
Independent Component Model for Cognitive
Functions of Multiple Subjects Using

[15O]H2O PET Images

Hae-Jeong Park,1,2 Jae-Jin Kim,1,3 Tak Youn,1,4 Dong Soo Lee,3

Myung Chul Lee,3 and Jun Soo Kwon1,4*

1Brain-Korea21, Human Life Sciences and Clinical Research Institute, Seoul National University
College of Medicine, Seoul, Korea

2Institute of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
3Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea

4Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea

� �

Abstract: An independent component model of multiple subjects’ positron emission tomography (PET)
images is proposed to explore the overall functional components involved in a task and to explain subject
specific variations of metabolic activities under altered experimental conditions utilizing the Independent
component analysis (ICA) concept. As PET images represent time-compressed activities of several
cognitive components, we derived a mathematical model to decompose functional components from
cross-sectional images based on two fundamental hypotheses: (1) all subjects share basic functional
components that are common to subjects and spatially independent of each other in relation to the given
experimental task, and (2) all subjects share common functional components throughout tasks which are
also spatially independent. The variations of hemodynamic activities according to subjects or tasks can be
explained by the variations in the usage weight of the functional components. We investigated the
plausibility of the model using serial cognitive experiments of simple object perception, object recognition,
two-back working memory, and divided attention of a syntactic process. We found that the independent
component model satisfactorily explained the functional components involved in the task and discuss
here the application of ICA in multiple subjects’ PET images to explore the functional association of brain
activations. Hum. Brain Mapping 18:284–295, 2003. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Independent component analysis (ICA), an unmix-
ing method for linearly mixed signals, is of increasing
interest to the neuroimaging field since McKeown et
al. [1998a] first applied ICA to functional magnetic
resonance imaging (fMRI). ICA was developed to
blindly decompose mixed signals into source signals,
requiring no exact model for the channel and source.
Representative application areas of ICA are the anal-
ysis of time series, such as the analysis of speech
signals [Bell and Sejnowski, 1995], and the analysis of
electroencephalograms (EEG) [Makeig et al., 1997]. An
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overview of ICA and its applications can be found in
Lee [1998] and Hyvärinen et al. [2001].

The application of ICA to analysis of fMRI has been
dominantly undertaken to find spatially independent
components of brain activations [McKeown et al.,
1998a,b], where sequential images have been used like
sensors in time series analysis with each voxel re-
garded as a time sample. Among the spatially inde-
pendent components, a component with a weight that
follows the temporal sequence of the task is regarded
as a task-related component.

Compared with the subtraction approach that pur-
sues the regional change of brain activation due to
additional cognitive function, ICA has been used to
explore changes in functional relationships between
involved regions with the awareness that a lack of a
change in functional activation does not preclude re-
gional involvement. However, principal component
analysis (PCA) has a longer history than ICA for in-
vestigating the functional relationship or functional
connectivity that explores the temporal correlations of
neurophysiological activations in different brain areas
[Friston et al., 1992, 1993; Moeller and Strother, 1991].
PCA seeks to find orthogonal spatial patterns that
represent the largest variance in the data and tends to
fail in detecting relatively weak metabolic activations
that are common to cognitive processes.

It should be noted that the exploration of functional
connectivity using either PCA or ICA has been re-
stricted to the temporal image sequences such as those
of fMRI. Therefore, the application of PCA or ICA for
investigating functional connectivity is not appropri-
ate in the analysis of PET images where temporal
images cannot be used and temporal analysis is not a
major concern due to the low temporal resolution of
PET. Rather, in the case of PET, correlation analysis
between cross-sectional data of multiple subjects’ im-
ages has been conducted for many years with the aim
of uncovering characteristic patterns of cerebral activ-
ities [Friston et al., 1992; Horwitz, 1990; Moeller and
Strother, 1991]. The interregional correlation of cere-
bral metabolic rates among cross-sectional data is
thought to indicate functional association between
two regions and the meaning of this connectivity is
somewhat different from that of functional connectiv-
ity, which is based on the “temporal” correlation be-
tween regions. The plausibility of the covariance ap-
proach in cross-sectional data was supported by the
simulation of Horwitz [1990], which showed that the
correlation coefficient between normalized metabolic
data in the two brain regions of multiple subjects is
related to the change in the strength of functional
association and that correlation analysis can reveal

information on regional involvement not made evi-
dent by the subtraction method [Horwitz, 1991].

