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Abstract: Previous simulation studies have stressed the importance of the multimodal integration of electro-
encephalography (EEG) and magnetoencephalography (MEG) data in the estimation of cortical current
density. In such studies, no systematic variations of the signal-to-noise ratio (SNR) and of the number of
sensors were explicitly taken into account in the estimation process. We investigated effects of variable SNR
and number of sensors on the accuracy of current density estimate by using multimodal EEG and MEG data.
This was done by using as the dependent variable both the correlation coefficient (CC) and the relative error
(RE) between imposed and estimated waveforms at the level of cortical region of interests (ROI). A realistic
head and cortical surface model was used. Factors used in the simulations were: (1) the SNR of the simulated
scalp data (with seven levels: infinite, 30, 20, 10, 5, 3, 1); (2) the particular inverse operator used to estimate the
cortical source activity from the simulated scalp data (INVERSE, with two levels, including minimum norm
and weighted minimum norm); and (3) the number of EEG or MEG sensors employed in the analysis
(SENSORS, with three levels: 128, 61, 29 for EEG and 153, 61, or 38 in MEG). Analysis of variance demonstrated
that all the considered factors significantly affect the CC and the RE indexes. Combined EEG-MEG data
produced statistically significant lower RE and higher CC in source current density reconstructions compared
to that estimated by the EEG and MEG data considered separately. These observations hold for the range of
SNR values presented by the analyzed data. The superiority of current density estimation by multimodal
integration of EEG and MEG was not due to differences in number of sensors between unimodal (EEG, MEG)
and combined (EEG-MEG) inverse estimates. In fact, the current density estimate relative to the EEG-MEG
multimodal integration involved 61 EEG plus 63 MEG sensors, whereas estimations carried out with the single
modalities alone involved 128 sensors for EEG and 153 sensors for MEG. The results of the simulations also
suggest that the use of simultaneous 29 EEG sensors during the MEG measurements carried out with full
sensor arrangements (153 sensors) returned an accuracy of the cortical source estimate statistically similar to
that obtained by combining 64 EEG and 153 MEG sensors. Hum. Brain Mapp. 22:52—62, 2004.
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INTRODUCTION

There is a great interest in estimation and localization of
cortical neural sources from high resolution EEG and MEG
recordings [Dale et al., 2000; David et al., 2002; Fuchs et al.,
1998; Huizenga et al., 2002; Mizoguchi et al., 2002; Schimpf
et al., 2002; Yoshinaga et al., 2002; Zijlmans et al., 2002]. In
fact, both recording techniques have shown a very good
temporal resolution (msec scale) and a moderate spatial
resolution (in the order of 2-3 c¢m), making it possible to
follow the complex temporal dynamics of brain phenomena
[Nunez, 1995]. Furthermore, the wide availability of mag-
netic resonance imaging (MRI) of subjects” heads have made
possible the use of realistic models for the head and for the
cortical surface in procedures involving the estimation of
cortical current activity. It has been demonstrated that by
electroencephalography (EEG) or magnetoencephalography
(MEG) data the use of realistic head models increases the
accuracy of the cortical current reconstruction.

Point-like models of cortical sources (such as the current
dipole) have been largely used in the analysis of primary
evoked potentials/fields, epileptic spikes, and in the analy-
sis of more complex cognitive experiments [Ahlfors et al.,
1999; Otsubo et al., 2001; Stenbacka et al., 2002; Torquati et
al., 2002]. Such point-like source models could be insuffi-
cient to represent spatially extended cortical activations that
can be generated from the cerebral engagement in particular
motor or cognitive tasks [Anourova et al., 2001; Okada and
Salenius, 1998]. Over the last few years, several studies have
investigated the simultaneous use of EEG and MEG data for
the estimation of the cortical sources in the human brain by
using distributed source models [Babiloni et al., 2001; Liu,
2000; Liu et al., 2002]. In the distributed source approach,
thousands of equivalent current dipoles covering the cortical
surface modeled have been used, their strengths estimated
by using linear and non-linear inverse procedures [Baillet
and Garnero, 1997; Baillet et al., 1999; Dale and Sereno, 1993;
Phillips et al., 1997; Uutela et al., 1999]. The solution space
(i.e., the set of all possible combinations of the cortical dipole
strengths) is generally reduced by using geometric con-
straints. For example, dipoles can be disposed along the
reconstruction of cortical surface with a direction perpendic-
ular to the local surface. An additional constraint involves
forcing the dipoles to explain the recorded data with a
minimum or a low amount of energy (minimum-norm so-
lutions) [Haméldinen and Ilmoniemi, 1984]. It is worth
pointing out, however, that the minimum-norm solution
fails to reproduce the cortical source distribution if the true
generators are focal. In the context of the linear inverse
source estimate approach, the advantage of combining EEG
and MEG data has been suggested based on simulation
studies [Babiloni et al., 2001; Liu, 2000; Liu et al., 2002] using
the concepts of point spread function (PSF) and resolution
kernels [Dale et al., 2000; Grave de Peralta and Gonzalez
Andino, 1998]. Such studies have pointed out how the mul-
timodal integration of EEG and MEG increases the accuracy
of cortical current estimates by using distributed source
models. These studies, however, did not explicitly address

