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Abstract: Typically, fMRI data is processed in the time domain with linear methods such as regression and
correlation analysis. We propose that the theory of phase synchronization may be used to more com-
pletely understand the dynamics of interacting systems, and can be applied to fMRI data as a novel
method of detecting activation. Generalized synchronization is a phenomenon that occurs when there is
a nonlinear functional relationship present between two or more coupled, oscillatory systems, whereas
phase synchronization is defined as the locking of the phases while the amplitudes may vary. In this
study, we developed an application of phase synchronization analysis that is appropriate for fMRI data,
in which the phase locking condition is investigated between a voxel time series and the reference function
of the task performed. A synchronization index is calculated to quantify the level of phase locking, and
a nonparametric permutation test is used to determine the statistical significance of the results. We
performed the phase synchronization analysis on the data from five volunteers for an event-related
finger-tapping task. Functional maps were created that provide information on the interrelations between
the instantaneous phases of the reference function and the voxel time series in a whole-brain fMRI
activation data set. We conclude that this method of analysis is useful for revealing additional information
on the complex nature of the fMRI time series. Hum. Brain Mapping 16:71–80, 2002.
© 2002 Wiley-Liss, Inc.

Key words: synchronization; instantaneous phases; Hilbert transform; permutation test; surrogate data

� �

INTRODUCTION

The study of nonlinear dynamics involves the
investigation of systems in which the output is not

proportional to the input, that is, these systems
respond nonlinearly to a perturbation. We may wish
to explore the working relationships of such sys-
tems or subsystems and are primarily interested in
the interactions of these systems. Synchronization is
a nonlinear phenomenon that is of much relevance
when studying the intricate dynamics between
oscillators that are either weakly coupled or driven
by an external force [Hayashi, 1964; Minorsky,
1974].
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The definition of synchronization is not widely
agreed upon; however, it is generally acknowledged
that synchronization occurs when there exists a func-
tional relationship between subsystems. The occur-
rence of synchronization has been observed in many
studies of man-made systems [Blekhman, 1988] and in
nature, such as in the analysis of the effects of light on
neuroendocrine circadian rhythms [Aschoff et al.,
1982], the simultaneous recordings of breathing and
gait in running mammals [Bramble and Carrier, 1983],
local field potential oscillations in the orientation col-
umns of the feline visual cortex [Gray and Singer,
1989], in vitro analysis of the inferior olivary neurons
of the olivo-cerebellar system [Makarenko and Llinas,
1998], investigation of brain activity during patholog-
ical tremor with magnetoencephalography (MEG) and
electromyogram (EMG) recordings [Tass et al., 1998],
electrocardiogram (ECG) and thermistor readings of
the human cardiorespiratory system [Rosenblum et
al., 1998; Schafer et al., 1999], LFP data from human
intracortical recordings [Lachaux et al., 1999], extracel-
lular recordings in the electrosensitive cells in paddle-
fish [Neiman et al., 1999], and near-infrared spectros-
copy (NIRS) of motor cortex hemodynamics [Toronov
et al., 2000].

The classical theory of synchronization has been
thoroughly developed with respect to periodic signals,
and it was determined that phase locking and fre-
quency locking are equivalent in these systems [Ha-
yashi, 1964; Pikovsky et al., 2000]. Classically, in peri-
odic oscillators, phase synchronization is defined as
the locking of the phases of the two systems whereas
their amplitudes may vary. That is, two instantaneous
phase signals, �i(t) and �j(t), are in synchrony if the
phase-locking condition is met:

�n�i�t� � m�j�t�� � const. (1)

This condition poses no restriction on the amplitudes
of the times series under investigation [Tass et al.,
1998].