The set of questions addressed here concerns how
functional activations among brain regions differ in a
group of subjects and under altered experimental con-
ditions, and whether or not we can resolve the overall
functional components involved in the task. Moeller
and Strother [1991] developed the subprofile scaling
model (SSM) to generalize all regional metabolic in-
formation from cross-sectional data utilizing PCA.
They further extended SSM to explore disease-specific
covariance patterns. This interregional covariance ap-
proach included the concept of the heterogeneity
of subjects while the traditional region-by-region
method tried to remove subject variations. However,
SSM retains the limitations of PCA, which cannot
explain the weak activity of cognitive process. There-
fore, we need a different approach to brain activation
from multiple subjects’ images that can illustrate (1)
variations of subject, (2) variations under tasks, (3) all
functional components involved in the task, and (4)
global interregional dependencies.

In this study, we proposed a new model for illus-
trating subject-specific variations of metabolic activi-
ties in a group and variations under altered experi-
mental conditions utilizing the ICA concept. As PET
images represent time-compressed activities of several
cognitive functions, this model also aimed to explore
the types of components involved during a task. We
investigated the plausibility of a mathematical model
by real experiments using multiple subjects’ PET im-
ages during serial cognitive experiments.

MATERIALS AND METHODS

Independent Component Model (ICM)
for Brain Activations

Voxel intensity in PET images represents a tempo-
rally accumulated number of photons generated at a
specific brain region during a task period. The mea-
surement of PET images indicates the involvement of
the neural cells correspondent to a voxel while a mix-
ture of several cognitive activations is processed.
However, the measurement does not provide direct
information on the type of cognitive activations and,
therefore, exploring brain activation is difficult to
achieve without comparable controls. In order to de-
rive information on brain activations from multiple
subjects’ PET images without control data, we estab-
lished a cognitive model by adopting several plausible
assumptions.
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ICM for multiple subjects

The first assumption of ICM is that PET images of M
subjects are derived from constant linear mixtures of
N functional activations involved in the task. Func-
tional activations composing total spatiotemporal
brain activation during a task are also defined to be
spatiotemporal activation.

As illustrated in Figure 1, PET intensity at a voxel k
can be modeled as a temporally accumulated number
of detected photons. The detected photons at each
voxel are regarded to arise from a linear mixture of the
metabolic activations at the voxel corresponding to the
functional activations involved in the task. In formu-
lating the model, an observation xi(k) at a certain voxel
k of a subject i during a task period (0 � t � �ij) can
be written as follows.

xi�k� � �
0

�ij

�
j � 1

N

aijsij�t � �ij,k�dt,

i � 1,. . .,M, k � 1,. . .,K (1)

where sij indicates spatiotemporal emission of pho-
tons that originate from the functional activation j of
the subject i with the time delay �ij and its duration
�ij � aij is a weight with which the functional activa-
tion j is used in performing the task in subject i and
this weight is assumed to be constant during the
task. M is the total number of subjects and N is the
total number of functional activations. If we focus
on the temporal sum of functional activation at the
subject i, the integration term of Eq. (1) can be
simplified as follows.

xi�k� � �
j � 1

N

aijs� ij�k�, where s� ij�k� �
� �

0

�ij

sij�t � �ij,k�dt

(2)

s�ij indicates the accumulated activity of the functional
activation j in the i-th subject. Here, we define the term
of “functional component” as the temporally accumu-
lated activity of individual functional activation,
which composes total brain activity during a cognitive
task. Note that functional component s�ij is a spatial
pattern of activation and no longer contains direct
temporal information. Nevertheless, we will keep the
term “functional” throughout this study because it
was derived from the functional activity. Considering
most PET studies are composed of multiple trials of
the same cognitive task, we can extend Eq. (2) to
multiple trials without loss of generality by redefining
the functional component as a summation of func-
tional activation across trials.

The second assumption of the model is that all
subjects homogenously use the common functional
components differing only in weights of their usage.
According to the homogeneity assumption, functional
components in a subject i (s� ij, j � 1, . . . ,N) can be
replaced with the corresponding common functional
components (s̃c,c � 1, . . . ,N) by changing the order
of these components. Then, Eq. (2) can be rewritten as
follows. (For simplicity, voxel index k is omitted.)

xi � �
j � 1

N

aijs̃Oi�j� � �
j � 1

N

aijs̃c, (3)

where s̃c � s̃Oi� j� � s� ij and c � Oi� j�

s̃c is a common functional component correspond-
ing to a subject specific component s�ij with a matching
function Oi(j). Because Oi(j) connects s̃c to s�ij and thus
to aij, reordering aij while fixing the sequence of s̃c will
cause equivalent results. Eq. (3) can be rewritten as
Eq. (4)

xi � �
c � 1

N

aiÕi�c�s̃c � �
c � 1

N

ãics̃c, (4)

where ãic � aiõi�c� and õi�c� � j, Õi�Oi� j�� � j
If we denote the reordered weight as aij and accu-

mulated activity s̃j as sj for simplicity, we can rewrite

Figure 1.
A model of PET measurement at a voxel k of a subject i during a
task. The observation xi(k) is an accumulated number of photons
from mixed activations of several functional components of the
brain that the voxel k is involved in during a task. Observation xi(k)
is the superimposed activities of functional components at neurons
correspondent to the voxel k .
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Eq. (4) as Eq. (5) at a specific voxel k in a total of K
voxels.