how a variable signal-to-noise ratio (SNR) could change the
efficacy of current estimation. In fact, such simulations were
generated by using noise-free data [Babiloni et al., 2001] or
data with an SNR equal to 10 [Liu, 2000; Liu et al., 2002]. In
contrast, it is well known that EEG or MEG recordings have
shown SNR values ranging between 10 and 20 only during
particular highly synchronized and spatially focused events
like epileptic spike seizures or evoked potential/field from
the primary sensory cortical areas. Indeed, values of SNR
ranging from 5, 3, or even 1 normally occur during the
recording of single EEG/MEG trials related to other motor
or cognitive activities [Regan, 1989]. There therefore remains
the problem of whether multimodal integration of EEG and
MEG is beneficial also in the condition of variable SNR of the
recorded EEG/MEG data.

Another point of interest that has been addressed in part
by previous simulations focuses on testing accuracy of dis-
tributed source estimates from multimodal integration of
EEG and MEG data in the presence of high-resolution ac-
quisition devices. In fact, there is currently a wide selection
of high-resolution EEG systems with 64 or 128 electric sen-
sors and there exists an extended availability of MEG de-
vices with more than hundreds of measurement sites. Pre-
vious simulations have addressed the issue of multimodal
integration of EEG/MEG data from 30 and 61 sites of mea-
surements of electric and magnetic modalities [Liu, 2000; Liu
et al., 2002] or from 128 electric sensors linked to up to 43
MEG sensors [Babiloni et al., 2001]. The issue, however,
relating to the practical use of multimodal EEG-MEG inte-
gration by using devices with more than 100 EEG and MEG
measurement sites, for a variety of SNRs of acquired data,
remains unexplored. In addition, because during MEG re-
cordings additional EEG sensors can be placed, needing
only extra time for the subject’s preparation, it could be of
interest to quantify the benefits (if any) of the multimodal
integration of data from a full recording MEG with 29, 61, or
128 EEG sensors.

We investigated the accuracy of the cortical current recon-
struction from EEG and MEG simulated signals, gathered
from up to 128 electric and 153 magnetic sensors by using
realistic head and distributed source modeling. Simulations
were carried out under different SNRs of generated data. For
the realistic cortical reconstruction of the head model used,
we considered five regions of interest (ROI) in which the
simulated cortical waveforms were generated. The depen-
dent variables used for the statistical analysis were the rel-
ative error (RE) and the correlation coefficient (CC) values
between estimated and generated waveforms at the cortical
level in each ROI analyzed. Factors used in the statistical
analysis were the level of the noise superimposed on the
scalp recorded data and the number of EEG and MEG
sensors used for the multi- and unimodal estimation of
cortical current density.

The specific questions underlying the present experimen-
tal design are: (1) whether the estimation of cortical current
density is more accurate with multimodal integration of
EEG and MEG data compared to a single modality alone
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(either EEG or MEG) when using the same total number of
sensors; (2) whether an “optimal” number of EEG and MEG
sensors exist for the multimodal estimations of the cortical
current density; and (3) the SNR influence on simulated
electromagnetic data for estimation of cortical current den-
sity with respect to the unimodal (i.e., EEG or MEG) and
multimodal (EEG-MEG) inverse techniques.

MATERIALS AND METHODS
Combined Electric and Magnetic Forward Solution

The forward solution specifying the potential scalp field
due to an arbitrary dipole source configuration can be com-
puted on the basis of the solution x of the following linear

system
HES

where E is the electric lead field matrix obtained by the
boundary element technique for the realistic magnetic reso-
nance (MR)-constructed head model, B is the magnetic lead
field matrix obtained for the same head model, x is the array
of the unknown cortical dipole strengths, v is the array of the
recorded potential values, and m is the array of magnetic
values. The lead field matrix E and the array v must be
referenced consistently. To scale EEG and MEG, the rows of
the lead field matrix E and B were first normalized by the
rows norm [Baillet et al., 1999; Phillips et al., 1997]. This
scaling was equally applied on the electrical and magnetic
measurement arrays, v and m. After row normalization the
linear system can be restated as:

Ax=b+n (2)

where A is the matrix composed by the normalized electric
and magnetic lead fields, n is the noise vector and b is the
normalized measurement array of EEG and MEG data (v
and m, respectively). Among the several equivalent solu-
tions for the underdetermined system in equation (2), the
current density solution vector § was chosen by solving the
following variational problem for the sources x [Grave de
Peralta and Gonzalez Andino, 1998]:

& = arg min(|Ax = bl + VxR €)

X

where M, N are the matrices associated to the metrics of the
data and of the source space, respectively, \ is the regular-
ization parameter and [x|, represents the M norm of the
vector x. The solution of the variational problem depends on
adequacy of the data and source space metrics. Using the
hypothesis of M and N positive definite, the solution of
equation (3) is given by computing the linear inverse oper-
ator G according to the following expressions:

£=Gb, G=N'A(AN'A'+\M )" !  (4)

An optimal regularization of this linear system was ob-
tained by the L-curve approach [Hansen, 1992]. This curve,
which plots the residual norm versus the solution norm at
different X values, was used to choose the optimal amount of
regularization in the solution of the linear inverse problem.
Computation of the L-curves and optimal A correction val-
ues was carried out with the original Hansen’s routines
[Hansen, 1994]. The metric M, characterizing the idea of
closeness in the data space, can be particularized by taking
into account the sensor noise level, by using either the
Mahalanobis distance [Grave de Peralta and Gonzalez An-
dino, 1998] or the identity matrix [Haméldinen and Ilmoni-
emi, 1984].