Recent studies have increased our understanding of
synchronization in non-periodic, noisy, or chaotic sys-
tems, and have shown that it is possible to detect
synchronization in these systems also [Rosenblum et
al., 1996, 1997]. In noisy systems, phase synchroniza-
tion is a transient process, as signals randomly find
themselves in and out of synchrony due to the pres-
ence of noise. In this case, phase and frequency lock-
ing may no longer be equivalent [Schafer et al., 1999].
Thus, investigation of synchronization phenomena in

noisy systems requires a quantitative analysis of the
instantaneous phase signals. Phase synchronization is
similarly defined in chaotic and noisy systems, and it
is this property that allows both types of systems to be
analyzed in the same manner [Tass et al., 1998]. If the
goal is to analyze the instantaneous phases in experi-
mental data, it is irrelevant whether the oscillations
under consideration are chaotic or noisy, as the
method remains the same for either case [Pikovsky et
al., 2000].

To detect the presence of synchronization in cou-
pled systems from experimental time series data, there
are two assumptions that must be made. First, the time
series in question must be narrow-banded signals to
obtain estimates of the instantaneous phases. Second,
the time series must arise from systems that are self-
sustained oscillators. That is, the systems must gener-
ate their own rhythms. If these assumptions are justi-
fied, then it is possible to detect phase synchronization
in interacting systems by the analysis of the instanta-
neous phases. If these are not reasonable assumptions,
no conclusions concerning the occurrence of the non-
linear phenomenon of phase synchronization may be
made. If this is the case, however, analysis of the
instantaneous phases remains a valid method of ana-
lyzing time series to characterize a specific interrela-
tion between phases [Pikovsky et al., 2000].

Typically, fMRI data is processed in the time do-
main with linear methods such as regression and cor-
relation analysis. We propose that investigating the
relationships between the instantaneous phases of the
reference function and the voxel time series in fMRI
data will provide additional information on the dy-
namics of functional activation. By analyzing the in-
stantaneous phases, specific dependencies between
subsystems may be uncovered in situations where the
original time series may be completely uncorrelated.
As our analysis involves the instantaneous phase of
the reference function, we are not assuming that our
oscillators are self-sustained oscillators. Therefore, our
aim was not to detect the occurrence of phase synchro-
nization, but rather to detect an interrelation between
the instantaneous phases of the reference function and
all voxel time series. That is, our goal was to detect a
relationship between the phases in experimental fMRI
data from the nonlinear dynamics perspective where
the true signal may be masked by noise. The further
purpose of this study was to detect this type of rela-
tionship in the cortical areas associated with fMRI
motor activation in an event-related paradigm.
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MATERIALS AND METHODS

Data were acquired for this study on a clinical 1.5 T
GE Signa LX scanner (General Electric, Waukesha, WI)
equipped with high-speed gradients for whole-body
EPI. A preliminary anatomical scan was performed to
acquire a set of high-resolution SPGR images for func-
tional image coregistration. Gradient-recalled echo
single-shot EPI images were acquired at 22 coronal
slice locations: slice thickness 7 mm; gap spacing 1
mm; flip angle 90°; FOV 24 cm � 24 cm; TE 40 msec;
TR 2,000 msec; and a 64 � 64 imaging matrix.

Five normal volunteers, between 20 and 35 years of
age, with no history of neurological disorder partici-
pated in this study after consent was obtained in ac-
cordance with institutional policy. Data was collected
using an event-related motor task paradigm, which
was composed of a self-paced alternate-hand finger
tapping exercise. In this task, visual cues for right- and
left-hand tapping were presented randomly in 2-sec
blocks. One hundred fifty data points were collected
for each voxel. Analysis began with the reconstruction
of the raw EPI data into spatially localized time series
of signal intensity vs. time for each voxel. The slices
were time corrected, and a 3-point Hanning filter was
applied for temporal smoothing of the data. The first
four images of each slice location were disregarded
due to incomplete saturation of the signal. The analy-
sis of phases presented here was written in Matlab
(Mathworks, Natick, MA).

