchronization likelihood of 20 surrogate data (S-surr) and
corresponding Z-score (S Z-score). Synchronization entropy of original MEG data (Hs); mean synchronization entropy of 20 surrogate data
(Hs-surr) and corresponding Z-score (Hs Z-score). The bottom row gives the mean values averaged over all 10 subjects. No. ch.: Number
of MEG channels used in the analysis.
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showed that it did not differ significantly from the
normal distribution (Kolmogorov-Smirnov Z � 0.418;
P � 0.995). Figure 2 shows the significance of the
difference between Sk of the original data and Sk of the
surrogate data, expressed as Z-scores. For a signifi-
cance level of P � 0.05, the null hypothesis could be
rejected in 22 out of 117 channels, which is much
higher than expected by chance (6 of 117).

In the five subjects of dataset II, the mean synchro-
nization of the surrogate data was also lower than the
synchronization of the original data, although the dif-
ference was only marginal in the case of subject JD.
This pattern was obvious for the 126-channel and
19-channel MEG data as well as for the EEG data. In
each subject, the absolute synchronization likelihood
was always higher in the EEG data than the MEG
data, and higher for the 126-channel than for the 19-
channel analysis. However, the opposite is true of the
Z-scores. In the case of the 126-channel MEG data, the
Z-scores ranged from 1.22 to 7.59 (mean 5.19) and the
null hypothesis could be rejected in four of the five
subjects. For the 19-channel MEG data, Z-scores
ranged from 0.317 to 6.195 and the null hypothesis
could be rejected in the same four subjects as for the
126-channel analysis. In the case of the EEG, Z-scores
ranged from 1.19 to 4.27 (mean 3.15), and the null
hypothesis could be rejected in the same four subjects

who showed significant results with MEG. In these
four subjects, the Z-scores for the 126-channel MEG
data were always much higher than the Z-scores for
the corresponding EEG data; for the 19-channel MEG,
this was the case in three of the four subjects (Fig. 3).
The apparent contradiction (between the synchroniza-
tion strengths and the Z-scores) is a result of the
synchronization measures for the surrogate data sets,
which were on average much higher in the EEG data.

In all subjects of dataset II, the synchronization en-
tropy was lower for surrogate data compared to orig-
inal data, and for MEG (for 126 as well as 19 channel
analysis) compared to EEG. For MEG Z-scores ranged
from 1.377 to 5.083 for the 126-channel analysis, and
from 1.339 to 3.043 for the 19-channel analysis. The
null hypothesis could be rejected in three out of five
subjects at the 95% confidence level for the 126-chan-
nel analysis and in four out of five subjects for the
19-channel analysis. For EEG, the Z-scores ranged
from 0.718 to 3.014, and the null hypothesis could be
rejected in two of the five subjects.

Mean results for MEG recordings in dataset I (bot-
tom row of Table I) and dataset II ( second to last row
in Table II) were generally in good agreement. All
MEG statistics were examined for statistical differ-
ences between the subjects of dataset I and dataset II
with a t-test (two-sided; unequal variances). No sig-

TABLE II. Synchronization in Young Subjects

Subject Recording S S-surr S Z-score Hs Hs-surr Hs Z-score

AK-OD MEG126 0.106 0.097 7.586 5.046 4.815 4.724
MEG19 0.094 0.085 4.162 5.112 4.947 3.043
EEG 0.113 0.100 4.202 5.523 5.334 3.014

GdV-OD MEG126 0.105 0.099 4.857 4.900 4.821 1.377
MEG19 0.088 0.080 6.195 4.860 4.761 2.230
EEG 0.107 0.097 3.841 5.521 5.368 2.121

HM-OD MEG126 0.107 0.096 5.930 5.208 4.930 4.788
MEG19 0.092 0.084 4.516 5.128 5.034 2.074
EEG 0.198 0.184 2.230 6.537 6.448 1.212