Electrical Source Constraints

In the following, we describe two characterizations of the
inverse source metric N used in literature and also in this
study for the solution of the linear inverse problem. The first
one involves the so-called minimum norm source metric
[Hamaéldinen and Ilmoniemi, 1984], in which no a priori
information on the sources is available. In this case the
inverse of the source metric is represented by the following
equation:

N-'=1 (5)

where I is the identity matrix and N~ the inverse of the
source metric matrix. Another characterization of the source
metric N takes into account all the cortical voxels on the
basis of their electrical “closeness” to the EEG sensors to
remove their inverse dependence on the sensor-to-dipole
distance (column norm normalization) [Pascual-Marqui,
1995]. In this case, the inverse of the resulting source metric
N is:

(N~ 1)11 = HA1” -2 (6)

in which (N7'); is the ith element of the inverse of the
diagonal matrix N, and all the other matrix elements N;; are
set to 0. The L2 norm of the ith column of the lead field
matrix A is denoted by [|A . In the following, the inverse
operators characterized by the choice of the source metric
described by equations (5) and (6) will be referred as mini-
mum norm (MN) and column-normalized minimum norm
(MNCQ), respectively.

Realistic Head and Source Models

Sixty-four T1-weighted sagittal MR images were acquired
(30-msec repetition time [TR], 5-msec echo time [TE], and
3-mm slice thickness without gap) from a subject’s head.
These images were processed with contouring and triangu-
lation algorithms for construction of a model reproducing
the scalp, skull, and dura mater surfaces with about 1,000
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triangles for each surface. Source model was built with the
following procedure: (1) the cortex compartment was seg-
mented from MRI and triangulated obtaining a fine mesh
with about 100,000 triangles; (2) a coarser mesh was ob-
tained by resampling the one described above down to
about 3,000 triangles, taking care that the general features of
the neocortical envelope were well preserved especially in
correspondence of pre- and postcentral gyri and frontal
mesial area; and (3) an orthogonal unitary equivalent cur-
rent dipole was placed in each node of the triangulated
surface, with direction parallel to the vector sum of the
normals to the surrounding triangles. The average distance
between dipole sources in the cortical tessellated surfaces
was equal to 3.6 mm.

Regions of Interest

Cortical regions of interest (ROIs) were represented by the
supplementary motor area (SMA), as well as the right and
left primary sensory-motor areas (51-M1). The boundaries of
these ROI were traced based on the following anatomic
landmarks: (1) the precentral and central (omega zone) sulci,
delimitating the precentral gyrus for the M1-ROL (2) the
central (omega zone) and postcentral sulci, delimitating the
postcentral gyrus for the S1-ROL; and (3) the sulcus anterior
to the vertical anterior commissure line, the medial precen-
tral sulcus, and the cingulate sulcus, delimitating the medial
frontal gyrus for the SMA-ROI. The M1- and S1-ROI were
located anteriorly and posteriorly to the central sulcus, re-
spectively. The M1-ROI did not extend anteriorly up to the
precentral sulcus, but might have included a minor part of
the ventral premotor area lying in the lateral precentral
gyrus (border region between Brodmann area [BA] 4 and 6).
Finally, the SMA-ROI was coincident with the BA 6 but did
not comprise the cingulate motor areas located in the upper
bank of the cingulate sulcus.

Sensor Configurations

Three scalp electrode arrays for the simulation of EEG
data were considered. The first involved 128 electrodes reg-
ularly disposed on the scalp surface, whereas the others had
61 and 29 electrodes resulting from a uniform and regular
downsampling of the full electrode configuration. This sub-
sampling aimed to simulate both standard (29) as well as
high-resolution EEG recordings, in agreement with the stan-
dard of the extension of the International 10/20 system
[Sharbrough et al., 1991]. Three sensor configurations were
chosen for the MEG data. The first one comprised 153 sen-
sors regularly disposed along the helmet surface whereas
the second and third involved 63 and 38 sensors, respec-
tively. All MEG sensors were simulated as magnetometers..
These last two configurations were obtained by a uniform
subsampling of the 153 helmet sensor spatial distribution.
MEG sensor positions were chosen to minimize distances
between their scalp projection and the position of EEG sen-
sors. Figure 1 shows the different sensor arrays used in
simulation on the realistic head model for the EEG (upper
row) as well as for the MEG (lower row) data.