xi�k� � �
j � 1

N

aijsj�k�, i � 1,. . .M, k � 1,. . .,K (5)

Note that both the observed activation xi of subject
i and the functional components sj feature spatial pat-
tern and aij is the weight of the spatial pattern (i.e.,
functional component) being independent of voxel k.
The observed brain activations can be interpreted as
linear mixtures of common functional components
having spatial activations. Eq. (5) can be replaced by
the matrix equation of Eq. (6).

x � �x1,· · ·,xM�T � A � s (6)

where s � �s1, · · · ,sN�T is composed of the common
functional components during the task and is an [N
� K] matrix. x represents the observations of all sub-
jects with a matrix size of [M � K] and A is an [M � N]
mixing matrix composed of weight elements aij as the
functional components.

The third assumption is that functional components
within a task are independent of each other. The
fourth assumption is that each functional component
sj during a task is sparsely localized, i.e., a super
Gaussian distribution. The final assumption is that
each observation can be represented using the same
number of components as the number of observations,
i.e., N � M.

The problem of the independent component model
(ICM) is then reduced to finding independent func-
tional components (s) and their weights (A) from the
observations of all subjects, i.e., x.

ICM for multiple tasks

We can extend this model to the second hypothesis
that all subjects share basic functional components
common to all tasks and these components are spa-
tially independent of each other. The changes of brain
activities due to the task differences arise from the
change of the components used, or the change in the
weight of the components. This hypothesis can be
denoted by the following equation.

xw � �x1
w,· · ·,xN

w�T � Aw � sw, w � 1,. . .,W (7)

where sw � �s1
w,· · ·,sN

w�T represents common func-
tional components involved in the specific task w. xw

is composed of observations of all subjects during the
task w. Aw is a mixing matrix with weight elements aij

w

which vary according to the task w.
If we consider a set S of independent functional

components that covers all functional activations of
brain, then the set of functional components derived
during the task w (sw) is a subset of S, i.e., sw�S and
can be subdivided into two subsets, namely, (1) a set
of components that are activated independently with
the task, including life sustaining activations and basic
cognitive activations sc and (2) a set of components
that are specific to the task sws. The functional com-
ponent of the task can be denoted as sw � sc�sws.

In the ICM model, weight can illustrate the involve-
ment of certain functional components during a task
w. If the number of observations is large enough,
weights can also generalize the involvement of all
functional components in the task, including subject
specific components (sws), in the sense that a compo-
nent that does not exist in one task while existing in
another task can be represented by setting its weight
to zero. In practice, a limited number of observations
and the presence of noise limit the number of compo-
nents used during a task and the allocating of task
specific components.

ICA for ICM

Independent component analysis (ICA), a blind de-
composition method, is regarded to be an appropriate
method to find independent functional components
(s) and their weights (A) from the observations (x) of
all subjects in the ICM model.

The application of ICA to ICM is illustrated in Fig-
ure 2. From the N independent, but unknown func-
tional components s common to the subject group,
brain activities u of each subject emerge by linearly
mixing these components. ICA is equivalent to finding
a linear transformation matrix W of observations x
that makes its outputs u as mutually independent as
possible. This can be represented by the following
equations.

u � W � x � W � A � s (8)

where u is an estimate of source functional compo-
nents s and pu � � i � I

N pi�ui�

Among the various approaches to ICA developed in
parallel, we used the infomax learning algorithm pro-
posed by Bell and Sejnowski [1995]. It is a stochastic
gradient learning rule derived for a feed-forward neu-
ral network to blindly separate the mixtures of source
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components. Bell and Sejnowski introduced a nonlin-
ear transformation of source estimates ui with an in-
vertible monotonic nonlinear function of g, i.e.,
yi�g(ui). By maximizing the joint entropy H(y), they
could approximately minimize the mutual informa-
tion of output components yi. The mutual information
of ui will be minimized, when the nonlinearity yi�g(ui)
is the cumulative density function of the source esti-
mates ui. If a logistic function g(ui)�tanh(ui) is chosen
as a cumulative density function of super-Gaussian
source, the learning rule reduces to the following nat-
ural gradient equation proposed by Amari et al.
[1996].

�W	�I � 2tanh�u�uT�W (9)

The basic assumption of the infomax learning algo-
rithm is that the underlying sources are sparsely dis-
tributed, i.e., the distribution of each source is super-
Gaussian.

