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Abstract: Although much has been learned about the functional organization of the human brain through
lesion-deficit analysis, the variety of statistical and image-processing methods developed for this purpose
precludes a closed-form analysis of the statistical power of these systems. Therefore, we developed a
lesion-deficit simulator (LDS), which generates artificial subjects, each of which consists of a set of
functional deficits, and a brain image with lesions; the deficits and lesions conform to predefined
distributions. We used probability distributions to model the number, sizes, and spatial distribution of
lesions, to model the structure–function associations, and to model registration error. We used the LDS to
evaluate, as examples, the effects of the complexities and strengths of lesion-deficit associations, and of
registration error, on the power of lesion-deficit analysis. We measured the numbers of recovered
associations from these simulated data, as a function of the number of subjects analyzed, the strengths and
number of associations in the statistical model, the number of structures associated with a particular
function, and the prior probabilities of structures being abnormal. The number of subjects required to
recover the simulated lesion-deficit associations was found to have an inverse relationship to the strength
of associations, and to the smallest probability in the structure-function model. The number of structures
associated with a particular function (i.e., the complexity of associations) had a much greater effect on the
performance of the analysis method than did the total number of associations. We also found that
registration error of 5 mm or less reduces the number of associations discovered by approximately 13%
compared to perfect registration. The LDS provides a flexible framework for evaluating many aspects of
lesion-deficit analysis. Hum. Brain Mapping 10:61–73, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Identifying associations between the structure and
function of the human brain is the goal of brain
mapping. Traditionally, two approaches have been
employed for this purpose. The first approach seeks
associations among lesions in structures, or morpho-
logical abnormalities, and neurological or neuropsy-
chological deficits. The second approach utilizes spe-
cifically designed activation experiments. Each of
these approaches has its own merits and limitations.
Independent of the approach used, a major limitation
of structure–function studies is that they are typically
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based on data from relatively small numbers of sub-
jects and, therefore, have low statistical power. The
need to develop large databases for the purpose of
meta-analysis of data pooled from many studies has
been recognized by the Human Brain Project [Huerta
et al., 1993].

This paper is motivated by our previously reported
work on the development of a Brain Image Database
(BRAID) [Letovsky et al., 1998], which includes im-
ages and clinical data from over 700 subjects. BRAID is
a large-scale archive of normalized digital spatial and
behavioral data with an analytical query mechanism.
In this framework, we have implemented several
methods to detect structure–function associations, one
of which is the Fisher exact test of independence. In
our previous work, we have reported associations be-
tween lesions in the visual cortex and visual deficits
[Letovsky et al., 1998], and associations between
basal-ganglia lesions and subsequent development of
attention deficit hyperactivity disorder (ADHD) [Her-
skovits et al., 1999]. However, evaluation of the regis-
tration and structure–function analysis methods has
not been addressed.

Several researchers have studied systematically the
problem of determining the minimum sample size
needed to achieve a certain confidence level for statis-
tical tests such as the chi-square and Fisher exact tests
of independence [Fu and Arnold, 1992; Larntz, 1978]
and compared the relative power of different statisti-
cal tests [Harwell and Serlin, 1997; Lee and Shen, 1994;
Oluyede, 1994; Tanizaki, 1997]. In addition, simula-
tions have been performed to study the power of
chi-square analysis in sample spaces of much higher
dimensionality, as one would expect to find in many
epidemiological studies [Mannan and Nassar, 1995;
Osius and Rojek, 1992; Tanizaki, 1997; Thomas and
Conlon, 1992]. Although these and similar analyses of
statistical methods that researchers may use to recover
structure–function associations provide valuable in-
formation, closed-form power analyses do not exist
that can account for the simultaneous effects of image
noise and registration error, in addition to the charac-
teristics of the statistical methods being employed.
The purpose of this study is to develop a unified
framework for evaluating different methods used to
detect lesion–deficit associations.

Given the impossibility of a general closed-form
solution for power analysis in this domain, we have
designed a lesion–deficit simulator in which we can
generate a large number of artificial subjects, construct
a probabilistic model of lesion–deficit associations,
model the error of a given registration method, and
apply this nonlinear error to the image data, perform

lesion–deficit analysis, and compare the generated as-
sociations with those detected by the analysis. The
number of subjects required to recover the known
associations reflects the statistical power of the partic-
ular combination of image-processing and statistical
methods being evaluated.