JdM-OD MEG126 0.126 0.113 6.364 5.591 5.371 5.083
MEG19 0.113 0.102 4.608 5.587 5.465 2.255
EEG 0.213 0.183 4.272 6.426 6.405 0.305

JD-OD MEG126 0.092 0.091 1.222 4.879 4.784 1.505
MEG19 0.079 0.078 0.317 4.877 4.811 1.339
EEG 0.102 0.099 1.190 5.444 5.388 0.718

Mean MEG126 0.107 0.099 5.192 5.125 4.944 3.495
MEG19 0.093 0.086 3.960 5.113 5.004 2.188
EEG 0.147 0.133 3.147 5.890 5.789 1.472

Data set II. Synchronization likelihood (S) of original MEG and EEG data; mean synchronization likelihood of 20 surrogate data (S-surr) and
corresponding Z-score (S Z-score). Synchronization entropy of original MEG data (Hs); mean synchronization entropy of 20 surrogate data
(Hs-surr) and corresponding Z-score (Hs Z-score). The bottom row gives the mean values averaged over all five subjects. MEG126 denotes
the 126-channel MEG analysis and MEG19 denotes the 19-channel MEG analysis.
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nificant differences were found at the P � 0.05 level
with two minor exceptions: (1) Hs for the large num-
ber of channels was higher in dataset II (P � 0.035); (2)
Hs-surr for the large number of channels was also
higher in dataset II (P � 0.032). However, after Bon-
ferroni correction for multiple tests (adjusted P
� 0.05/12 � 0.00417), these two differences are no
longer significant. Thus, age differences between the
subjects of dataset I and II do not affect the experi-
mental measures.

For the subjects in dataset I, the Z-scores for the 117-
and the 19-channel analysis were strongly correlated,
although the 19-channel Z-scores were slightly lower.
This is illustrated in Figure 4.

DISCUSSION

The present study was performed to answer the
following three questions: (1) Is there evidence for
significant nonlinear synchronization between brain
regions in healthy subjects during a no-task eyes-
closed state? (2) Does this nonlinearity have a stable

or an unstable, itinerant character? (3) Are MEG
recordings more suitable to detect nonlinear syn-
chronization than EEG recordings? We will consider
the results of the present study in relation to these
three questions.

The results obtained with both data sets strongly
suggest the presence of nonlinear synchronization in
multichannel MEG data sets. Using the averaged syn-
chronization S as a test statistic, the null hypothesis
that all couplings can be described with a linear model
could be rejected in all ten subjects of dataset I, and in
four of five subjects in data set II. The level of signif-
icance was usually very high, with Z-scores � 4 (cor-
responding with P � 0.00005) in 12 of 15 subjects. We
interpret these results as supporting the presence of
nonlinear coupling across multiple cortical regions in
healthy human subjects. However, to assess the valid-
ity of these results, three issues deserve mentioning:
(1) the use of a parametric statistical test to reject the
null hypothesis; (2) the possibility of type I statistical
errors; (3) the reliability of phase-randomized surro-
gate data.

Figure 2.
Same subject as in Figure 1. The curve shows the significance expressed as Z-score of the difference
between Sk of the original data and the mean Sk of the 20 surrogate data. For those channels where
Z � 1.96, the null hypothesis can be rejected at the P � 0.05 level.

� Nonlinear Synchronization in EEG/MEG �

� 71 �



First, we compared the S of the original MEG data
with the mean S obtained from an ensemble of 20
surrogate data (S-surr) for each subject by computing
a Z-score; the Z-score quantifies the distance between
S and S-surr in terms of the standard deviations of
S-surr. The tacit assumption is that S-surr is approxi-
mately normally distributed, which may not be true.
In theory, it is possible that a non-Gaussian distribu-
tion of S in the surrogate data ensemble will bias the
test of the null hypothesis. To avoid this bias, the null
hypothesis can also be tested in a non-parametric
manner [Rapp et al., 1994]. When S of the original data
is larger then S of each of the 20 surrogate data, then
for a one-sided test the null hypothesis can be rejected
at the P � 0.05 level. In Figure 1, we show that this is
the case for one representative subject: Sk of the orig-
inal data is always higher then Sk of the surrogate
data. In conclusion, we think it is unlikely that our
results are due to a non-Gaussian distribution of S in
the surrogate data sets. Also, assessment of very high
significances with non-parametric tests is problematic
because it would require ensembles of hundreds to