Hilbert transform

Determination of a relationship between phases us-
ing the theory of phase synchronization requires the
calculation of the instantaneous phase signal for each
voxel time series. Lachaux et al. [1999] convolved their
data with a complex Gabor wavelet to extract the
phase information. This can also be accomplished by
use of the Hilbert transform. Previously, the Hilbert
transform has been used in fMRI as a method of
estimating the hemodynamic delay response [Saad et
al., 2001].

For a real-valued time-domain signal s(t), the Hil-
bert transform, s̃(t), is defined as the convolution in-
tegral of s(t) and (1/�t). That is,

s̃�t� � �
� �

� � s���

��t � ��
d� � s�t�*� 1

�t� . (2)

To avoid the complexities of computation associated
with the poles in the above integral, we note that the

Fourier transform of s̃(t) is S̃(f), and can be computed
through use of the convolution property of Fourier
theory:

S̃�f � � S�f ���i � sgn�f ��, (3)

where S(f) is the Fourier transform of our signal s(t),
sgn(f ) is the signum function, and i � sgn(f ) is the
Fourier transform of 1/�t [Bendat and Piersol, 2000].
In the calculation of the instantaneous phase signal of
s(t), it is necessary to introduce the concept of the
analytic signal [Gabor, 1946]. A real signal and its
Hilbert transform are used to form a new complex
signal, z(t), which is the analytic signal corresponding
to the real signal. The analytic signal, z(t), has no
negative-frequency components, and is defined as:

z�t� � s�t� � is̃�t� � A�t�ei��t�, (4)

where A(t), the envelope signal of s(t), and �(t), the
instantaneous phase signal of s(t), are uniquely de-
fined [Rosenblum et al., 1998; Schafer et al., 1999].
Then the Fourier transform of z(t) is Z(f ):

Z�f � � S�f � � iS̃�f� � S�f � � S�f ��sgn�f ��

� � 2S�f � for f � 0
0 for f � 0 . (5)

Thus, by starting with the signal, s(t), we calculate
the Fourier transform, S(f ), multiply positive frequen-
cies by two and negative frequencies by zero, and take
the inverse Fourier transform to obtain z(t). The in-
stantaneous phase signal is then defined as:

��t� � arctan� s̃�t�
s�t�� � arctan� Im�z�t��

Re�z�t��� . (6)

Phase difference signal

To investigate the phase interrelations in fMRI data
between a voxel with time series xi(tk) and a reference
function xj(tk), we first calculate the instantaneous
phase signal of these time series, �i(tk) and �j(tk), re-
spectively. The phase locking condition [Tass et al.,
1998] is satisfied if the phase difference signal

�i,j�tk� � �n�i(tk) � m�j�tk�� (7)

oscillates around a constant value.
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There is no accepted method of determining n and
m, and therefore, many authors choose these values by
trial and error [Rosenblum et al., 1998; Schafer et al.,
1999; Tass et al., 1998; Toronov et al., 2000]. This
technique works well when applied to data from
MEG, ECG, and NIRS studies, as they are not com-
prised of an excessively large number of time series.
Due to the large number of time series obtained in an
fMRI study; however, this is an impractical approach.
Thus, n was assigned the value of one, and a least-
squares fitting was performed to determine the value
of m for each phase difference signal, �i,j(tk), in the
brain, so as to minimize the difference between the
two signals. The phase difference signal was deter-
mined by subtracting the instantaneous phase signal
of the voxel under investigation from the instanta-
neous phase signal of the reference function of the task
performed according to the above equation. The ref-
erence function was created by convolving the stimu-
lus time series (ones for tapping, zeros for resting)
with a hemodynamic response function. This hemo-
dynamic response function consisted of two gamma
functions shifted 2 sec apart. The procedure for deter-
mining the phase difference signal was repeated for all
voxels in the brain. Previous studies have determined
the presence of phase synchronization by visual in-
spection of the instantaneous phase information
[Bramble and Carrier, 1983; Rosenblum et al., 1996,
1998; Schafer et al., 1999]. This not a sufficient means
of characterizing a relationship between instantaneous
phases, and it is necessary to formulate a statistical
procedure to quantify the strength of this relationship.