As a case study, we evaluated the Fisher exact test,
which is one of the statistical methods currently avail-
able within BRAID for the detection of associations.
We also evaluated the effects of registration error be-
cause of our nonlinear image-registration algorithm
on the power of lesion–deficit analysis within BRAID.
Our objective is to use this simulator as a test bed for
the subsequent development and evaluation of new
methods for structure–function analysis, for determin-
ing the sample size required to detect a structure–
function association of a given strength, and for quan-
tifying the effects of new registration and other image-
processing methods on the power of lesion–deficit
analysis.

The rest of the paper is organized as follows: Section
2 presents background information. Section 3 de-
scribes the method used for the evaluation of the
analysis procedure including the various components
of the Lesion-Deficit Simulator (LDS). In Section 4,
data generated by the simulator are used to evaluate
the Fisher exact test, and experimental results are
given. The paper concludes with a discussion in Sec-
tion 5.

BACKGROUND

To perform lesion–deficit analysis within BRAID,
we collect clinical data obtained via physical exami-
nation (e.g., development of visual problems), and
image data obtained via magnetic-resonance (MR) ex-
amination, and we then analyze these data to detect
associations among brain structures and their func-
tions. Once the data are incorporated into BRAID, we
must ensure that the clinical and image data are com-
parable across subjects. In particular, for image data,
brain lesions must be delineated, and image registra-
tion must be performed to map homologous anatom-
ical regions to the same location in a stereotaxic space.
Usually, lesions are identified manually, and the data
are then registered to a common spatial standard, such
as the Talairach anatomical atlas [Talairach and Tour-
noux, 1988]. In fact, BRAID contains several atlases:
Talairach, Brodmann, CHS, Damasio, and an artificial
atlas containing regions of interest to us. Here, we
concentrate on Talairach atlas structures, although any
other atlas could be used. Several groups have devel-
oped linear and nonlinear spatial transformations that
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bring an atlas and a subject’s image data into register
(i.e., spatial coincidence) [Bookstein, 1989; Collins et
al., 1994; Miller et al., 1993; Talairach and Tournoux,
1988]. Because the accuracy of linear-registration
methods is limited, nonlinear transformation methods
are generally preferable. Within BRAID, we use a
nonlinear method based on a 3D elastically deform-
able model [Davatzikos, 1997; Davatzikos, 1998].

BRAID uses several methods to determine struc-
ture–function associations [Megalooikonomou et al.,
1999], including the chi-square test, Fisher exact test,
and the Mann-Whitney test. To demonstrate the use of
the LDS, in this paper, we evaluate the Fisher exact
test of independence. Within BRAID, this test is used
in lesion–deficit analysis as follows: for each pair of
structure–function variables, BRAID constructs a con-
tingency table, and then computes the Fisher exact
statistic to determine whether these variables are in-
dependent of each other. Because computing a statistic
for each of many pairwise tests creates the multiple-
comparison problem, we apply the Bonferroni correc-
tion [Fisher and van Belle, 1993]. Because the Fisher
exact test applies to categorical variables, we use
thresholding to define a structure as normal or abnor-
mal based on the lesioned fraction of that structure (i.e.,
the fraction of that structure’s volume that overlaps
with brain lesions). Evaluating other methods that can
be used with continuous variables, such as the Student
t-test or the Mann-Whitney test, presents no problem,
because the abnormal fraction of structures can then
be used directly.

METHODS

We designed the LDS to generate a large number of
artificial subjects, each consisting of lesions and defi-
cits that conform to predefined distributions, which
could then be analyzed within BRAID to determine
lesion–deficit associations. Comparing the results of
this analysis to the known lesion–deficit associations
in our simulation model would allow us to quantify
the performance of our system as a function of the
parameters of the simulation.

The lesion-deficit simulator (LDS)

The major components of the simulator are: gener-
ation of simulated lesions, modeling of registration
error, and generation of simulated functional deficits.

To ensure that our simulator would generate a plau-
sible dataset, we obtained simulation parameters from
data collected as part of the Frontal Lobe Injury in
Childhood (FLIC) [Gerring et al., 1998] study. This

study was designed to discover predictors of psychi-
atric sequelae following severe closed-head injury.
These data were collected from 99 children (aged 4–19
years) with traumatic brain lesions. Previously, we
reported the analysis of these data using BRAID, to
determine whether there were associations among lo-
cations of lesions and subsequent development of
ADHD [Herskovits et al., 1999].