Source Reference Waveforms

Five source waveforms estimated from a high-resolution
movement-related potential (MRP) recording (128 elec-
trodes) were used as reference for the simulation. The EEG
was recorded in a healthy subject who executed a set of
un-aimed, self-paced, brisk movements of the right middle
finger. The original MRP data were sampled at 300 Hz, from
3 sec before to 2 sec after the electromyograph (EMG) onset
(1,500 data points). To reduce the dimension of the dataset,
it was downsampled to 128 data points after proper low-
pass, finite impulse response, zero phase filtering. The col-
lapsed source waveforms were estimated by means of the
minimum norm inverse operator [Dale and Sereno, 1993;
Héamaldinen and Ilmoniemi, 1984], with the head volume
conductor, cortical models, and ROIs described above (thus
the same used for the simulations).

Instead of cortical generated waveforms, another series of
simulations employed binary levels of activation (0 and 1) in
all the possible combination for the ROIs analyzed. Because
the results obtained in such simulations are identical to
those presented here for the generated waveforms, however,
we present below only the waveform-related set of results.

Experimental Design

The experimental design, the steps of which are also rep-
resented in Figure 2, was constructed as follows:

1. The same source reference current density waveform
was attributed to each dipole belonging to a particular
selected ROI

2. Different source reference waveforms were attributed
to the different ROIs selected for this study

3. Each cortical dipole that did not belong to a particular
ROI received a randomly generated noise current den-
sity waveform. Such random waveforms have a power
intensity equal to the 5% of those presented by the
waveforms attributed to the ROIs

4. The signals in the simulated sensor arrays were calcu-
lated using a realistically shaped volume conductor
model. In this calculation, locations and orientations of
sources were constrained to the cortical mantle. The
amplitudes of the sources varied in time as described in
steps 1-3 above. Such arrays had variable number sen-
sors thus producing separate EEG and MEG data sets
(point 2 of Fig. 2)

5. White noise was added to these EEG/MEG datasets, to
reach different levels of SNRs (infinite, 30, 20, 10, 5, 3,
1). These values were chosen to simulate the typical
range of SNR commonly encountered in evoked, mo-
tor- and cognitive-related EEG/MEG recordings, re-
spectively (point 3 of Fig. 2)

6. The inverse operators described above were applied to
these EEG/MEG datasets and the cortical activity was
estimated for all 3,000 cortical dipoles used in simula-
tions. Two types of weights for the inverse operators
have been used: the minimum norm estimate (MN,
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Figure I.
Different sensor arrays employed in this simulation study and their position with respect to the
realistic scalp reconstruction. Top: Three different sensor arrays using 29, 61, and 128 electric
measurement sites. Bottom: Three different sensor arrays using 38, 63, and 153 magnetic
measurement sites. [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com]

equation [4]) and the column normalized minimum
norm estimate (MNC, equation [5]) (point 4 of Fig. 2)
. The estimated current source density waveform for
each ROI was obtained by calculating the average of
the current estimates of each dipole belonging to the
respective ROI (point 5 of Fig. 2)

. The accuracy of the estimated cortical current strength
array (Es) with respect to the generated one (Gs) in the
different experimental conditions was evaluated by
computing two indexes, to be used in the following
simulations as dependent variables. The first one was
the correlation coefficient (CC) between the generated
and the estimated average source waveforms, accord-
ing to the following formula:

GseEs

Co=—r———s
IGs? - [Es|l.’

)

where e stands for the usual inner products between the Gs
and the Es vectors. The second one was the relative error
(RE) computed according to the following formula:

_ |Gs — Esl, )
— |IGsl.

where ||x||, is the standard L2 norm of a vector x.

For each level of SNR adopted, 32 occurrences of white
noise data were considered on the simulated EEG and
MEG waveforms, resulting in 32 values of CC and RE
variables for each level of the independent variables con-
sidered. Such computations were carried out to increase
reliability of the statistical results obtained. The average
values of CC and RE were then used in the successive
statistical analysis.
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n;(1)

Figure 2.

Different steps involved in this simulation
study. I: The simulated cortical source refer-
ence waveforms. 2: Simulated EEG and MEG
signals obtained by propagation via the realis-
tic volume conductor to the simulated sensor
arrays. 3: Addition of white noise at different
SNRs to the simulated sensor waveforms. 4:
Application of different inverse operators to
simulated EEG/MEG datasets. 5: Estimates of
current source density for each ROI, obtained
as the average of current estimates of each
dipoles belonging to such ROI. é: Evaluation of
reconstructed cortical activity by computing
CC and RE at the ROI level between the
generated and estimated activities. [Color fig-
ure can be viewed in the online issue, which is
available at www.interscience.wiley.com]