In order to validate ICM and application of ICA, we
tested the [15O]H2O PET images of multiple subjects
with serial task studies and we considered whether
the findings of common components across tasks and
task-specific components can support the validity of
ICM.

Subjects and Cognitive Tasks

We used PET data, part of which was previously
analyzed using the subtraction method by Kim et al.
[2002]. We studied 14 healthy, right-handed Koreans
(7 men and 7 women) with the mean 
 SD age of 24.8

 5.1 years.

The PET data was acquired during four serial tasks
with three types of geometric figures (circles, triangles,
and squares) as stimuli in random sequence, as is
shown in Figure 3. In task 1, the subjects responded
whenever the stimuli were presented. In task 2, the
subjects watched a list of geometric figures and re-
sponded whenever a circle was presented. Task 3 was
a sequential object task with a two-back condition
where the subjects were required to continuously
monitor a sequence of geometric stimuli and to re-
spond whenever a circle that had been presented be-
fore one intervening stimuli was presented again. In
task 4, a word was presented in a geometric figure and
subjects were requested to respond whenever the
name of a flower appeared in a circle, or when the
name of an animal name appeared in a rectangle. All
words written in Korean were commonly known (e.g.,
animals: pig, fox, deer, lion, rabbit, mouse, etc.; non-
animals: tree, chair, paper, clock, train, school, etc).

Figure 2.
ICA concept in PET decompositions. The basic assumption of ICM is a linear mixture of spatially
independent functional components and ICA is an effective tool for unmixing these components.
The assumption that all subjects share basic common functional components with subtle variation
enables the usage of ICA for finding basic functional components.
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All stimuli consisted of 80 items, including 28 tar-
gets. The frequency and distribution of the targets
were matched across all tasks. The subjects’ responses
involved clicking a left mouse button with their right
index finger only when the target stimulus was de-
tected.

Imaging Data Acquisition and Preprocessing

All subjects underwent four consecutive PET scans
for the four randomly distributed experimental tasks.
Scans were obtained using an ECAT EXACT 47 scan-
ner (Siemens-CTI, Knoxville, TN), which had an in-
trinsic resolution of 5.2 mm full width at half maxi-
mum (FWHM) and simultaneously imaged 47
contiguous transverse planes with a thickness of 3.4
mm for a longitudinal field of view of 16.2 cm. Before
the first injection of the tracer, a 7-min transmission
scan was performed for attenuation correction using
triple 68Ge rod sources. Emission scans during the
performance of cognitive tasks started after an intra-
venous bolus injection of 40–50 mCi of [15O]H2O in
5–7 ml saline and continued for 100 s in 20 5-s frames.
Acquired data were reconstructed in a 128 � 128 � 47
matrix with a pixel size of 2.1 � 2.1 � 3.4 mm by
means of a filtered back-projection algorithm employ-
ing a Shepp-Logan filter with a cut-off frequency of 0.3
cycles/pixel. Based on time-activity curves, only 12
frames reflecting the 60 s after peak arrival were
summed. Injections were repeated at intervals of
about 15 min.

Spatial pre-processing and statistical analysis were
performed using SPM 99 (Institute of Neurology, Uni-
versity College of London, UK) [Friston et al., 1995]
implemented in Matlab (Mathworks, Newton, MA) .
All reconstructed images were realigned and trans-
formed into a standard stereotactic anatomical space
to remove inter-subject anatomical variability [Ash-
burner and Friston, 1999; Talairach and Tournoux,
1988] . Affine transformation was performed in order
to determine the 12 optimal parameters to register the
brain on a standard PET template. Subtle differences
between the transformed image and the template were
removed using a nonlinear registration method using
the weighted sum of the pre-defined smooth basis
functions used in discrete cosine transformation. Spa-
tially normalized images were smoothed by convolu-
tion with an isotropic Gaussian kernel with 16-mm
FWHM in order to increase the signal-to-noise ratio
and accommodate the subtle variations in anatomical
structures.

Independent Component Analysis

Spatial ICA was applied to stereotaxically normal-
ized images of tasks 1, 2, 3, and 4 separately. Note that
each task was analyzed independently of the other
tasks, which is totally different from the subtraction
approach. Regional intensities of all images, masked
by the brain mask of SPM99, were normalized propor-
tionally by equating the global mean to 50 ml/min/dl.
The infomax learning algorithm using ICA toolbox