Generation of simulated lesions

Because the data for the simulation parameters fit
gaussian distributions with reasonable accuracy, we
constructed gaussian distributions based on these
data, although we could readily have used other func-
tional forms had that been necessary. Thus, to con-
struct the spatial distribution for brain lesions, we
collected statistics from the sample dataset that de-
scribe the number of lesions per subject, their sizes,
and their locations. Then, for each subject, we sampled
these distributions, generating the number of lesions,
and, for each lesion, its centroid and size. For simplic-
ity in the generation of the synthetic lesions, we as-
sumed spherical shape.

Number of lesions per subject. We modeled the num-
ber of lesions for each subject in the simulated popu-
lation with a gaussian distribution, in which negative
numbers are excluded. The gaussian distribution used
for the simulation, and the corresponding histogram
collected from the FLIC dataset, are shown in Figure 2.

Figure 1.
An example of a Bayesian network with six nodes (three struc-
tures and three functions) and four edges from structures to
functions, and the conditional-probability table for each node. Each
node can be in either one of two states: A 5 Abnormal, N 5
Normal.
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The mean and standard deviation for the number of
lesions per subject are 8.1 and 6.9, respectively.

Sizes of lesions. We modeled the volume of a lesion
with a gaussian distribution, in which negative num-
bers are excluded. The gaussian distribution used for
the simulation, and the corresponding histogram col-
lected from the FLIC dataset, are shown in Figure 3.
The mean and standard deviation for the volume of a
lesion are 195.5 and 176.7 mm3, respectively.

Spatial distribution of lesions. For each voxel of the
brain image, we computed the probability that it
would be the centroid of a lesion, by taking the fol-
lowing steps. First, we computed centroids for all
lesions in the FLIC dataset, and we calculated the
number of lesion centroids, cl, that coincide with each
point, l, of the brain in stereotaxic space (i.e., we
formed the histogram of centroids for each of these
points). Because the number of voxels is much larger
than the number of lesions, most voxels did not coin-

Figure 2.
The gaussian distribution (a) and the FLIC data histogram (b) for the number of lesions per subject.

Figure 3.
The gaussian distribution (a) and the FLIC data histogram (b) for lesion volumes.
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cide with any lesion centroids. This would incorrectly
exclude most voxels from the set of possible lesion
centroids. To remedy this problem, we performed
smoothing, which effectively allows each lesion to
influence the probability estimates in a neighbor-
hound around it. The probability of observing a lesion
at location l was calculated as follows: A spherical
window of a certain radius was centered on l and the
number of lesion centroids, cl, that fall within that
window was counted. Finally, the scalar probability
field was normalized so that it forms a proper proba-
bility density function. The distribution of lesion cen-
troids for the FLIC data obtained by smoothing with a
sphere of radius 10, is presented in Figure 4 for several
axial images of the Talairach atlas (where gray-scale
intensity represents probability density following

smoothing). We chose the smoothing radius by visu-
alization of the distributions for spheres of different
radii and by examining the fraction of points in the
brain with cl 5 0.

Once we supplied the parameters for the LDS dis-
tributions with respect to the number, size, and loca-
tion of lesions, the simulator generated the image
dataset. A representative example of the lesions for a
simulated subject is presented in Figure 5.

Modeling of registration error

As described in Section 2, image registration to a
common standard is central to many systems for func-
tional brain mapping. Within BRAID, the brain image
data for all subjects are placed in the same coordinate

Figure 4.
The distribution of lesion cen-
troids (FLIC dataset), following
smoothing, for four representa-
tive slices of the Talairach atlas.

Figure 5.
The artificial lesions of a simulated subject before (a) and after (b) taking into account registration
error (slices 108, 110, 122, and 124 of the Talairach atlas are presented).
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system via an elastic-registration method. Although
this procedure is very accurate, it is imperfect (i.e., it
does not necessarily map corresponding regions to
exactly the same location in Talairach space). Misreg-
istration introduces noise, in the form of false-negative
and false-positive associations. We quantified this im-
portant source of error by assuming that it follows a
3D nonstationary gaussian distribution. To determine
this distribution, we collected data from 19 subjects
and measured the registration error on 20 distinct
anatomical landmarks (see Table VI), then interpo-
lated the error at all other points in the brain. Figure 5b
shows an example of the displaced lesions in Figure
5a. A more detailed description of this procedure can
be found in the Appendix.