Influence of Sensor Number on the
Cortical Current Estimated Solutions

A principal source of variance for the present results could
be the different number of sensors used in the EEG, the
MEG, and the combined EEG-MEG conditions. Accuracy of
the linear inverse source solutions could have been affected
by the total amount of spatial samples (EEG plus MEG)
rather than by the combination of EEG and MEG data per se.
We thus compared source estimate obtained by the integra-
tion of the whole EEG data set (128 electrodes) versus the
full MEG one (153 sensors) and the combined EEG-MEG
data with a similar number of total electric and magnetic
sensors (61 and 63, respectively). To extend results obtained
in a previous study [Liu et al., 2002], the same analysis was
carried out on estimations computed from EEG data sam-
pled with 61 electrodes, MEG data sampled with 63 sensors,
and combined EEG and MEG data sampled with 29 and 38
sensors, respectively. Another set of simulations was inten-
tionally carried out using the full MEG sensor array (153
measurement points) coupled in turn with 29, 61 and 128
EEG sensors. Performance indexes assessing quality of cur-
rent strengths of the estimated source were then applied.

Statistical Analysis

The obtained results were subjected to separate analysis of
variance (ANOVA), in a full within design. The main factors
of the ANOVA were the SNR, the type of inverse operator
used denoted as INVERSE, and the number of sensors em-
ployed in the inverse procedure (SENSORS). Table I reports
the independent variables used and their relative levels of
variations employed for statistical analysis. The correction of
Greenhouse-Gasser for violation of the spherical hypothesis
in all employed ANOVAs was used. The post-hoc analysis
was carried out with the Scheffe’s test at the P = 0.05
statistical significance level.
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RESULTS

The analysis of the simulation results was carried out for
each ROI separately. All ANOVAs carried out included the
main factors SNR, SENSORS, and INVERSE. The five ANO-
VAs carried out (one for each ROI analyzed) returned a
coherent and similar pattern of results. In the following,
without lack of generality, we present data for only one
representative ROL.

Comparisons of Current Density Estimations
Using 128 EEG Sensors, 153 MEG Sensors, or
Combined 61 EEG and 63 MEG Sensors

For both CC and RE indexes, the three-way ANOVA
returned statistically significant values of all main factors
analyzed and their interactions with at least P < 0.001. In
particular, the main factors SENSORS (F[2,62] = 507.4, P

TABLE I. Independent variables used for the statistical
analysis of the estimated current densities, and their
relative levels of variation

Variable Description Levels

SNR SNR generated at EEG o, 30, 20, 10, 5, 3, 1
Sensors

INVERSE Type of inverse operator, MN, MNC
described by equations
(4-10)

SENSORS Number of simulated 29, 61, 128 for EEG
sensors and 153, 63, 38

for MEG

SNR, signal-to-noise ratio; EEG, electroencephalogram; MN, mini-
mum norm; MNC, column-normalized minimum norm; MEG, mag-
netoencephalogram.
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< 0.0001), INVERSE (F[1,31] = 186, P < 0.0001), and SNR
(F[6,186] = 122, P < 0.001) significantly decrease the data
variance of CC index. The RE data decrease significantly the
variance for the factors SENSORS (F[2,62] 6,274, P
< 0.0001), INVERSE (F[1,31] = 93.8, P < 0.0001), and SNR
(F[6,186] = 197.8, P < 0.001). Interactions between factors
SENSORS and INVERSE were highly significant as indi-
cated by the values of F(2,62) = 31,5 and F(2,62) = 2,450
obtained for the CC and RE indexes, respectively. In addi-
tion, interactions between the factors INVERSE and SNR
were significant for both CC (F[6,186] = 14.7, P < 0.0001)
and RE (F[6,186] = 30.7, P < 0,001) indexes. Finally, also the
triple interaction between all the factors (SENSORS X IN-
VERSE X SNR) was significant with F(12,372) = 28.96 for the
CC index and F(12,372)= 29.1 for the RE index.

One observes that the EEG-MEG-based inverse operator
obtained with 61 EEG and 63 MEG sensors returned statis-
tically significant improved current density estimations (as
stated by both CC and RE indexes) with respect to those
estimated using 128 EEG or 153 MEG sensors. In fact, all
comparisons carried out with Scheffe’s test returned a sta-
tistical significance level of at least P < 0.0001. This has
occurred for all the SNRs considered in the simulations.

Figure 3 shows spatial distributions of estimated current
density strengths obtained by unimodal inverse operators
(based on 128 EEG sensors or 153 MEG sensors) as well as
the multimodal one (with 61 EEG and 63 MEG sensors). In
particular, three instantaneous activated cortical areas were
shown on the realistic head model (Fig. 3A); the other real-

MEG

Figure 3.