Synchronization index

In synchronization theory, the degree of phase syn-
chronization is determined by analysis of the distribu-
tion of the phase difference signal, also called the
relative phase distribution [Stratonovich, 1963]. The
relative phase distribution for two time series that are
phase-locked is a peaked distribution, due to the fact
that in noisy systems the relative phase signal fluctu-
ates around some preferred value. Thus, quantifica-
tion of phase synchronization deals with the analysis
of the distribution of the relative phase. Even though
our goal was not to detect the presence of phase
synchronization, we chose to proceed with our anal-
ysis of the relative phases based on the theory of phase
synchronization. Our chosen test statistic is based on
the entropy [Shannon and Weaver, 1949],

S � � �
i � 1

N

pi ln pi , (8)

where pi is the probability mass of the phase difference
signal, �i,j(tk), over N bins. It is easily shown that the
maximum entropy, Smax 	 ln(N), characterizes a uni-
form probability distribution. This maximum entropy
aids us in normalizing what Tass et al. [1998] define to
be the synchronization index:


 �
Smax � S

Smax
. (9)

The values of 
 range from zero to one, where zero
corresponds to no synchronization, or a uniform dis-
tribution, and one corresponds to a perfect synchroni-
zation, or a Dirac delta distribution [Tass et al., 1998].

Nonparametric permutation tests

To make a valid assessment of the statistical signif-
icance of the results obtained while minimizing Type
I error, it is necessary to develop an accurate proce-
dure for calculating the significance levels of the syn-
chronization indices. Since the distribution of the
index is unknown, we must proceed with a nonpara-
metric approach. For this analysis, we have chosen the
permutation test [Nichols and Holmes, 2002], a test
that is computationally expensive, but also very flex-
ible. There are two different methods of applying per-
mutation theory to fMRI data to obtain the null dis-
tribution of the test statistic. One is to permute the
labels of the scans of the stimulus function, which is
sometimes called a randomization test. The other
method is based on repeated random resampling of
the observed data. This can be justified by accounting
for the temporal autocorrelations present in the data
or orthogonal transformation to another domain [Bull-
more et al., 2001].

In this study, we have chosen to proceed with the
randomization test, which we will refer to as the per-
mutation test, for simplicity. The use of this test is
justified by the initial randomization of the presenta-
tion order of the task. By choosing a randomized
presentation order of the task, we have avoided con-
founding effects associated with the hemodynamic
response. This method of statistical inference may be
applied to non-randomized tasks only when an effort
is made to model the temporal autocorrelations

� Laird et al. �

� 74 �



present in the fMRI time series [Nichols and Holmes,
2002].

The null hypothesis is concerned only with the data
acquired, and states that the intensity of each image
collected will be unchanged, regardless of the presen-
tation order. To test whether there is evidence against
the null hypothesis, we first look at the stimulus time
series. Assuming that the null hypothesis is true, then
if the stimulus time series is permuted with all possi-
ble orderings equally probable, the resulting statistics
will be equal to those obtained for the actual stimulus
time series. That is, the set of test statistic values
associated with each permutation are all equally prob-
able. When the values of the test statistic are computed
for all possible permutations of the stimulus time se-
ries, we have the permutation distribution of our test
statistic for one voxel. Permutation theory states that
under the null hypothesis, this permutation distribu-
tion is the sampling distribution of our synchroniza-
tion index. The critical value of the index for a given
significance level may then be obtained directly from
this distribution [Nichols and Holmes, 2002].

For the case of calculating the significance level, �,
for a whole brain image of synchronization indices, we
encounter the multiple comparison problem that ac-
companies standard voxel-by-voxel testing. Our ap-
proach to this issue was to consider a maximal statis-
tic. First, we performed the above computations on all
voxels for a single permutation and recorded the max-
imum value obtained from these synchronization in-
dices. That process was repeated for all permutations
under consideration to obtain a distribution of the
maximum values of the index, for all voxels and all
permutations. This distribution is the permutation dis-
tribution for the maximal statistic [Nichols and
Holmes, 2002].