Generation of synthetic associations

The lesion–deficit association model quantifies the
relationships among structures and functions. Because
structure and function variables are categorical (i.e.,
normal/abnormal), we modeled these associations us-
ing Bayesian networks (BNs) [Pearl, 1988].

Briefly, a Bayesian network is a directed acyclic
graph, in which nodes represent variables of interest,
such as structures or functions, and edges represent
associations among these variables. An example of a
Bayesian network is shown in Figure 1. Each node has
a conditional-probability table that quantifies the
strength of the associations among that node and its
parents; in Figure 1, for example, function f1 depends
only on structure s2. Given the prior probabilities for
the root nodes and conditional probabilities for other
nodes, we can derive all joint probabilities [Pearl,
1988] over these variables. Note that this nonparamet-
ric model is general enough to represent any set of
multivariate lesion–deficit associations. Furthermore,
although in this paper we use discrete structure and
function variables, BNs based on multivariate gauss-
ian distributions [Shachter and Kenley, 1989], and
mixed discrete-continuous distributions [Lauritzen
and Wermuth, 1989], have been constructed.

To use a discrete BN to model multivariate lesion–
deficit associations, we specified the numbers of struc-

ture and function variables, the number and strengths
of associations among these variables, and a function
mapping the fraction of an atlas structure that is le-
sioned to the probability that this structure will func-
tion abnormally.

To examine the effect of the strength of the lesion–
deficit associations on BRAID’s ability to detect them,
we considered three cases presented in Table I that
correspond to strong, moderate, and weak associa-
tions. Thus, a strong association between a structure si

and a function fj is denoted by conditional probabili-
ties p( fj 5 Ausi 5 N) 5 0, p( fj 5 Ausi 5 A) 5 1, p( fj 5 Nusi

5 N) 5 1, and p( fj 5 Nusi 5 A) 5 0, where A means
abnormal and N normal. We similarly defined mod-
erate and weak associations as shown in Table I. To
simplify the generation of conditional-probability ta-
bles, we used a noisy-OR model [Pearl, 1986]. The
noisy-OR model is a boolean OR gate with a failure
function associated with each input line—there is a
leak probability qi that line i will fail. When no failure
occurs, each line’s input is passed to a boolean OR
gate. This overall structure induces a probability dis-
tribution that is easily computed; the probability of no
failure occurring is denoted by pnf: pnf 5 1 2 ¥ie}qi,
where } is the subset of lines with activated input. A
boolean noisy-OR model with leak probability 0.25 for
a function associated with two structures (parents) is
shown in Table II. For simplicity in this table we use a
single leak probability instead of defining a leak prob-
ability for each parent. Note that our framework al-
lows us to specify arbitrary conditional-probability
tables; we chose the noisy-OR model because it re-
quires relatively few parameters to generate a well-
characterized conditional-probability table.

We calculated the prior probability of structure ab-
normality for each structure si, in each subject pj, based
on fsi,pj

: the fraction of the volume of si that overlapped
with lesions for pj. The conditional probability p(siu fsi,pj

)
is expected to be a sigmoid function. One way to fit the
sigmoid model is to compute p(siu fsi,pj

) for various
function and structure variables in our dataset. This
sigmoid function could differ for different structures.

TABLE I. The three cases of BNs considered

Case Association
Conditional probabilities

for functions

1 Strong 0/1
2 Moderate 0.25/0.75
3 Weak 0.49/0.51

TABLE II. A noisy-OR gate with leak probability 0.25 for
a function associated with two structures

(N 5 normal, A 5 abnormal)

Struct1 Struct2 p(function 5 N)