Spatial distributions of estimated current den-
sity strengths obtained by pure unimodal in-
verse operators (based on 128 EEG or 153
MEG sensors) and multimodal one (with 61
EEG and 63 MEG sensors). In particular, the
map in A shows three instantaneous activated
cortical areas. The rest of the figure shows
reconstruction of the cortical current density
carried out using data from 128 EEG channels
0 (B), 153 MEG sensors (C), and combined 63
MEG and 61 EEG sensors (D). Percent color
scale is normalized with reference to the max-
imum amplitude calculated for each map. Max-
imum negativity (—100%) is coded in red and
maximum positivity (+100%) is coded in black.
[Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.
com]

istic heads show the estimates of the cortical current density
carried out using 128 EEG channels (Fig. 3B); 153 MEG
sensors (Fig. 3C), and 63 MEG and 61 EEG sensors (Fig. 3D).
All cortical areas were activated with the same unitary
strength, whereas the other cortical dipoles were set to a
random value between —0.05 and 0.05. The reconstruction
carried out with the multimodal EEG-MEG inverse operator
recovered the current density activation in all three active
cortical areas (namely, the SMA and the left and right M1).
The estimation of the right S1/M1 cortical activity with 63
MEG and 61 EEG sensors, however, was carried out using
half-strength values (light blue) with respect to those used
for the left S1/M1 (purple).

Figure 4 presents the average data of the RE index for
the main factors analyzed (SENSORS, INVERSE, SNR) in
the left S1-ROL. The cortical current density estimate car-
ried out with 153 MEG sensors showed a statistically
significant lower value of RE index compared to those
carried out with 128 EEG sensors (Scheffe’s test, P
< 0.001) for SNR values ranging from infinite to 3. Post-
hoc tests carried out with Scheffe’s test reported no sta-
tistically significant differences between the MN and
MNC inverse operators in the EEG and MEG cases for a
wide range of SNRs (from infinite to values of 3). For the
EEG-MEG case, the MN inverse operator returned statis-
tically significant lower values of RE compared to that
with the MNC inverse operator for the range of SNRs
values obtained.
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Figure 4.

Each section of figure corresponds to a particular SNR value
employed in simulations. Vertical axis reports the average of the
relative error (RE) index computed after the current density
estimation; horizontal axis reports the different inverse operators
used for estimation of current density. Each data point is an
average value of the RE index computed at a particular SNR and
with a particular sensor configuration during the simulations. Cir-
cles, data from 128 EEG sensors; squares, data from 153 MEG
sensors; diamonds, data from 61 EEG plus 63 MEG sensors. Data
are relative to the SI-ROL. Significant reductions of RE were noted
for estimations carried out with multimodal integration of EEG
and MEG compared to other unimodal estimation methods (EEG
and MEG) for any SNR used. Such reduction was independent of
the number of sensors, similar in all the three cases.

Comparisons of Current Density Estimations
Using 61 EEG Sensors, 63 MEG Sensors, or
Combined 29 EEG and 38 MEG Sensors

In this case, for both CC and RE indexes, the three-way
ANOVA returned statistically significant values of all main
factors analyzed and their interactions with a statistical sig-
nificance of at least P < 0.001. One observes that the EEG-
MEG-based inverse operator obtained with 29 EEG and 38
MEG sensors returned statistically significant (P < 0.0001,
Scheffe’s test) lower RE values and higher CC values with
respect to those estimated using unimodal inverse operators.
This result holds for the entire range of SNRs analyzed. In
addition, it was observed that the current density estimation
carried out with 61 EEG sensors returned statistically signif-
icant lower RE and higher CC values compared to those
obtained using 63 MEG sensors, for a wide range of the
SNRs used (from infinite to 3).

Figure 5 presents the average data of the RE index in the
SMA-ROI for the main factors SENSORS, INVERSE, and
SNR using the EEG data sampled with 61 sensors (circles),
the MEG data sampled with 63 sensors (squares) and the
combined EEG and MEG data with 29 and 38 sensors (dia-
monds), respectively.

Comparisons of Current Density Estimations
Using 153 MEG Sensors Combined With 29, 61,
and 128 EEG Sensors

In this set of simulations, we analyzed accuracy of the
current density reconstruction obtained using multimodal
integration of 153 MEG sensors with 29, or 61, or 128 EEG
data. The results were once again compatible in all ROIs
analyzed, and we describe the results for the ROI represent-
ing the S1 area. The three-way ANOVAs carried out on both
CC and RE indexes returned a statistically significant de-
crease of data variance for all main factors considered and
their interactions (at P < 0.001). For both CC and RE indexes,
the three-way ANOVA returned statistically significant val-
ues of all main factors analyzed and their interactions with
at least P < 0.001. In particular, the main factors SENSORS
(F[2,62] = 52.4, P < 0.0001), INVERSE (F[1,31] = 22.6, P
< 0.0001), and SNR (F[6,186] = 9.89, P < 0.001) significantly
decrease the data variance of the CC index. The RE data
significantly decreased the variance for the factors SENSORS
(F[2,62] = 60.98, P < 0.0001), INVERSE (F[1,31] = 290.9, P
< 0.0001), and SNR (F[6,186] = 628.5, P < 0.0001). Interac-
tions between factors SENSORS and INVERSE were highly
significant as indicated by the values of F(2,62) = 21.7 and
F(2,62) = 22.9 obtained for the CC and RE indexes, respec-
tively. The interactions between the factors INVERSE and
SNR were significant for both CC (F[6,186] = 54.7, P
< 0.0001) and RE (F[6,186] = 466.3, P < 0.001) indexes.
Finally, the triple interaction between all the factors (SEN-
SORS X INVERSE X SNR) was also significant with
F(12,372) = 290.9 for the CC index and F(12,372) = 5.83 for
the RE index.
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Figure 5.