thousands of surrogate data for each subject, which is
computationally prohibitive. To test the null hypoth-
esis two-sided at a level of P � psignificance with a
non-parametric test, we need to generate an ensemble
of N surrogate data where N can be determined as
follows: psignificance � 1/(N-2).

Second, to test the null hypothesis we used an alpha
level of P � 0.05 in each individual subject. Because 15
subjects were investigated, there is a chance of type I
statistical error (spurious rejections of the null hypoth-
esis due to multiple independent tests). However, if
we apply a rigorous Bonferroni correction, and use an
adjusted significance level of P � 0.05/15 or P
� 0.0033 (Z � 2.12), the conclusions remain the same
and we can still reject the null hypothesis in 14 of 15
subjects.

Finally, the reliability of the procedure to generate
surrogate data needs to be considered. Ideally, surro-
gate data preserve only but exactly the linear properties
(power spectrum; coherence) of the original data. Any
differences between original and surrogate data can
then be ascribed to nonlinear properties of the original

Figure 3.
Dataset II. Comparison of the significance of surrogate data testing for nonlinearity for simultaneous
MEG (either 126 or 19 channels) and EEG recordings in each of five subjects. Test statistic was the
synchronization likelihood. An ensemble of 20 surrogate data was used. For a Z-score � 1.96, the
null hypothesis can be rejected at the P � 0.05 level.
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data. Problems can arise in two circumstances: (1)
When the amplitude distribution of the original data is
non-Gaussian; (2) When the basic frequencies of the
original data do not match exactly with the frequen-
cies of the discrete Fourier transform. The latter prob-
lem typically arises with (nearly) periodic time series
In the case of univariate time series, these problems
are well known, and procedures to avoid them have
been proposed [Stam et al., 1998; Theiler et al., 1992].
Whether the same problems also affect surrogate data
testing for nonlinear couplings between time series in
multivariate data sets is unknown. To address this
problem, we considered a simple model system, con-
sisting of two identical time series (4,096 samples).
Each time series was the absolute value of a sine wave;
the period of the sine wave was chosen such that it did
not match with the length of the time series. Thus, the
time series have the two features (non-Gaussian am-
plitude distribution and non-matching frequency) that
are known to bias within channel surrogate data test-
ing; however, because both time series were identical,
the coupling between the channels was linear. Surro-
gate data testing of this test system (using synchroni-
zation likelihood as a test statistic and 20 surrogate
data sets) did not produce spurious rejections of the
null hypothesis. This suggests that testing for nonlin-
ear coupling in multivariate data sets with the syn-
chronization likelihood is not affected by non-Gauss-

ian amplitude distribution and frequency mismatch.
However, further systematic study of this is war-
ranted.

The nonlinear nature of the couplings between brain
regions may be associated with several interesting
phenomena. Friston [2000a] considers two aspects of
nonlinear coupling: (1) Interactions between different
frequencies, in particular theta and gamma band, and
(2) Labile and unstable dynamics arising from a rapid
succession of “neural transients.” There is some em-
pirical evidence for (nonlinear) coupling between
theta and gamma frequencies in EEG [Schack et al.,
2001, 2002], microelectrode [Schanze and Eckhorn,
1997], and MEG recordings [Friston, 2000a] and across
a broad range of frequencies in multichannel EEG data
[Breakspear and Terry, 2002]. In the present study, we
focused on the labile and unstable aspect of nonlin-
earity. The synchronization entropy Hs is a measure
that characterizes the spatial and temporal variability
of the synchronization likelihood Ski. With one excep-
tion, Hs of the original MEG data was always higher
than Hs of the surrogate data set. If we use Hs as a test
statistic, the null hypothesis can be rejected in 10 of 15
subjects (or 9 of 15 with Bonferroni correction). The
Z-scores for S were always higher than the Z-scores
for Hs. From these results, two conclusions can be
derived. First, the original MEG data are considerably
more variable than the surrogate data. So at least part