N N 0.75
N A 0.25
A N 0.25
A A 0.06
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Computing this conditional probability from our dataset
for the case in which the functional variable represents
the absence or development of ADHD, and considering
all of the Talairach structures and subjects from the FLIC
study, demonstrated empirically that a step function
with threshold fraction of 0.01 could be used in the
simulations, instead of a sigmoid function (see Fig. 6).
The threshold value 0.01 is also the mean of the optimal
thresholds with respect to p-value (i.e., the mean of the
thresholds that gave the smallest Fisher-exact p-value for
all 132 Talairach structures and the functional variable
that corresponds to the development of ADHD. Thus,
for the FLIC data, we labeled each structure for which at
least 1% of its volume overlapped with lesions as abnor-

mal for that subject; the remainder of the structures were
labeled as normal. Averaging over all subjects, we could
compute a prior probability of abnormality for each
structural variable. The histogram in Fig. 7 shows, for
each structure of the Talairach atlas that was considered,
the percentage of simulated subjects with lesions in that
structure for the simulated dataset. The first 66 structures
are right-sided and the remainder are the corresponding
left-sided structures. Observe that there are several clus-
ters of lesions (see also Fig. 4 of the lesions’ centroid
distribution). The two peak points in the graph corre-
spond to the right and left Talairach cortex structures,
which are common sites for traumatic brain lesions.

For each simulated subject pj and structure sk, we
sampled the prior-probability distribution and gener-
ated a binary vector Sj

K of dimension K (where Sj[k] 5
1 means that structure sk is abnormal for subject pj). By
instantiating the states of all structure variables of the
BN with Sj

K for subject pj, we could determine the
conditional probability for each function variable by
table lookup, and use this probability to generate sto-
chastically the binary vector Fj

M of dimension M for
the function variables, where, Fj[i] 5 0 if function fi
was abnormal for subject pj. The binary vectors Sj

K and
Fj

M, for each subject pj were then analyzed using the
Fisher exact test of independence for each structure–
function pair, as described earlier.

RESULTS AND DISCUSSION

In this section, we describe how we used the LDS
framework to characterize the performance of the
Fisher exact test of independence for lesion–deficit
analysis. We studied its behavior as a function of the
number of subjects needed to discover the simulated
lesion–deficit associations represented by a BN, the
strengths of associations, the number of associations,
the degree of the BN (i.e., the number of structures

Figure 6.
p (development of ADHDulesioned fraction of structure , x) for
all Talairach structures and subjects in the FLIC study. The vertical
line is at the threshold fraction of 0.01 used in the simulations for
labeling a structure as abnormal. The lesioned fraction of a struc-
ture is defined in Section 2.

Figure 7.
The percent of simulated subjects
with lesions for each of the 132 Ta-
lairach structures.
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related to a particular function), and the prior proba-
bilities for structure abnormality. We also examined
the effects of registration error. Recall that the input to
the simulator includes the number of structure nodes,
the number of function nodes and the number of
edges (associations) among them. The parameters we
chose for the stochastically generated BN were the
following unless otherwise stated: 132 structure nodes
(corresponding to the Talairach atlas structures), 20
function nodes, and 69 edges from structures to func-
tions. This BN has sufficient complexity to demon-
strate the use of the simulator, and can help us under-
stand the performance of the Fisher exact test and the
effects of misregistration. The maximum degree (i.e.,
the maximum number of incoming edges to a given
function node), was fixed to four (for most of the
experiments unless otherwise stated); thus, a function
could be associated to at most four different struc-
tures. Because the performance of any method for
detecting associations depends on the characteristics
of the conditional-probability tables, we examined the
three cases of Table I to study this effect. The prior
probability of abnormality for each structure was set
to 0.5 to allow us to examine the behavior of the Fisher
exact test for the optimal value of the prior probability
(i.e., many examples of abnormal and normal struc-
tures would be available for analysis). To generate the
conditional–probability table for those function vari-
ables that were related to more than one structure, we
used a noisy-OR model (see Table II for a noisy-OR
function that corresponds to the moderate case of
Table I, i.e., when the leak probability is 0.25). For the
results that follow, we report the total number of
edges (i.e., associations) detected, as well as the num-
ber of simulated (i.e., true-positive) edges found. The
difference between these two numbers is the number
of false-positive associations that were identified.

Experiment 1: Determining the p-value threshold

Table III quantifies the statement that the lower the
threshold for the p-value, the smaller the number of

false positives and number of simulated edges de-
tected (i.e., the more conservative the method). It pre-
sents the results for the case of moderate strength of
associations (case 2 of Table I); however, similar re-
sults were observed for the cases of strong and weak
associations. In the following experiments, we used
the threshold 0.001 for the p-value, because this is a
good trade-off between the number of simulated as-
sociations and the number of false positives detected.