Figure 3.
Serial cognitive tasks used for evaluation of
ICM. Task 1 is a simple object perception task
as a control experiment. Task 2 is an object
recognition task where subjects should re-
spond when a circle appears. Task 3 is a two-
back test where a circle appears after the
appearance of a circle twice previously. Task 4
is a divided attention task that subjects re-
spond when a flower in a circle and an animal
in a rectangle stimuli appear. Arrows indicate
the stimuli that subjects should respond. In
task 4, the Korean characters in the geometric
figure mean “fox/rabbit/chrysanthemum/rose/
duck/lion/lily” in that order.
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(available online at http://www.sccn.ucsd.edu/�scott/
ica.html) was applied to each task’s normalized im-
ages, the voxels of which were realigned as a one-
dimensional time series. The learning rate was fixed at
10-6. Log likelihood was computed continuously to
measure the independency of the output of the net-
work and to determine the optimal repetition time of
the training. The components were sorted according to
the relative contribution of each component to the
original image, which is defined as:

rj �

�
i � 1

M �
k � 1

K

�Wij
invuj�k��2

�
i � 1

M �
k � 1

K

xi�k�2

(10)

where Wij
inv indicates an element of W-1 corresponding

t1o the weight of the component j constituting subject
i image. xi(k) is the observation at voxel k of the
subject i and uj(k) is the estimated functional compo-
nent j at the voxel k.

RESULTS

The maximum intensity projection maps of func-
tional components corresponding to experimental
tasks are displayed in Figure 4. All map components
are illustrated by sagittal view, transverse view, and
coronal view, in that order. The left side of the coronal
map and the top side of the transverse map indicate
the left hemisphere of the brain. The relative contri-
bution of the component, derived by Eq. (10), in com-
posing the brain activation of each subject is displayed
at the top-left of each map with the task number and
the order in that task.

All components of each task, which were derived
within the task, were compared with components in
the other tasks and re-ordered according to similar
patterns across the tasks. Referencing correlation co-
efficient(r) between images of different tasks, we cat-
egorized images by visual inspection. Rows 1–3 show
components with high correspondence (r � 0.5) to the
pattern among tasks. Rows 4–9 show components of
relatively high correspondence (r � 0.25) among tasks.
The remaining components are those that could not be
matched with other tasks and are displayed without
any relation to each other’s task.

The first row component is composed of activation
in the bilateral cerebellums. The second row compo-
nent is located in the sensory and motor areas and the

third component is located in the supplementary mo-
tor area. The contribution rates of the three compo-
nents are almost the same throughout the tasks. The
fourth component covers mainly the occipital lobe and
a small portion of the parietal lobe. The fifth compo-
nent seems to correspond to the fusiform gyrus, in-
cluding ventral occipito-temporal pathway. Activa-
tions in basal ganglia seem to appear in the fifth
component of tasks 1 and 2. The third component in
task 3 corresponds to both the fourth and the fifth
components of the other tasks with relatively high
correlation. The mean usage of this component in task
3 is 39%, which is a similar value to that obtained by
adding the fourth and fifth components in the other
tasks. The sixth component is mainly located bilater-
ally at orbito-frontal lobes and shows somewhat dif-
ferent patterns by tasks. The sixth component of both
tasks 2 and 3 is distributed mainly in the frontal area
including dorso-lateral prefrontal, orbito-frontal and
anterior cingulate cortex. The seventh component
seems to correspond to lingual gyrus.

The unmatched three components in task 1 are com-
posed of the left frontal cortex, right orbito-frontal
cortex, and both anterior temporal regions. The un-
matched three components in task 3 are mainly lo-
cated in the prefrontal areas (from the first to third
components). The last unmatched component in task 3
shows bilateral parietal involvement. The first un-
matched component of task 4 is mainly located in the
occipital, left temporal and right parietal lobes. The
second unmatched component of task 4 is located in
the left dorso-lateral prefrontal and left temporal re-
gions. The right dorso-lateral prefrontal area is found
in the third unmatched component of task 4.

Figure 5 shows an example of mixing matrixes A of
Eq. (6) in task 2 (Fig. 5a) and task 3 (Fig. 5b). Mixing
matrices provides information on the weight of the
component usage according to subjects and tasks.
Components were ordered according to the relative
contribution to the original image using Eq. (10) from
high to low values. Color values indicate strengths of
weights, i.e., strengths of the usage of each component
in the subjects. First, components of task 2 and task 3
correspond to the fifth row of task 2 and the fourth
row of task 3, respectively, in Figure 4. From the
mixing matrix A, we can understand how each com-
ponent is used for a subject to perform a task. For
example, subject 11 had the highest usage of compo-
nent 1 (i.e., the fifth row of task 2, ventral occipito-
temporal pathway and basal ganglia) in task 2, fol-
lowed by Subject 5, etc. Subject 11 thus used the brain
areas identified by component 1 strongly for task 2. In
general, the component usage was found to be ho-
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Figure 4.
The resultant functional components of PET images during four
tasks derived by spatial independent component analysis. The
maximum intensity projection maps of functional components
corresponding to experimental tasks are displayed. The left map of
each figure represents the sagittal section view of maximum in-
tensity and the left side of the map is the posterior brain. The
middle map of each figure represents the transverse section view:
the top side shows the left brain and the left side shows the
posterior brain. The right map of each figure represents the
coronal maximum intensity: the left side of the coronal map shows