The omnibus null hypothesis that all null hypothe-
ses for all voxels are true is rejected for a given signif-
icance level if the maximal statistic for the actual stim-
ulus time series is in the top 100�% of this distribution.
This method requires that the permutation distribu-
tions are similar across all voxels. There are three
reasons that we will assume similar voxel permutation
distributions for all subjects in this study. First, veri-
fication of this assumption is extremely computation-
ally expensive. Second, previous research [Holmes et
al., 1996] indicates that the loss of power associated
with variation among voxel permutation distributions
is negligible. Third, our test statistic is normalized.
Thus, this method of statistical inference accounts for
the multiple comparisons problem associated with

testing all voxels in a dataset simultaneously [Nichols
and Holmes, 2002].

For a functional imaging scan of 150 time points,
there are 150! ways of permuting the stimulus time
series, assuming full exchangeability. Including all
permutations in the calculations is not a practical
method of determining the significance level of the
statistical image due to the number of computations. It
is acceptable to test a subsample of these permutations
comprised of 1,000 permutations [Edgington, 1995],
thereby performing an approximate permutation test.
In this case, the actual permutation of the stimulus
time series should be included in the subsample. We
determined the null distribution for the maximal syn-
chronization index on a subject-by-subject basis, for
both the right- and left-hand stimulus time series. It is
in this manner that all functional images were as-
sessed for significance at a level � 	 0.05.

Surrogate data

We wished to perform the analysis of the relative
phases on simulated data to test the efficacy and reli-
ability of this method. Previous studies have indicated
that this is a complicated issue [Rosenblum et al., 1998;
Schafer et al., 1999]. In the field of nonlinear dynamics,
results are often validated using the surrogate data
technique. The first step of this procedure is to com-
pute the test statistic with the experimentally obtained
data. Then a surrogate data set is constructed in which
certain properties of the original signal are preserved.
The test statistic is again calculated using the surro-
gate data, and compared to the results of the observed
data to determine if there are any differences [Palus
and Hoyer, 1998; Schreiber and Schmitz, 2000]. We
have applied this technique with the goal of determin-
ing if the relation between phases that we have de-
tected is randomly occurring or if it is due to a feature
of the experimental data.

The most crucial step of surrogate data testing is
constructing the surrogates. Frequently, this is done
by randomization of the Fourier phases. This is not a
suitable technique in validating the results of the anal-
ysis presented here because any manipulation of the
Fourier phases would surely alter the properties of the
signal that are of the most interest to our analysis.
Wavelet resampling is better suited as a method of
generating surrogate data in our case. Studies have
shown that the power spectra of scans conducted un-
der resting conditions exhibits 1/f-characteristics
[Aguirre et al., 1997; Zarahn et al., 1997], and that
fractional Brownian motion may be used as a model
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for 1/f noises [Mandelbrot and Van Ness, 1968]. Re-
sampling via wavelet decomposition is the preferable
method for testing fMRI data as it preserves the
second order stochastic properties and successfully
decorrelates fractional Brownian motion [Bullmore et
al., 2001; Percival, 1999].

We chose to follow the algorithm proposed by Bull-
more et al. [2001] to construct our surrogates. In this
algorithm, a level five decomposition was performed
for a single time series in one data set using the
fourth-order Daubechies wavelet. This particular

wavelet was chosen to maximize the decorrelation
between the wavelet coefficients [Flandrin, 1992; Tew-
fik and Kim, 1992]. The wavelet coefficients were ran-
domly permuted without replacement at each level of
detail. The inverse wavelet transform was performed
to obtain the wavelet-resampled time series. This pro-
cedure was repeated for every time series in the brain
for one volunteer and these resampled time series
comprised the surrogate data set [Bullmore et al.,
2001]. The synchronization index was then computed
for each voxel in the surrogate data. Studies have
indicated that it is satisfactory to test 19 or 39 surro-
gate data sets [Prichard and Theiler, 1994; Schreiber

Figure 1.
Reference function in red with a sample time series in blue for
right-hand tapping (a) and left-hand tapping (b).