Experiment 2: Effect of conditional probabilities

In Figure 8a, we present the performance of the
Fisher exact test (p # 0.001) for the cases in which all
structure–function conditional probabilities were set
to strong (case 1), moderate (case 2), and weak (case 3)
associations as described in Table I. The figures dem-
onstrate the dramatic effects of the different condition-
al-probability distributions on the power of lesion-
deficit analysis. Figure 8a demonstrates that, to
discover 70% of the total number of simulated edges,
we require approximately 180, 500, and 2000 subjects
for the strong-, moderate-, and weak-association cases,
respectively. As expected, the more samples are re-
quired to detect weaker associations.

Experiment 3: Effect of number of associations

For this experiment, we selected the moderate case
(i.e., case 2) for the conditional-probability tables, to
investigate further the effect of the total number of
associations on the statistical power of lesion–deficit
analysis. Without loss of generality, we studied the
case in which all function nodes have the same degree,
which we call the degree of the BN. In Figure 9 we
present the performance of the Fisher exact test for
three BNs of degree 4. The networks have 20, 40, and
80 edges, respectively. These results demonstrate that
the Fisher exact test performs similarly for BNs of the
same degree that have different numbers of edges. The
deterioration as the total number of edges increases is

TABLE III. Percentage of simulated associations and false positives detected by the Fisher exact test for three
values of the p-value threshold and for moderate strength of lesion-deficit associations

No. Subjects % True pos.* % False pos.* % True pos.** % False pos.** % True pos.*** % False pos.***

500 84 35 72 4 55 0
1000 100 45 99 1 90 0
1500 100 35 100 4 97 0
2000 100 32 100 1 100 0

* p # 0.01, **p # 0.001, ***p # 0.0001.
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small. All edges are discovered after 900, 1300, and
1500 subjects for BNs with 20, 40, and 80 edges, re-
spectively.

Experiment 4: Effect of degree of the BN

For this experiment, we again selected the moderate
case for the conditional-probability tables, to isolate
the effect of the number of structures affecting a par-
ticular function, or the degree of the BN. Figure 10
shows the effect of increasing the degree of the BN
while fixing the total number of edges. As expected, as
the degree of the BN increases, more subjects are
needed to detect the same number of associations. In
particular, to discover 70% of the total number of
simulated edges, we require approximately 500, 3700,
and more than 8000 subjects for the cases of BNs that
have degree 4, 6, and 8, respectively. As expected, the
degree of the BN has a much greater effect on the
performance of the Fisher exact test than does the total
number of edges.

Because the parameters that most affect the perfor-
mance are the conditional probabilities for the func-
tions (i.e., strengths of associations) and the degree of
the function nodes (i.e., number of structures related
to a function), in Table IV we present the percent of the
associations detected by the Fisher exact test, as a
function of these parameters for 1000 and 5000 sub-
jects. These results confirm the profound effect of the

Figure 8.
Performance of the Fisher exact test (p # 0.001) for (a) uniform
(0.5) prior probabilities, and (b) data-derived prior probabilities of
structure abnormality, and for the three strengths of lesion-deficit
associations from Table I that correspond to strong (case 1),
moderate (case 2), and weak (case 3) associations. The difference
between the total number of associations detected, and the num-

ber of true associations detected is the number of false-positive
associations detected for each case. The horizontal line in (a)
represents the total number of simulated edges (69), and in (b)
represents the total number of simulated edges that can be de-
tected (55).

Figure 9.
Performance of the Fisher exact test (p # 0.001) for BNs with
degree 4, and with 20, 40, and 80 edges.
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degree of the BN on the power of lesion–deficit anal-
ysis.

Experiment 5: Using priors
from the simulated dataset

In the previous experiments, the prior probability of
a given structure being abnormal was set to 0.5 for
each structure variable, because our purpose was to
evaluate the behavior of the Fisher exact test while
manipulating the strengths and number of associa-
tions among the structure and function variables. For
this experiment, we obtained the prior probabilities
from the simulated dataset. The number of edges that
could actually be discovered is 55 (80%), because there
were 14 edges from structures that did not intersect
any lesions. The prior probabilities for the structures

are shown in the histogram in Figure 7. The smallest
nonzero prior probability is 0.0004, and only five out
of the 132 Talairach structures have a prior probability
of being abnormal that is above 0.2. Thus, in contrast
to the experiments in which prior probabilities were
uniform, most of the simulated cases in this experi-
ment would not have abnormal structures.