the left side of the brain and the top side shows the top of brain.
The relative contribution of the component in composing brain
activation of each subject is displayed at the top-left of each map
with the task number and the order in that task. Ten highly
contributed components were reordered to similar patterns
across the tasks by the correlation coefficient (r) between images
of different tasks and visual inspection. Rows 1–3 components
show a high correspondence across tasks and rows 4–9 show
medium correspondence. The components under the bottom line
are unmatched components that we could not match among tasks.
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mogenous throughout subjects except for some minor
differences. Figure 5 also provides task-specific infor-
mation; for example, most high-contribution compo-
nents were evenly involved in task 2 while task 3

seemed to require focused usage of component 1 (i.e.,
the fourth component of task 3 in Fig. 4) compared to
task 2.

Figure 6 shows the mutual information between

Figure 5.
Weight usage of subjects at task 2 and task 3. The weights of functional components according to
subjects are displayed during task 2 (a) and task 3 (b) in order to illustrate the homogenous usage
of weights with little variation. Components were ordered from high relative contribution to low
contribution to the original image. The color scale indicates strengths of weights, i.e., strengths of
the usage of each component in the subjects.

Figure 6.
Mutual information between all
components derived throughout
four tasks. The mutual information
between all components of the four
tasks, in total 56 components, was
displayed. The color bar indicates
the strength of mutual information
between components. The diagonal
elements indicate mutual informa-
tion between self-components. A di-
agonal block indicates mutual infor-
mation within tasks while an off-
diagonal block indicates mutual
information across tasks.
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all components of the four tasks, which was derived
from the algorithm of Moddemeijer [1989]. The total
number of components derived from the four tasks
was 56. Each task has a block of 14 components. The
diagonal elements with the highest values indicate
mutual information between self-components. A di-
agonal block indicates mutual information within
tasks while an off-diagonal block indicates mutual
information across tasks. Low values in off-diagonal
elements show independence between components
within a task and across tasks. Mutual information
between components within a task is generally
lower than that of between tasks because ICA was
applied to images within tasks. We can see several
relatively high-value spots in off-diagonal elements,
which indicate the existence of similar components
across tasks. They are correspondent to row 1–3
components.

We also applied an extended infomax algorithm in
order to validate the ICA algorithm in the ICM model,
but the mean mutual information of each independent
component was not found to be as significant com-
pared to that which was derived from the general
infomax algorithm. Thus, we accepted the result of the
general infomax algorithm, which follows the model’s
assumption.

DISCUSSION

Independent Functional Components
Across Subjects and Tasks

Basic functional activations, including sensory
and motor functions and visual analysis that per-
ceive the shape passively, may be activated
throughout the tasks. Sustained attention and shape
recognition are possibly involved in all tasks, even
though the activation is thought to be weak in task
1 when compared with other tasks. Working mem-
ory is thought to be involved in both the two-back
task (task 3) and the divided attention task (task 4)
but the type of involvement is believed to be differ-
ent. Semantic processes of categorization and di-
vided attention are also considered to be involved in
task 4. The following interpretation of the results is
largely based on the extensive review of Cabeza and
Nyberg [2000].

Row 1 to 5 components show similar activation
patterns but little difference in contributions to the
tasks and indicate the components common to the
four tasks. The first row component is mainly lo-
cated in bilateral cerebellums that are known to play
an important role in cognition, such as motor prep-

aration, sensory acquisition, timing [Ivry, 1997], and
attention/anticipation [Akshoomoff et al., 1997].
The second row component (sensory and motor
area) and the third row component (supplementary
motor area) may be involved in sensory- and motor-
related activity, relevant or irrelevant to the tasks.
We concluded that these three components may be
related to the primary brain activities, including
basic cognition.

The fourth component that covers the occipital lobe
may be related to primary visual perception. The fifth
component may correspond to the visual recognition
of objects, which is related with activations in the
ventral pathway [Ungerleider and Mishkin, 1982].
Basal ganglia seems to be highly involved in this
component of tasks 1 and 2 and seems to show rela-
tively decreased activation in tasks 3 and 4 as higher
levels of cognitive processing is required.

The unmatched components in task 3 are thought to
be related with working memory, which is mediated
by the dorsolateral prefrontal cortex (DLPFC) and its
reciprocal cortical connections with other brain re-
gions, such as the cingulate, temporal, and parietal
cortices [Courtney et al., 1998].

The first and second unmatched components of task
4 show left lateralized activations and may be related
with language and semantic processes, especially
written word recognition and categorization. Left
middle temporal gyrus (BA 21) and bilateral occipito-
temporal regions (BA 37) are known to be involved in
semantic retrieval. The third component may be re-
lated to spatial working memory.