Figure 4.
Dataset I. Correlation for each of the 10 subjects of the Z-score obtained with 117 MEG channels
(on the x-axis) and the Z-score obtained with the sub-selection of 19 channels (on the y-axis). The
line indicates the a linear fit of the data; the corresponding model is shown (top right).
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of the nonlinear nature of coupling in MEG data may
be associated with either transient or itinerant nonlin-
ear dynamics. Second, Hs discriminated less well be-
tween original and surrogate data then S. This sug-
gests that the nonlinearity in the original MEG data is
not completely explained by unstable dynamics. Dif-
ferent factors, such as stable coupling between differ-
ent frequency bands, probably play a role and need to
be addressed in further studies.

In dataset II, a comparison was made between non-
linearity in MEG and EEG data sets. As can be seen in
Table II and Figure 3, using S as a test statistic Z-scores
were usually higher for MEG than for EEG, sometimes
considerably so. However, both with MEG and EEG
the null hypothesis could be rejected in four of five
subjects. In the case of Hs, the MEG Z-score was also
higher than the EEG Z-score in four of five subjects.
Thus, while nonlinear synchronization may be more
easily detected in MEG then in EEG, MEG and EEG
results are quite consistent. The greater sensitivity of
MEG could be due to several factors. (1) MEG chan-
nels are sensitive to electrical current fluctuations on a
smaller spatial scale than scalp EEG electrodes. Non-
linear waves are characterized by highly coherent
phase characteristics. However, such structure may be
lost at the spatial scale of EEG data due to summation
of multiple uncorrelated waves arising through vol-
ume conduction. This linear summation of uncorre-
lated nonlinear waves is supported by the finding of
increased overall synchronization likelihood in EEG
data (and their surrogates) but decreased Z-scores for
the nonlinear contribution. In other words, volume
conduction leads to greater linear “flooding” of un-
derlying nonlinear synchronization. (2) MEG data is
recorded without a reference. The reference that has to
be used in the case of EEG influences the assessment
of couplings between EEG channels [Nunez et al.,
1997]. The influence of reference on nonlinear EEG
measures was already demonstrated by Dvorak
[1990]. (3) Finally, detection of nonlinearity with MEG
may have been favoured by the larger number of MEG
channels (117 in dataset I and 126 in dataset II) as
compared to the number of EEG channels (19). Using
such large numbers of channels is more practical with
more whole head MEG systems, and it makes more
sense also because of the higher spatial resolution of
MEG compared to EEG. However, the results for ei-
ther the full number of MEG channels or 19-channel
selections show that the extra information obtained in
this way is quite modest. Further investigation, in-
volving large subject numbers and a variety of MEG
channel selections, is required in order to verify that
MEG data is more sensitive to underlying nonlinear

structure than EEG, and to establish which of the
above mechanisms are the principle causes.

So far, most studies have investigated nonlinearity
of brain dynamics using EEG [Pritchard et al., 1995;
Rombouts et al., 1995; Stam et al., 1999] rather then
MEG [Kowalik et al., 2001]. Usually, nonlinearity was
assessed within rather than between channels [Prit-
chard et al., 1995; Stam et al., 1999]. As indicated
above, surrogate data testing applied to univariate
time series can be biased by several problems [Stam et
al., 1998; Theiler et al., 1992]. When these problems are
dealt with, nonlinearity can only be detected in a
minority of subjects [Stam et al., 1999].