Figure 8b demonstrates the performance of the
Fisher exact test for the three cases of BN conditional
probabilities (see Table I). Comparing this figure with
Figure 8a, in which uniform prior probabilities were
used, demonstrates that, as expected, more subjects
are required to recover all associations when data-
derived prior probabilities are used in the LDS, when
compared to the case in which uniform prior proba-
bilities were used to simulate abnormal structures.
Even when all structure-function asociations are de-
terministic (case 1), the number of subjects required to
recover all 55 associations is close to 5000. To discover
70% of the total number of simulated edges (i.e., 70%
of 69 '48) would require approximately 2500, and
more than 6000 subjects for the strong and moderate
associations, respectively, instead of 180 and 500 in the
case of uniform prior probabilities. As expected, the
number of subjects needed is inversely proportional to
the smallest prior probability. The detection of false-
positive associations is because of the existence of
associations among neighboring structures. These as-
sociations are because of lesions that intersect more
than one structure. Additional false positives can be
observed in the case where there are associations
among the function variables, such as hemiparesis and
upper-extremity weakness.

Experiment 6: Effect of registration error

Table V demonstrates the effect of registration error
on the performance of the Fisher exact test, for two
cases of conditional probabilities: strong (case 1) and

Figure 10.
Performance of the Fisher exact test (p # 0.001) for BNs with 48
edges, and with degree 4, 6, and 8.

TABLE IV. Percentage of simulated associations detected by the Fisher exact test
(p < 0.001) as a function of the conditional probabilities for the structure–function

associations, and of the in-degree of the function nodes

Cond. prob.

1000 subjects 5000 subjects

Deg. 4 Deg. 6 Deg. 8 Deg. 4 Deg. 6 Deg. 8

0.0 100 100 17 100 100 58
0.1 100 48 15 100 100 44
0.2 94 25 15 100 94 42
0.3 79 19 15 100 83 42
0.4 63 17 15 100 71 38
0.5 52 17 15 100 63 35
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moderate (case 2) strengths of lesion–deficit associa-
tions. As expected, registration error reduces the
power of the Fisher exact test in detecting the associ-
ations, when compared with perfect registration. As
shown in Table V, on average, our nonlinear registra-
tion method reduces the number of associations dis-
covered by 13% for the same number of subjects.

CONCLUSIONS AND FUTURE WORK

Analyzing simulated data, we quantified the in-
verse relationship between the number of subjects
required to detect all the associations, and the strength
of these associations. In addition, we characterized the
inverse relationship between the number of subjects
required to detect all the associations and the smallest
prior probability of structure abnormality. The num-
ber of subjects required to detect all and only those
associations in the underlying model (i.e., the ground
truth) may be in the thousands, even for strong lesion–
deficit associations, particularly if the spatial distribu-
tion of lesions does not extend to all structures (i.e.,

some of the prior probabilities of structure abnormal-
ity are very small). These results underline the neces-
sity of developing large image databases for the pur-
pose of meta-analysis of data pooled from several
studies, so that more meaningful results can be ob-
tained. The degree of associations (i.e., the number of
structures related to a particular function, has much
greater effect on the performance of statistical lesion-
deficit analysis than does the number of associations.
This result implies that, for functions that are associ-
ated with many structures, identification of complex
multivariate structure-function associations will re-
quire very large sample sizes. We have also quantified
the effects of misregistration on statistical power of
lesion–deficit analysis. We found that our nonlinear-
registration algorithm, which has fairly high registra-
tion accuracy, results in 13% fewer associations being
discovered for a given number of subjects. By using
our simulator, we can take this reduction of power
into account when calculating the sample size needed
for a particular experiment.