Average data for RE in the SMA-ROI at the different levels of main
factors considered (ELECTRODES, INVERSE, and SNR). Simula-
tions were carried out using EEG data sampled with 61 sensors
(circles), MEG data sampled with 63 sensors (squares), and com-
bined EEG and MEG data with 29 and 38 sensors (diamonds),
respectively. Same conventions as those used for Figure 4.
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Figure 6.

Average data for RE in the SI-ROI at the different levels of main
factors considered (ELECTRODES, INVERSE, and SNR). Simula-
tions were carried out using combined MEG and EEG data sam-
pled with 153 MEG sensors and 29 EEG sensors (circles), 153
MEG sensors and 6 EEG sensors (squares), and |53 MEG sensors
and 128 EEG sensors (diamonds), respectively. Same conventions
used for Figure 4.

Figure 6 shows the mean values of RE indexes for current
density estimations carried out with 153 MEG sensors and
29, 61, and 128 EEG sensors. It is possible to appreciate the
similarity in values of the RE index obtained for 153 MEG
and 29 EEG sensors compared to all the other multimodal
combinations employed. Post-hoc Scheffe’s tests suggested
that the values for the RE and CC indexes obtained with 153
MEG and 29 EEG sensors were statistically similar to those
returned with 153 MEG and 61 or 128 EEG sensors, for a
wide range of SNRs investigated (from infinite to value of 3).
When the SNR of data moved from 3 to 1, however, current
density estimations carried out with many EEG and MEG
sensors (i.e., 128 EEG sensors and 153 MEG sensors) re-
turned statistically significant lower reconstruction errors (at
P < 0.001) compared to other alternative multimodal current
reconstruction used (i.e., with 153 MEG sensors and 29 or 61
EEG sensors). The multimodal integration of 153 MEG sen-
sors and 29 EEG sensors returned values of RE lower than
those obtained by single modalities alone (EEG and MEG;
see Fig. 4 and 5) for a large set of SNR values.

DISCUSSION
Generalities on Simulations Carried Out

This study addressed the question as to whether multi-
modal integration of high-resolution EEG and MEG data
improves estimation of cortical current density. These re-
sults were reported at the ROI level instead of the level of
each one of the 3,000 cortical dipoles used as a source model.
An ROI-dependent result such as the one used in our study
was chosen due to our interest in the reported efficacy of the

estimation process at this still acceptable spatial scale reso-
lution. Although it is possible to obtain current density
estimation at higher spatial scales (in the order of several
square millimeters), the inherent difficulties of the electro-
magnetic inverse problem would suggest rather a lower
level of spatial resolution, the results of which we discuss
conservatively. Accordingly, the obtained estimates of cur-
rent density were computed at the level of the ROI em-
ployed, by computing the average of each single dipole
moment belonging to the ROL The use of indexes furnished
indications about the capability of the linear inversion sys-
tem to return correct information about the shape (CC in-
dex) and the absolute values (RE index) of the generated
waveforms. Previous simulation studies on estimation of
cortical current densities with multimodal integration of
EEG and MEG modalities have taken into account indexes
such as the resolution kernel and the point spread function
(PSF) [Babiloni et al., 2001; Liu, 2000; Liu et al., 2002]. Such
indexes could not be taken into account, however, when the
SNR of the data is systematically varied, as in this study;
therefore, we adopted the CC and RE indexes instead of PSF
or resolution kernel indicators.

The generated waveforms have been chosen to mimic
cortical current estimates during preparation and execution
of simple unilateral finger movements in humans. Such
estimates were obtained using high-resolution EEG data
from MRPs recorded in a subject with 128 sensors, and the
same realistic head and cortical models used for simulations.
It may be argued that the reference current density wave-
forms used contained a contribution of the noise already
present on the MRP recordings and back-projected by the
inverse operator from the scalp to the cortex. This consider-
ation doesn’t affect the results obtained, because reference
waveforms are here used as a “gold standard” for the in-
verse procedures tested. The simulations proposed used
realistic SNR values in connection with EEG and MEG re-
cordings from humans.. In fact, such SNR values moved
from 20 or 10 as similarly observed in some epileptic spike
seizures or evoked potentials/fields to the values of SNR
from 5, 3 or even 1 occurring during the recording of single
EEG/MEG trials related to motor or cognitive activities. The
estimation of current density from 29, 61, and 128 EEG
sensors was carried out due to the large availability of
high-resolution EEG systems using 64 and 128 sensors.