Rombouts et al. [1995] used the correlation dimen-
sion computed from a spatial embedding as a test
statistic (mixing within and between channel informa-
tion) and found evidence for nonlinear dynamics in 7
out of 15 healthy subjects. Comparing the results of
the present study with the older EEG literature, we
may conclude that nonlinear structure in brain dy-
namics is more easily detected with MEG then with
EEG and that it may be more effective to focus upon
nonlinear synchronization between channels rather
than to look for nonlinear structure within channels.

The main results of the present study are in agree-
ment with the model proposed by Friston [2000a–c].
Two important predictions derived from this model,
the presence of nonlinear synchronization between
brain regions and the unstable, or “labile” character of
brain dynamics, were confirmed. This supports an
approach to brain modelling based upon study of
coupled nonlinear dynamical subsystems [e.g., Frank
et al., 2000]. Such systems display dynamical phenom-
ena that are not only in agreement with empirical
observations but that also suggest mechanisms of in-
formation processing, such as the representation of
external stimuli by dynamical attractors in neural sys-
tems, permitting their unique perception [Breakspear,
2001]. When two nonlinear dynamical systems are
coupled, they may display different types of behav-
iour depending upon the strength of the coupling
[Breakspear, 2002]. In the case of very weak, but also,
paradoxically, in the case of very strong nonlinear
coupling, the systems may show a low level of syn-
chronization. However, for intermediate coupling, in-
termittent behaviour may emerge. This consists of
brief episodes of strong synchronization, intermixed
with episodes of desynchronised dynamics. This kind
of critical dynamics provides a mechanism whereby
synchronous cell assemblies can be established as well
as rapidly deconstructed. Optimal information pro-
cessing could depend upon an optimal balance be-
tween synchronization and desynchronization, which
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is obtained by such itinerant nonlinear dynamics. The
concept of brief, unstable episodes of synchronous
oscillations (the “neural transients” of Friston) inter-
mixed by desynchronization has also been suggested
by the modelling work of other authors [Freeman and
Rogers, 2002; Hopfield and Brody, 2001]. Hopfield and
Brody suggest that “The fundamental recognition
event [in a neural network] is a transient collective
synchronization” and also that “If such synchroniza-
tion is used in neurobiological computation, its hall-
mark will be a brief burst of gamma-band electroen-
cephalogram noise when and where such a
recognition or decision occurs.” In line with this, Free-
man and Rogers [2002] speak of “Phase locking for
brief time segments punctuated by episodic phase
decoherence.” The results of the present study provide
empirical support for the existence of such transient
dynamical events because the synchronization en-
tropy of the original MEG data is much higher then
that of the surrogate data. When the synchronization
likelihood is computed as a function of space as well
as time (Ski) for MEG data filtered in the gamma band,
episodes of synchronization can be seen lasting 100 to
500 msec, intermixed with desynchronization [fig. 10
in Stam and van Dijk, 2002]. Further studies on the
nature of functional interactions in the brain will have
to take into account the existence of nonlinear syn-
chronization between brain regions, unstable phe-
nomena in the form of brief neural transients, interac-
tions across different frequency bands, and ongoing
cognitive activity.
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APPENDIX: DEFINITION OF TERMS

In the literature, one often finds terms relating to
changing activity in a system, such as “nonstation-
ary,” “transient,” or “unstable” used differently in
different contexts. For the sake of clarity in the present
work, we offer the following definitions of terms, and
examples of models in which they may occur.

Stationary stochastic time series

“Stationarity” is typically used in the context of
stochastic linear models. In this context, it refers to
time series that have non-varying probability mea-
sures, such as mean, variance, or spectrum. Such time
series can be described by autoregressive stochastic
models of the form,

x�t� � �
i � 1

m

Aix�t � i� � By�t�, (A1)

where the Ai and B are the fixed probability parame-
ters and y is a white noise signal.