Figure 2.
Histograms of the relative phase distributions for right-hand tap-
ping corresponding to the instantaneous phases of the reference
function and a voxel when a significant interrelation is present (a)
and when this interrelation is absent (b).
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and Schmitz, 2000]; however, we chose to construct
and analyze 99 surrogates. Thus one hundred syn-
chronization indices were computed at each voxel,
including those obtained from the experimental data.
To correct for multiple comparisons, we recorded the
maximum index for each permutation of the wavelet
coefficients. These maximum synchronization indices
were used to compare the significance of the results of
the experimentally obtained data to the surrogate
data. This surrogate data technique of validating the
results of the analysis of the relative phases was per-
formed on each of all five volunteers.

RESULTS

The analysis of the relative phases was completed
individually for all five volunteers for the left- and
right-hand reference functions of the event-related fin-
ger-tapping task. Functional maps were created for
the task performed by each volunteer, signifying the
interrelation between the instantaneous phases of the
reference function and all voxel time series during
activation of the motor cortex. Figure 1a,b show the
reference functions in red for the task performed and
sample time series in blue. These time series were

selected as those having the highest synchronization
index with the reference function. The time series in
Figure 1a corresponds to a voxel time series obtained
in the left motor cortex, whereas the time series in
Figure 1b corresponds to a voxel time series obtained
in the right motor cortex. Histograms of the relative
phase distribution for right-hand tapping are shown
in Figure 2. The peaked distribution above reveals the
strong dependency between the instantaneous phases
of the reference function and a voxel time series in the
left motor cortex, whereas the more uniform distribu-
tion below reveals the absence of any such relation-
ship between the phases of the reference function and
an arbitrarily chosen voxel in the frontal lobe. Figure 3
displays the results of the analysis of the relative
phases as functional maps (P � 0.05) for both right-
hand (
  0.0840) and left-hand (
  0.0850) finger
tapping for one volunteer. All of the maps created
from the data of the five volunteers consisted of small,
localized activation of the primary motor cortex. For
comparison, Figure 4 shows the results obtained when
the same data analyzed in Figure 3 is analyzed in a
more conventional fashion using the SPM’99 software
package (Wellcome Institute of Cognitive Neurology,
London, England). In this analysis, a method based on

Figure 3.
Functional maps of the analysis of
the relative phases presented in
three contiguous slices for the right-
hand (a) and left-hand (b) finger-
tapping task.
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the theory of Gaussian fields was used to correct for
multiple comparisons (P � 0.05). The same hemody-
namic response function was used in the SPM analysis
and the relative phase analysis. Results from all five
volunteers of the surrogate data testing revealed that
the synchronization indices of the relative phase anal-
ysis on the observed data set were significantly differ-
ent from those computed on the wavelet-resampled
surrogate data sets (P � 0.001).

It was mentioned previously that an interrelation
between instantaneous phases might occur in cases
where the original time series may be unrelated. An
example of this situation is shown in Figure 5 in which
a time series from a voxel in the left motor cortex and
the reference function for right-hand tapping are plot-
ted. The analysis of the relative phases revealed that
the instantaneous phase of this time series was signif-
icantly related to the instantaneous phase of the refer-
ence function; however, correlation analysis revealed
a coefficient of 0.1113 when these two time series were
compared. Traditional methodology would not have
identified this voxel as being active during the task. In
the five data sets analyzed, approximately 10% of the
voxels determined to have a significant phase relation-
ship with the reference time series were found to be

phase-locked but uncorrelated with the reference time
series. All of these voxels were located in the primary
motor cortex.