Simulation Results

The results offered by the present simulation study have
demonstrated the general efficacy of inverse operators used
in recovery of cortical activity at the level of ROIs. In fact, a
good recovery of generated waveforms was obtained for all
SNR levels and number of electrodes/sensors employed. As
expected, there was a relevant effect of noise levels on esti-
mation of current density; however, the higher the spatial
sampling of the EEG and MEG distributions, the higher the
obtained quality of the current reconstruction for any level
of SNR. Using multimodal integration of 64 EEG and MEG
sensors, we obtained current density estimate 20% more
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accurate than that using only 128 EEG or 153 MEG sensors.
This error percentage, obtained for each ROI analyzed, can
produce severe misinterpretation of data when current den-
sity over the whole cortex was estimated. The multimodal
integration carried out with 29 EEG and 38 MEG sensors still
returned current density estimates about 10% more accurate
than those carried out with only 61 EEG or 63 MEG sensors.
The absolute quality of estimated current density in the
multimodal case is lower than in the case in which hundreds
of EEG and MEG sensors have been used (Fig. 4). Further-
more, simulation results suggest that during high-resolution
MEG recordings (153 sensors), the addition of 29 EEG sen-
sors improves current density estimation in the same way as
with the addition of 64 or even 128 EEG sensors.

We also noted that for all experimental conditions em-
ployed there was a substantial equivalence of accuracy in
current density estimation produced by inverse operators
with and without column norm normalization (MN and
MNC). The presented simulations, however, were carried
out by constraining the neural sources to the modeled cor-
tical mantle. In general, column norm normalization has
been introduced mainly for linear inverse systems dealing
with a tomographic model of the brain, in which the cerebral
source space for the solution was coincident with the whole-
head model [Grave de Peralta and Gonzalez Andino, 1998;
Pascual-Marqui, 1995]. It can be hypothesized that the rela-
tive subtle differences in depth of modeled sources in sulci
and gyri of the generated cortical surface with respect to the
sensor positions could be responsible for such results.

Additional simulation results suggested that current den-
sity estimation carried out by unimodal MEG data (153
sensors) returned lower error in amplitude and waveform
shape estimation in each ROI analyzed (as described by low
RE and high CC indexes) compared to those carried out with
unimodal EEG data (128 sensors) over a large set of SNR
values. This particular result was reversed when subsam-
pling with roughly 63 sensor points was carried out for EEG
and MEG. The estimates obtained with unimodal 61 EEG
sensors, however, were superior to those obtained by 63
MEG sensors for the whole set of SNR values employed.
This result is in line with that reported in previous publica-
tions for the same number of EEG and MEG sensors and for
an SNR level equal to 10 [Liu, 2000; Liu et al., 2002]. These
last results, although statistically significant, are relative to
modest absolute values of the differences. In this case, their
statistical significance means that the findings are not due to
chance alone, but low absolute values of estimation errors
suggest a negligible practical implication of such results.

Simulations carried out demonstrated clearly that current
density estimations carried out using 153 MEG and 29 EEG
sensors have the same statistical accuracy as those employ-
ing 153 MEG and 61 or 128 EEG sensors. This result is
compatible with a previous simulation study that showed
that the use of few EEG channels was useful to increase the
accuracy of current density estimate when 61 MEG measure-
ment points (each one with two orthogonal planar gradiom-
eters) were used [Liu et al., 2002]. We obtained the same

conclusions for a larger set of MEG measurement points
(153) and for a wider SNR range. The present simulation
results were obtained using same SNR levels for both EEG and
MEG recordings during the multimodal integration, in line
with previous work [Liu et al., 2002]. It is possible to imagine,
however, a situation in which multimodal integration has to be
carried out in the presence of different SNRs for EEG and MEG
data. This could happen when a significantly different number
of trials were used for acquisition of MEG and EEG data. In this
case, only the figure of merit relative to the unimodal EEG or
MEG current density estimation will remain valid. Of course, it
is always possible to reduce off-line the number of EEG/MEG
trials used for the average to obtain a common SNR level in
both modalities.

CONCLUSIONS

There is a rather large consensus about the need and
utility of multimodal integration of magnetic and neuroelec-
tric data. Results reported previously [Babiloni et al., 2001;
Liu, 2000; Liu et al., 2002] and in the present work suggest
that it is possible to obtain real improvement in spatial
details of the estimated distributed neural sources by carry-
ing out multimodal integration of EEG and MEG data. Based
on simulations carried out, we are able to answer the ques-
tions raised earlier. First, the use of multimodal EEG and
MEG data returns improved current density estimations
compared to those provided by unimodal data (EEG or
MEG). This result was obtained throughout the SNR range
employed and for all sensor numbers considered. Second,
there is a significant SNR influence on estimation of cortical
current density; however, this influence is similar for sepa-
rate EEG, MEG, and combined EEG-MEG estimation tech-
niques. Third, the use of few EEG sensors (29 sensors) to-
gether with full MEG recordings (153 sensors) returns
current density estimations equivalent to those obtained
using larger EEG sensor arrays (61 and 128) in conjunction
with the 153 MEG sensors.

This last point of interest given the relatively shorter time
needed to set 29 electrodes under the MEG system com-
pared to that needed to set-up 64 (let alone 128) electrodes.
Taken together, our results could return quite accurate esti-
mations of cortical current densities using realistic models
for the head and cortical surfaces. This clearly makes such
techniques appealing for the study of complex brain func-
tions that are characterized by high spatial and temporal
variability.
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