Nonstationary stochastic time series

“Nonstationarity” is also typically used in the con-
text of linear/stochastic modelling. It refers to time
series that have time-dependent probability measures,
such as changing spectral properties. Autoregressive
moving average models (ARMA) may be used to de-
scribe such time series. These are of a similar form as
(A1), except the coefficients are time-dependent,

x�t� � �
i � 1

m

Ai(t)x(t�i) � B�t�y�t�, (A2)

All-night sleep EEG may be viewed as nonstationary.

Nonlinear deterministic processes

The modern theory of nonlinear dynamical systems
typically refers to the study of nonlinear differential or
difference equations, and this is how the term is em-
ployed in the present study. These are of the form,

dx�t�
dt � Fa�x�t��, (A3)

or,

x�t� � Fa�x�t � 1��, (A4)

where a is a real-valued vector that smoothly param-
eterises F. One seeks solution curves, or orbits, to such
equations in the system’s multi-dimensional phase
space, originating from various initial states, x(0). At-
tractors are sets that contain long-term (asymptotic)
solutions of the orbits of a “large number” of initial
states [Milnor, 1985]. Attractors may be steady state,
periodic, quasiperiodic, or chaotic. This simple formu-
lation allows us to distinguish between a number of
types of different time-varying dynamical states.

Transient nonlinear dynamics

Traditionally, the term “chaotic transience” was ap-
plied in the following way [Greborgi et al., 1983]: A
chaotic attractor, subject to some parameter perturba-
tion, “collides” with its own basin boundary. Conse-
quently, orbits on the attractor are mapped into an-
other basin and, subsequently, onto another attractor.
Put another way, the former attractor is no longer an
invariant of the dynamic. However, a large set of
initial conditions will transiently “shadow” the former
attractor (now an attractor “ruin”), hence briefly mim-
icking its behaviour, before collapsing onto an alter-
native attractor.

Itinerant nonlinear dynamics

It has often been observed that a low-dimensional
manifold (of much lower dimension than the entire
phase space) will contain a set that, whilst not an attrac-
tor, attracts the dynamics for significant periods of time
[e.g.. Ashwin, 1995; Platt et al. 1993]. Between such times,
the system may intermittently burst from this more or-
dered state into high-dimensional dynamics. Such a pro-
cess creates a complex time series because the bursting
behaviour may follow a log-log scaling law [e.g., Yu et
al., 1991]. This process is particularly important in the

� Nonlinear Synchronization in EEG/MEG �

� 77 �



context of sparsely coupled nonlinear subsystems, such
as the brain, where the low-dimensional activity corre-
sponds to synchronization and the intermittent bursting
to high-dimensional desynchronization [e.g., Breaks-
pear, 2002; Heagy et al., 1998; Yang and Ding, 1996].
Friston [2000b] refers to this as “type II complexity.” In
the present study, due to the focus on nonlinear synchro-
nization and its variation on small temporal scales, we
favour this interpretation of nonlinear instability. Itiner-
ancy is unlike transience in that it does not abate after a
period of time.

Nonstationary nonlinear dynamics

In the setting of nonlinear itineracy, the dynamics
are highly unstable due the structure of the flow in the

phase space, but the orbits (or more correctly, the
vector fields) are themselves unchanging. In contrast,
it is possible to produce fluctuating dynamical states
by making the state parameters themselves time-de-
pendent. In this way, the vector field, and hence the
direction of the orbits, are themselves changing. At-
tractors are continually being formed, then “ruined”
and possibly remade according to the nature of the
state parameters. In such a case, one expects a type of
“continuous transience” as the system moves between
towards and then away from regions of phase space
where attractors are ruined and rebuilt [Breakspear
and Friston 2001; Friston, 1997; Tsuda, 2001]. Friston
[2000b] refers to these dynamics as “type I com-
plexity.”
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