DISCUSSION

Analysis of the instantaneous phase signals of the
time series in fMRI via the Hilbert transform was used
as a method of determining the occurrence of an in-
terrelation between phases. By applying the theory of
phase synchronization to motor task data, we have
determined that it is possible to detect these depen-
dencies in the primary motor cortex during a random-
ized motor task. The functional maps created closely
resemble typical fMRI motor activation maps. Results
of the surrogate data testing have shown us that there
is some feature of the data that is responsible for the
instantaneous phase relationship that we have de-
tected between the reference function and a small
number of voxel time series. It remains to be deter-
mined if there is a physiological significance to the
results presented in this study.

We investigated the relationship between instanta-
neous phases as a method of detecting activation by
determining if the phase locking condition was ful-

Figure 4.
Functional maps presented in
three contiguous slices for the
right-hand (a) and left-hand (b)
finger-tapping task analyzed with
SPM’99.
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filled using the time series of the voxels and the ref-
erence function of the task performed, as opposed to
investigating the synchronization occurring between
two voxels. As we did not wish to use the data itself as
part of the processing and rely on a priori anatomical
information, we subsequently chose to incorporate the
use of the reference function into the method. The
reference function is not an oscillator that generates its
own rhythms, and so it is not a self-sustained oscilla-
tor. Thus, we are not truly characterizing phase syn-
chronization in fMRI activation data, but are instead
detecting the presence of a relationship between the
instantaneous phases of the voxel time series and the
reference function. Further investigation is in progress
to determine a method for truly characterizing phase
synchronization in fMRI time series. This future work
is relevant to the issues raised in several studies con-
cerning the linearity of fMRI data [Berns et al., 1999;
Kershaw et al., 2001; Vasquez and Noll, 1998]. If we
assume that there is an interesting source of nonlin-
earity present in fMRI data, we are left with the ques-
tion of how to account for nonlinear interactions be-
tween regions of the brain. Linear correlations do not
correctly characterize dependencies in multivariate
time series data with strong nonlinear sources [Kantz
and Schreiber, 1997]. Investigating the occurrence of
phase synchronization between two voxel time
courses will provide a method of detecting interac-
tions between subsystems in nonlinear data.

In this method we have analyzed experimentally
obtained time series data to detect the occurrence of
phase locking. A criticism of this method might be that
because these time series are bounded, this implies
that the phase difference signals are also bounded,
and perhaps the analysis should reveal that all the
signals are always phase locked. This is a valid argu-
ment; however, it is important to remember that we
are not just detecting the presence of the phase lock-
ing, but have computed a synchronization index and
applied a method of statistical inference to test the
significance of our results.

There has been some debate concerning the station-
arity of fMRI data. The General Linear Model assumes
that fMRI time series are stationary [Friston et al.,
1995], but there have been studies that suggest other-
wise [Berns et al., 1999; Calhoun et al., 1999; Gaschler-
Markefski et al., 1997]. It is important to note that the
Hilbert transform does not require the time domain
signals to be stationary [Rosenblum et al., 1997; Scha-
fer et al., 1999]. While investigating the relationship
between phases in nonstationary data, the analysis
presented here should be completed by processing the
signals with a sliding window approach. We chose to
proceed with the assumption that fMRI data is station-
ary; however, this issue does warrant further consid-
eration.

This method relies on the analysis of the phases of
signals, whereas traditional methods rely on analysis
of the signals themselves. We have shown that by
examining the instantaneous phases to detect fMRI
activation, relationships between the phases of two or
more signals may be detected whereas the signals
themselves may reveal no interdependence. We con-
clude that the analysis of the relative phases can be
used in fMRI as a method of detecting a relationship
between the reference function and voxels that are
active during a motor task. We have verified this
method on human subjects during an event-related
motor task study, and have discussed its implemen-
tations on nonstationary data. The method presented
here offers a unique interpretation of an fMRI data set,
allowing us to gain new insights into the complex
behavior of the fMRI time series.
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Figure 5.
Time series and reference function that show a significant inter-
relation between instantaneous phases, but are not strongly
correlated.
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