TABLE VI. The 20 landmarks selected for the registration error calculation
(the registration error mean and standard deviation are also shown)

Landmark Err. mean (mm) Err. std (mm)

Anterior commissure 3.2 2.0
Posterior commissure 3.9 1.8
L & R anterior-most voxel of head of caudate at AC level 4.8, 4.6 1.0, 1.2
L & R inferior-most extent of central sulcus 7.0, 8.1 3.0, 3.6
L & R intersection of post-central sulcus and Sylvian fissure 4.0, 4.4 2.0, 2.1
L & R caudothalamic notch 4.3, 3.2 3.0, 1.9
Anterior-most corpus callosum (genu) 4.1 1.9
Torcular herophili (between occipital poles) at PC level 4.3 1.6
L & R gyrus rectus anterior pole at interpeduncular cistern level 4.0, 3.4 1.6, 1.1
L & R anteromedial aspect of Sylvian fissure 5.8, 6.8 2.3, 2.7
L & R superiormost point of precentral gyrus 10.0, 10.1 4.2, 3.3
L & R point of thalamus closest to splenium of corpus callosum 3.8, 4.4 1.2, 1.1

TABLE V. Percentage of detectable associations discovered by the Fisher exact test (p < 0.001) with and without
registration error, for strong (case 1) and moderate (case 2) lesion–deficit associations

(a maximum of 80% of associations can be discovered)

No. subjects

Case 1 Case 2

% with reg. err. % without reg. err. % with reg. err. % without reg. err.

500 43 49 30 35
1000 54 60 35 38
1500 54 62 39 46
2000 57 68 39 46
3000 64 72 45 49
4000 65 75 48 58
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In this paper, we limited our analysis to identical
conditional-probability tables, generated using a
noisy-OR gate, across function variables, and in some
cases, equal in-degree of function variables. This focus
allowed us to isolate these characteristics, so that we
could characterize their effects on required sample
size. In fact, just as the LDS allows us to specify
arbitrary prior-probability distributions over structure
variables, the LDS also allows us to specify any con-
ditional-probability distribution for each function
variable given the states of its structure-variable par-
ents. The LDS also allows us to specify any number of
associations among structure and function variables,
including structure–structure associations (useful
when one structure overlaps another) and function–
function associations (useful when one function sub-
sumes another). In summary, there is no joint distri-
bution over discrete structure and function variables
that we cannot model in our LDS.

Because of the flexibility and modular nature of our
LDS, we can readily extend this work to evaluate other
statistical, registration, and segmentation methods.
For example, we could quantify the cost, in statistical
power, of using a faster, but more error-prone, seg-
mentation or registration method. Similarly, we plan
to use the LDS to compare multivariate Bayesian [i.e.,
Cooper and Herskovits, 1992; Herskovits, 1991], log-
linear, and other statistical methods for lesion–deficit
analysis, to the univariate statistical analysis described
in this paper, ultimately with the aim of optimizing
statistical power for the analysis of these complex
datasets.
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APPENDIX: MODELING
REGISTRATION ERROR

To model registration error, we first selected a num-
ber, N, of fiducial points (landmarks). The principal
criterion for choosing these points was how reliably
and accurately they could be identified on magnetic-
resonance images, and how representative they were
of the performance of the registration algorithm; that
is, the points should reflect areas of accurate (e.g.,
deep gray matter), as well as less accurate (e.g., cortex)
registration. The landmarks were identified manually
and their coordinates were calculated in spatially nor-
malized images from M subjects as well as in the
Talairach atlas itself. To reduce the variability of mea-
surements obtained by different experts, we used the

mean of two independent measurements for each
landmark. The 20 landmarks we selected are shown in
Table VI; similar landmarks have been used by other
researchers [e.g., Evans et al., 1991].

Let Ei
N, i:1, . . . , M be a vector of dimension N con-

sisting of the Euclidean distance ei,j, j:1, . . . , N be-
tween each landmark and the corresponding dis-
placed landmark for subject i. We calculated the mean
vector, m, and the covariance matrix, ¥, from Ei

N. We
used the Kolmogorov-Smirnov and Shapiro-Wilk tests
of normality to verify the assumption that the dis-
placement errors for the landmarks follow a gaussian
distribution. Table VI also presents the mean value
and standard deviation of the registration errors for
the 20 landmarks. If ¥ is positive definite, a method
that uses the Cholesky decomposition of ¥ and N
univariate normal variates can be used to produce
an N-dimensional multivariate normal distribution
[Tong, 1990], 1N(m, ¥) for the displacement error.

Displacing a set of lesions for a given subject was
then performed using a displacement produced from
1N(m, ¥). Each lesion centroid was displaced using
an inverse distance-weighted markov-random-field
equilibration from the displacements of the landmark
points.
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