To summarize the above results, we found it plau-
sible that ICM helps explain the brain activations of
subjects during real experimental tasks. We do not
disclaim that the above interpretations may contain
over-interpretations, in part. The exact meaning for
each component still remains for further study. Even
though we could not match all functional components
to cognitive processes precisely and found some lim-
itations, ICA is regarded to be effective considering
that it decomposes functional components blindly
from images of multiple subjects without any a priori
constraint or control experiment.

How Does ICM Describe Brain Activation?

The major assumptions used in ICM are partly sup-
ported by the work of McKeown et al. [McKeown et al.
1998], who tried to validate the ICA assumptions on
fMRI, and who showed the plausibility of the constant
linear mixing of components sparsely distributed
throughout the brain with the same number of com-
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ponents contained in the data as the number of chan-
nels (in our case, number of subjects). The assumption
that multiple subjects share common cognitive com-
ponents can be considered acceptable in view of the
fact that most within-group experiments explore sub-
ject-independent cognitive processes, i.e., common
components across subjects.

The idea that subjects share basic functional compo-
nents with subtle variations is the cue to exploring the
spatial pattern of the functional components expected
to exist in the task. The model explains the different
brain activations of subjects by changing the weights
of common independent functional components,
which are assumed to be fixed during the task. The
weight of a certain component remained within a
limited range for all of our subjects, which implies a
relatively homogenous involvement of functional
components among subjects. Spatial pattern of each
functional component represents spatially synchro-
nized activation that has the same origin across voxels,
i.e., the same functional process, and it implies a func-
tional association analogous to the “functional connec-
tivity,” which has the meaning of temporal inter-cor-
relation.

It should be noted that ICM is an indirect way to
explore functional components using subject variabil-
ity. ICA can only extract the spatially independent
components that recruit distinct brain areas that vary
significantly from subject to subject in performing a
task. A spatial component that has the same involve-
ment in a task from subject to subject cannot be ex-
tracted by ICA. However, this might not be the case in
real data since the subject-variability of the involve-
ment of any brain region in performing any task al-
ways exists.

Independent Functional Components of ICM and
Real Cognitive Components

A question remains about the relationship between
the independent functional components in the model
and real cognitive components of the brain. Through
our experiments, we found a high correspondence
between specific cognitive processes and functional
components. However, for some functional compo-
nents, two or more cognitive components seem to be
mixed, while others seem to be divided into two or
more functional components.

The errors of decomposition may be derived partly
from noise effects and the imperfectness of ICA algo-
rithms in solving ICM in addition to modeling errors
that underlying assumptions of ICM may not fit the
characteristics of the real data sufficiently, such as

nonlinear nature of some cognitive processes. In the
application of ICA to ICM, no explicit noise model is
used; thus, it is assumed that noise is distributed
among one or more of the components [McKeown and
Sejnowski, 1998]. Accordingly, noise may be con-
tained in the derived components in part and may
degrade the decomposition. Also, the ICA technique is
still under development and the conventional ICA
algorithm does not always give a perfect solution to
the ICM model. Lack of knowledge about the number
of functional components involved in a task can also
deteriorate the separation. For example, when the
number of cognitive processes is more than that of
subjects, the ICA learning algorithm may derive un-
der-complete separation of independent components,
while in the reverse case, the ICA algorithm may
derive over-complete separation of independent com-
ponents even if the weights of extra components
should be near zero.

As was discussed in the paper by McKeown et al.
[1998b], we cannot disregard the limitations of ICA
and ICM in decomposing the nonlinear interaction
between cognitive functions [Friston et al., 1996; Price
and Friston, 1997]. Basically, ICM assumes that each
functional component is linearly independent, and,
therefore, a nonlinear interaction may be decomposed
into two or more linear components. Nonlinear inter-
action can be illustrated either by nonlinear changes of
a component weight due to a nonlinear modulator or
by a new linear component generated by a nonlinear
modulator that differs from the existing functional
components in ICM.

As a data-driven explorative approach, ICM cannot
be easily validated by statistical methods due to the
different goals and approaches of the two methods.
Statistical methods based on subtraction scheme have
been used to investigate mainly functional localization
by testing pre-determined hypotheses and have
proven to be a matchless tool in the neuroimaging
field. Using the subtraction scheme, several powerful
methodologies from pure insertion and factorial anal-
ysis to conjunctional analysis have been established
during the last decades. Interpretation of ICA for ICM
in this study is also based on the previous findings of
the subtraction method. However, the subtraction
method mainly gives information on additive compo-
nents, and, therefore, requires a control task for con-
trasting experimental tasks. In addition, it does not
provide much information on the functional connec-
tion between brain regions. In other words, in order to
be statistically clear, the method sacrifices the integra-
tion of functional components. Meanwhile, ICM can
give some clues concerning functional association in
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addition to function segregation from a set of cross-
sectional images. ICM and ICA can provide additional
information on what types of functional components
are involved during tasks, which the subtraction
method cannot provide. Moreover, the subtraction
method can possibly be explained by ICM based on
changes in component weight.

Concluding Remarks

ICM starts from homogeneous characteristics across
subjects within a group. Therefore, ICM can be ex-
tended to exploring group differences and may be an
efficient tool for characterizing disease-specific brain
activations.

In summary, we have mathematically derived an
independent component model (ICM) to illustrate
subject variability and the task differences of cognitive
functions. Also, by serial task design, we partly con-
firmed the validity of our model.

ACKNOWLEDGMENTS

This work was supported the interdisciplinary re-
search of the Korea Science and Engineering Founda-
tion (1999-2-213-002-3).

REFERENCES

Akshoomoff NA, Courchesne E, Townsend J (1997): Attention co-
ordination and anticipatory control. Int Rev Neurobiol 41:575–598.

Amari S, Cichocki A, Yang HH. (1996): A new learning algorithm
for blind source separation. In: Advance in neural information
processing systems 8. Cambridge, MA: MIT Press, p 757–763.

Ashburner J, Friston KJ (1999): Nonlinear spatial normalization
using basis functions. Hum Brain Mapp 7:254–266.

Bell AJ, Sejnowski TJ (1995): An information-maximization ap-
proach to blind separation and blind deconvolution. Neural
Comput 7:1129–1159.

Cabeza R, Nyberg L (2000): Imaging cognition II: An empirical
review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47.

Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998):
An area specialized for spatial working memory in human fron-
tal cortex. Science 279:1347–1351.

Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RS (1992):
The left medial temporal region and schizophrenia. A PET
study. Brain 115:367–382.

Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993): Functional
connectivity: the principal-component analysis of large [PET)
data sets. J Cereb Blood Flow Metab 13:5–14.

Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak
RS (1995): Statistical parametric maps in functional imaging: a
general linear approach. Hum Brain Mapp 2:189–210.

Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RS, Dolan RJ
(1996): The trouble with cognitive subtraction. Neuroimage 4:97–
104.

Horwitz B (1990): Simulating functional interactions in the brain: a
model for examining correlations between regional cerebral met-
abolic rates. Int J Biomed Comput 26:149–170.

Horwitz B (1991): Functional interactions in the brain: use of corre-
lations between regional metabolic rates. J Cereb Blood Flow
Metab 11:A114–120.

Hyvärinen A, Karhunen J, Oja E (2001): Independent component
analysis. New York: John Wiley & Sons, Inc.

Ivry R (1997): Cerebellar timing systems. Int Rev Neurobiol 41:555–
573.

Kim JJ, Kim MS, Lee JS, Lee DS, Lee MC, Kwon JS (2002): Dissoci-
ation of working memory processing associated with native and
second languages: PET investigation. Neuroimage 15:879–891

Lee T-W (1998): Independent component analysis theory and appli-
cations. Boston: Kluwer Academic Publishers.

Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ (1997):
Blind separation of auditory event-related brain responses into
independent components. Proc Natl Acad Sci USA 94:10979–
10984.

McKeown MJ, Sejnowski TJ (1998): Independent component analy-
sis of fMRI data: examining the assumptions. Hum Brain Mapp
6:368–372.

McKeown MJ, Jung TP, Makeig S, Brown G, Kindermann SS, Lee
TW, Sejnowski TJ (1998a): Spatially independent activity pat-
terns in functional MRI data during the stroop color-naming
task. Proc Natl Acad Sci U S A 95:803–810.

McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell
AJ, Sejnowski TJ (1998b): Analysis of fMRI data by blind sepa-
ration into independent spatial components. Hum Brain Mapp
6:160–188.

Moddemeijer R (1989): On estimation of entropy and mutual Infor-
mation of continuous distributions. Signal Process 16:233–246.

Moeller JR, Strother SC (1991): A regional covariance approach to
the analysis of functional patterns in positron emission tomo-
graphic data. J Cereb Blood Flow Metab 11:A121–135.

Price CJ, Friston KJ (1997): Cognitive conjunction: a new approach to
brain activation experiments. Neuroimage 5:261–270.

Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the
human brain.New York.:Thieme.

Ungerleider LG, Mishkin M (1982): Two cortical visual systems. In:
Ingle DJ, Goodale MA, Mansfield RJW, editors. Analysis of
visual behavior. Cambridge, MA: MIT Press. p 549–589.

� ICM for Cognitive Functions �

� 295 �


