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Artificial intelligence for precision medicine in
neurodevelopmental disorders
Mohammed Uddin1,2*, Yujiang Wang3,4 and Marc Woodbury-Smith2,3*

The ambition of precision medicine is to design and optimize the pathway for diagnosis, therapeutic intervention, and prognosis by
using large multidimensional biological datasets that capture individual variability in genes, function and environment. This offers
clinicians the opportunity to more carefully tailor early interventions— whether treatment or preventative in nature—to each
individual patient. Taking advantage of high performance computer capabilities, artificial intelligence (AI) algorithms can now
achieve reasonable success in predicting risk in certain cancers and cardiovascular disease from available multidimensional clinical
and biological data. In contrast, less progress has been made with the neurodevelopmental disorders, which include intellectual
disability (ID), autism spectrum disorder (ASD), epilepsy and broader neurodevelopmental disorders. Much hope is pinned on the
opportunity to quantify risk from patterns of genomic variation, including the functional characterization of genes and variants, but
this ambition is confounded by phenotypic and etiologic heterogeneity, along with the rare and variable penetrant nature of the
underlying risk variants identified so far. Structural and functional brain imaging and neuropsychological and neurophysiological
markers may provide further dimensionality, but often require more development to achieve sensitivity for diagnosis. Herein,
therefore, lies a precision medicine conundrum: can artificial intelligence offer a breakthrough in predicting risks and prognosis for
neurodevelopmental disorders? In this review we will examine these complexities, and consider some of the strategies whereby
artificial intelligence may overcome them.
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INTRODUCTION
A principle tenet of precision medicine is that subpopulations may
be reasonably identified who differ in their disease risk, prognosis
and response to treatment due to differences in underlying
biology and other characteristics. The availability of multidimen-
sional datasets that capture such variation can be ‘trained’ using
artificial learning algorithms to find the cryptic phenotypic or
genotypic structures, discussed subsequently, to then predict risk
of disease, treatment response, prognosis and other outcomes in
individual patients based on their own characteristics. The
realization of this will offer clinicians the opportunity to more
carefully tailor interventions—whether disease modifying or
preventative in nature—to individual patients, contrasting with
the current inductive process of symptom classification, and
sometimes vague and inexact process of treatment decisions. One
challenge of precision medicine is the high-performance comput-
ing requirements to process multidimensional datasets. However,
computer capabilities have grown exponentially in recent years,
and the integrated efforts of the international scientific commu-
nity have made available large multidimensional biological and
clinical datasets.1–5 Recently, prediction algorithms utilizing
artificial intelligence approaches for cancer6–9 and cardiovascular
disease10,11 have shown promising results, predicting disease risk
with a higher degree of precision.
In part, of course, success is predicated on the availability of

accurate biological measurements, adequate quantification of
relevant environmental factors and, from a genomic perspective,
the identification of variants of known penetrance. Realizing a
similar approach to the group of disorders of brain development
termed ‘neurodevelopmental disorders’ (NDD) has a number of

obstacles.12 The NDDs are a group of early childhood onset
disorders that impact different domains of cognitive development,
motor function and other higher brain functions, and are lifelong
in nature. Among the NDDs are severe disorders that impact
multiple domains of cognitive functioning, such as intellectual
disability (ID), as well as severe and pervasive disorders of social
communication (autism spectrum disorder, ASD), motor function
and cognition (epilepsy encephalopathies), and behavioral regula-
tion (attention deficit hyperactivity disorder, ADHD). Some NDDs,
particularly single gene disorders with more severe cognitive and
medical consequences, are very rare. ASD and ADHD in particular
are now relatively common, and result in major functional
impairment, in part related to the high rates of co-morbidity.
Epilepsy is one such comorbidity, with 20% of people with ASD
also receiving this diagnosis. Moreover, epilepsy itself is often
neurodevelopmental, although can sometimes occur de novo in
adulthood or later in life. NDD co-morbidities are common and
can make diagnosis challenging. Moreover, there is a degree of
overlap in phenotype between different disorders, and pheno-
typic variability between individuals with the same diagnosis.13–15

These complexities, often resulting in misdiagnosis or even missed
diagnosis, are a major catalyst for the implementation of precision
medicine. This is particularly so because, as a group, such
disorders place a significant burden on healthcare. As such, early
diagnosis and targeted therapeutic interventions to those who are
most likely to benefit are universally agreed public health
priorities.16,17

In this review, the ambition of precision medicine will be
described, and success and implementation in medical practice so
far will be briefly presented, with certain cancers and
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cardiovascular disease as examples of success. The neurodevelop-
mental disorders will then be introduced and their inherent
etiological and clinical complexities. Importantly, whilst large,
principally genomic and clinical, datasets are available pertaining
to individuals with NDD, using these data to facilitate improved
diagnosis, therapeutic intervention and clinical outcomes is not
straightforward. We will discuss the issues of clinical hetero-
geneity, lack of diagnostic clarity and biological overlap that
characterize the NDDs. We will consider in detail potential
approaches to address this complexity using epilepsy as
exemplification, and then describe the outlook for artificial
intelligence as applied to NDDs.

Precision medicine and artificial intelligence
Precision medicine is a healthcare pathway that employs
numerous technologies to guide individually tailored diagnosis
and treatment for patients. The availability of technologies,
including high performance computing (HPC), as well as large
biological datasets, are critical for the implementation of a
precision medicine pathway that has the power to impact on
healthcare. At the center of this strategy is a set of computer
algorithms that identify patterns in multidimensional datasets that
are then used to predict or optimize based on the availability of
similar data on individual patients. Artificial intelligence algorithms
apply learning strategies based on classification or pattern
recognition to (multi-dimensional) input data in order to be able
to predict from future datasets. In clinical medicine, for example,
this may involve using results of pathological specimens to predict
diagnosis and staging for the pathological specimen received on a
new patient. There are many AI algorithms available, broadly
defined according to whether they are supervised or unsuper-
vised. Methods include the support vector, random forest, neural
network and an evolutionary algorithm (EA). A brief overview of
these methods is provided in Box 1. In recent years, both neural
network driven machine learning and evolutionary algorithm (Fig.
1) have shown promising predictive potential for problems that
are not solvable in polynomial algorithms (known as NP-hard
problems).18–20 These two models can be adapted by providing
input data in supervised, unsupervised or semi-supervised models
(see definition in Box 2).
In the last few decades, digitization of medical health record

added a massive amount of data related to healthcare. Large
digitization initiatives like EMERGE network, and ‘All of Us’ by NIH,
USA25; Electronic Health Record (EHR) initiatives by Canadian
Institutes of Health Research,26 National Health Service, UK27 are
some of the world’s largest electronic health record databases.
The application of AI algorithms will be greatly benefitted from
these large digitization efforts that can help establish genotype-
phenotype relationship for genetic diseases and have the
potential to infer numerous phenotypic correlations and associa-
tions. Of course, collecting large scale digital data will only be

helpful if the data comprise relevant clinical information to model
AI algorithms.
The application of AI in medicine is a burgeoning area of

development in light of the major impact it could potentially have
on healthcare provision. The application of machine learning in
medical imaging on skin lesions6 and treatable retinal diseases1

has been the most impactful, and demonstrates the potential for
this technology in medical practice. Deep learning algorithm to
diagnose heart attack using 549 ECG records shows a sensitivity of
93.3% and specificity of 89.7%, outperforming cardiologists.28

Recently, DNA sequencing technology adopted machine learn-
ing to read out long stretches of DNA fragments from digital
electronic signaling data. Long read technologies are important to
resolve repetitive regions in the genome and detect complex
structural variants. The current short reas technology can not
resolve these issues and it is still unknown the disease risk
contribution from repetitive region and structural variation of the
genome. Nanopore sequencing technology in particular uses a
neural network based deep learning method to ‘call’ DNA bases
from the electronic signal produced by the nanopore flow cells.
This method has accuracy over 98% and can produce mega base
long DNA reads.29 There has been an attempt to use AI in the
clinical classification of genomic variation, based on the char-
acterization of non-coding variants30 splicing code,5 DNA/RNA
binding proteins2 and non-coding RNA (ncRNA)31 using large-
scale molecular datasets. Classifying mutations according to their
clinical relevance is very complex due to the largely unknown
penetrance of individual variants, (i.e., the probability of diagnosis
given a particular variant is identified, or mathematically, P(disease+
|variant+)) Moreover, high penetrance variants are largely
infrequent, with those of low penetrance much more common.
Although most of the variants are non-coding in our genomes,
determining pathogenicity of rare or common non-coding
variants still requires major advancement in genomics. It will
require multidimensional biological data and the use of artificial
intelligence approaches to decipher the pathogenicity. Further-
more, many penetrant variants are also known to have more than
one clinical manifestation, known as pleiotropy, and many
diagnoses are characterized by variable presentation (phenotypic
heterogeneity). Despite this, however, recent deep learning
methods have had some degree of success in the correct
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Fig. 1 Most promising artificial intelligence algorithms. a Simplified
illustration of a basic model of neural network that is widely used in
deep learning algorithms and (b) the components of evolutionary
algorithm framework for multi objectives optimization related
problem.

Box 1

Neural network is a model comprised of multiple layers of artificial neuron-based
structures that are equipped with multilayer logistic regressions.21 The model
consists of an input and output layer and the artificial neurons in between are
known as hidden layers (Fig. 1a). Neural network is widely used for machine
learning (ML) related problems (i.e., pattern recognition or classification).
Evolutionary algorithm (EA) is another model that was also adapted from
nature.22 EA is an effective optimization model that usually starts from the
random assignment of an initial possible solution (known as a population) and
progressively applies artificial genetic operators (mutation crossover etc.) to
produce a new set of possible solutions in the subsequent generation (Fig. 1b).
EA is well known for its capability in optimizing multiple objectives.23 Although
deep learning is becoming more popular, in a recent paper a type of EA
algorithm was shown to outperform a deep learning algorithm in classical
gaming theory.24
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interpretation of phenotype and genomic data for disease risk in
numerous types of cancer,6,7,9,32,33 diabetic retinopathy34,35 and
pharmacogenomics.36–38 For example, in discriminating lymph
node metastases, 7 independent deep learning implementations
showed greater discrimination power (i.e., in relation to patholo-
gical versus non-pathological) compared to 11 pathologists.7 The
best deep learning algorithm performed with an area under the
curve (AUC) of 0.99, compared to 0.88 for ‘best’ clinician-derived
score. The specificity found to be similar between AI and the
diabetic retinopathy expert, AUC 0.96 and 0.98, respectively.

Neurodevelopmental disorders (NDDs)
Neurodevelopmental disorders have their onset early in childhood
and impact on a variety of functional domains, including cognition
and executive function, language and social function, and motor
function and behavior control.39–41 A number of different
diagnoses are subsumed within this category, including intellec-
tual disability (ID),42 autism spectrum disorder (ASD),4,43 attention
deficit hyperactivity disorder (ADHD),44 tic disorders, and other
movement disorders.45,46 Epilepsy and other early onset brain
disorders, with or without associated ID, are also classified as
NDDs47,48 (Table 1). NDDs such as ASD and ADHD are common,
lifelong disorders that affect males more commonly than females.
In contrast, some syndromal NDDs, particularly single gene
disorders, are individually very rare. As such disorders are often
defined according to known biological abnormality (e.g., Down
Syndrome, Fragile X syndrome, Tuberous Sclerosis) much of what
we discuss in this paper is specific to common NDDs that are not
defined according to known biology. Patients present with varying
degree of severity, and comorbidity for two or more NDD
diagnoses is common. With the exception of certain epilepsy
syndromes (e.g., West Syndrome), which can be diagnosed more
definitively based on the results of electroencephalography (EEG),
most NDDs, including epilepsy itself, are diagnosed according to
the presence of a threshold number of symptoms identified by
direct observation or informant history. This is particularly
problematic, as the availability of reliable information will vary
from individual to individual, and even expert opinion can vary
from clinician to clinician, such that diagnostic endorsement is
often not definitive. Moreover, due to the developmental nature
of this category of disorders, the clinical picture can vary over
time,49 with symptoms becoming more or less severe as the child
grows. The availability of a more stable and objective way to
classify individuals with NDDs is clearly needed, but currently this
fuzziness within the diagnostic pathway is a significant barrier for
the implementation of precision medicine in neurodevelopmental
disorders.
All the NDDs considered in this current discussion are

principally genetic in etiology.50 For example, the early twin and
family studies in ASD all supported a strong, heritable genetic
component, and ASD and a lesser phenotype termed the Broader
Autism Phenotype (BAP) do tend to run in families.51 Some

individual cases may result from rare, highly penetrant muta-
tions,4,43,52 some of which segregate in a Mendelian fashion. Some
rare genetic syndromes, such as Fragile X53 and Tuberous
Sclerosis,54 are associated with a number of NDDs. In contrast,
however, most appear to result from a more complex genetic
architecture that involves one or more genetic variants of variable
penetrance interacting with other epigenetic mechanisms and
environmental factors.13,55,56 Understanding this genetic complex-
ity is important, and it is anticipated that technological develop-
ments, both in silico but also laboratory based, will help unravel
this. What is also striking is their degree of overlap in common-
SNP based genetic etiology,57 and pattern of differentially
expressed genes. To date, over 250 genes have been reported
to have strong association with NDD.58 A very small number of
genes (SCN2A, CHD8, STXBP1) and loci (16p11.2 microdeletion,
15q13.3 microdeletion etc.) that are found to be enriched within
NDD are still below the level of 1% frequency threshold.48,59–61

The current clinical genetic diagnostic yield for severe, syndromic
NDDs associated with ID is approximately 40% and it is higher if
genome sequencing data are available for other members
(parents, siblings) of the family.62

In imaging studies, similarities in brain function evident from
fMRI and diffusion tensor imaging also point to overlap at the level
of intermediate phenotype between a number of NDDs such as
ASD and ADHD.63,64 Studies have examined diagnosed individuals
while performing different neuropsychological tasks in the
scanner, and the regions and structures in the brain that are
active have been elucidated. This overlap in intermediate
phenotype also extends to other mental disorders that are of
later onset but are also increasingly being seen from a
developmental perspective, such as schizophrenia and bipolar
affective disorder.65 However, at a clinical level, the phenotypes
differ quite markedly. As we discuss subsequently, machine
learning offers the opportunity to examine biological datasets in
both a supervised and unsupervised manner, thereby providing
both predictive models for diagnosis and treatment, as well as,
theoretically, examining how multidimensional datasets may
inform new models of classification. Specifically regarding
classification, AI may offer new insight into how overlap at the
biological level maps into disorders that are different clinically.

Artificial intelligence in NDDs
The availability of fMRI that enabled the high-resolution capture of
brain activity was a major milestone66 in NDD diagnosis and
therapeutics in the 90s (Fig. 2). Since then, the human genome has
been mapped67,68 and exome and whole-genome sequencing
technologies have led to the detection of hundreds of disease
causal genes and loci for ASD and other NDDs.43,69–71 Indeed,
conducting exome or genome sequencing for newborn babies at
high risk of genetic abnormalities is now becoming more frequent
and cost effective.72 Subsequently, the advent of transcriptome
sequencing dependent technologies led to the establishment of

Table 1. Major neurodevelopmental disorders, prevalence, genetic inheritance, sex ratio, and genetic diagnostic yield.

Major neurodevelopmental disorders Prevalence (approximately) Sex ratio (male/female) Genetic diagnostic yield
(SNV, Indel and CNV)

Autism spectrum disorders 1.69%CDC 4:1 >40%43,52

Epilepsy 1.2%119 1:1 >45%120,121

Intellectual disabilities 1.7%122 2:1 >50%123–125

Single gene disorders <1% 1:1, except for X linked mental
retardation syndromes

100% (complete diagnosis)

CDC Centers for Disease Control and Prevention, USA
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the Allen developmental human brain atlas73 in 2011, ENCODE
database profiling the non-coding elements in the human
genome74 in 2012, and the Human Cell Atlas75 in 2017. Multiple
sequencing consortiums focussed on the NDDs were also started
during the period of 2012 and 2014 with the aim of identifying
disease-implicated variants, and making exome and WGS data
available to the scientific community for further study.52,70,76,77

Bearing in mind that most identified genetic variation is of
unknown pathogenicity, and little is known about functional
consequences, the discovery of CRISPR/Cas as a gene editing tool
in 2012 has allowed scientists to better characterize identified
genetic variants.78,79

In recent years, artificial intelligence approaches has been used
in autism spectrum disorder,5,12,14,15 epileptic encephalopathy,80–
82 intellectual disability,83–85 attention deficit hyperactivity dis-
order (ADHD),86 and rare genetic disorders.2 In our discussion of AI
in NDDs, three layers of analyses will be considered. The over-
riding theme will be the application of these methods to
multidimensional NDD biological datasets, and the complexities
therein (Fig. 3).

AI approaches are critical for identifying causal genes and loci.
Although the current genetic diagnostic yield (including copy
number variation (CNV), single nucleotide variants (SNV), and
indel) for severe, syndromal ID is around 50% (Table 1) we still do
not know genes or loci for NDDs more generally, which includes
many of the cases whether there is no ID and/or evidence of
craino-facial dysmorphology.58,62 In addition, many identified loci
are confounded by unknown penetrance, and, beyond bioinfor-
matic prediction, do not have a strong evidential basis of support.
De novo CNVs and SNVs and loss of function (LOF) mutations are
certainly significantly enriched in individuals with NDD compared
to typically developing controls.4,71,76 Unfortunately, bioinformatic
prediction is still unable to confidently classify the more common
missense mutations according to pathogenicity. Indeed, identify-
ing causal genes from these ‘variants of uncertain significance’
(VUS) remains a major unresolved problem that does lend itself to
a AI solution. Recently, the identification of OTUD7A as a
pathological gene in the 15q13.3 microdeletion syndrome locus
illustrated the power of integrating computational and molecular
approaches to resolving causality in CNVs.87 Whilst this approach
may certainly provide one solution, it is costly and, importantly,
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time intensive. Recently, post-zygotic mutations from blood and
brain have been shown to be associated with ASD, epilepsy and
ID.48,60,88 The abundance of neuron specific mutations has also
been reported in the literature.89 What is unclear is the proportion
of cells with potentially pathogenic postzygotic mutation. To
comprehensively resolve genetic risk in relation to NDDs, there are
other genomic regions that still need careful evaluation, such as
non-coding variants, common variants and repeated sequences
(over 40% of the entire genome). Moreover, an unsupervised
learning approach, discussed below, may offer the opportunity to
identify new patterns to data independent of these diagnostic
categories.
Despite these limitations, AI approaches have recently shown

reasonable success for improving genetic diagnostics in NDDs. As
indicated above, one of challenging task is the correct classifica-
tion of missense variants and Human Splicing Code,5 and
DeepSEA30 showed very promising results in missense variant
interpretations. The application of Human Splicing Code is one of
the first machine-learning algorithms that shows convincing
evidence of accurately classifying disease-causing variants, includ-
ing those that are intronic. This method applies a Bayesian
machine learning algorithm to model splicing dysregulation from
a set of three or triplet exons. The method demonstrated
pathogenic missense variants in ASD and in spinal muscular
atrophy,5 including variants that had not previously been
classifiable in this way. In contrast, DeepSEA is a deep learning
based algorithm that predicts the noncoding variant effects de
novo from sequence data. The model uses large-scale chromatin-
profiling data, including transcription factor binding, DNase I
sensitivity and histone-mark profiles to predict the functional
consequences of a non-coding variant. These and other algo-
rithms are performed independent of established diagnostic
categories, and serve to enrich the information for each genomic
element for incorporation into downstream analyses discussed
subsequently. Such holistic approaches, therefore, resolve variant
pathogenicity through the interpretation of multidimensional
omics data in the context of different NDD diagnoses. The recent
advent of long range sequencing technologies (e.g., Pacific
Biosciences, Oxford Nanopore Technology and others) are
producing high quality DNA sequencing data that allow repeated
sequences to be resolved.
AI approaches are critical to elucidate hidden structure in

phenotype and genetic heterogeneity. As indicated above, both
phenotypic and genetic heterogeneity characterize NDDs. For
example, 15q13.3 microdeletion syndrome impacts multiple
domains of cognitive function and is associated with hetero-
genous phenotypes, including epilepsy/seizure (57%), speech
delay (16%), and ASD (11%).90 There are hundreds of such CNVs
with no straightforward mapping between manifested pheno-
types and the variants/genes.40,58 Despite the possibilities, there
remains the problem of phenotype, and in particular, the
oversimplification of dichotomizing phenotypes such as ASD
and ADHD into ‘caseness’. Variant information classified according
to algorithms such as those defined above, as well as incorpora-
tion of other layers of biological data (neuroimaging, neurophy-
siology, neuropsychology), can be used to identify hidden
structure in data, particularly if a unsupervised approach is used.
These hidden structures may or may not map onto existing
diagnostic categories, but, crucially, may be more closely aligned
with endophenotypes, treatment response, prognosis and other
clinical and outcome parameters. This discovery-driven approach
may validate existing clinical diagnostic models of disorder
classification, as well as potentially identify new models of
classification that are driven principally (or, indeed, entirely) by
the clustering of biological data. In NDDs in particular, diagnostic
criteria have evolved significantly over time, principally due to a
lack of clear, objective sine qua non for each disorder.
Unfortunately, this evolution has seen the boundaries between

disorders dissolving, milder forms being pathologized and discrete
diagnostic categories morphing into spectra. Whilst biology does
to some extent inform this nosological evolution, greater
emphasis needs to be placed on using AI approaches on large-
scale datasets to validate or challenge existing classification
paradigms. Moreover, even if syndromes such as ADHD and ASD
do truly exist as spectra, AI may be useful in identifying
boundaries, perhaps informed by outcome and prognosis.
Although attempts with neural network deep learning approach

showed that by combining fMRI with phenotypic data ASD
classification can be improved,91 this is still predicated on the
fundamental existence of a categorical diagnostic label, viz. ASD,
that may not correctly capture the structure in the underlying
data.92 Similarly, in epilepsy, EEG endophenotypes have been
proposed93 and purely EEG-based classification of seizures have
been investigated theoretically and clinically.94 However, none of
these methods have been applied in a quantitative context,
perhaps as the diagnosis of subtypes of epilepsy often rests
heavily on qualitative EEG observations.
Methods are also needed that allow individuals to be assigned

to more than one category in a probabilistic manner. For example,
an individual may fall into diagnostic or endophenotypic category
A with a probability of 0.9, and category B with a probability of 0.6
(we will highlight some examples of this in psychiatric conditions,
and suggest that similar approaches can be taken in NDD). This
closely reflects the reality of NDD symptom manifestation,
whereby an individual with, say, ASD is also very likely to manifest
ADHD or one of the other NDD diagnosis. In other words, co-
morbid conditions may share an endophenotype that has clear
diagnostic biomarkers. We need methods to both identify such
diagnostic biomarkers, and to evaluate risk of different diagnostic
categories for an given individual.
The availability of data-driven clinical diagnostic entities may

also facilitate the triaging of patients in clinical practice. There is
currently little opportunity to do this, as even well-designed
screening instruments have limited reliability between sexes and
across different ethnic groups. Although diagnostic criteria exist,
there is much variation between clinicians on diagnostic thresh-
olds used, which beyond the need for symptoms to impact on
functioning are otherwise not explicitly written into these criteria.
With the availability of data-driven categorization, there may be
an opportunity, therefore, for the results of biological tests to
inform who should be referred for further evaluation and or
monitoring in a similar way to other medical tests. In addition,
current diagnostic assessments for NDDs can be lengthy, and their
multidisciplinary nature costly, leading to long waiting lists for
children to receive diagnostic assessments. There is, therefore, a
real opportunity for AI to automate some of the tasks in the
diagnostic pathway and thereby have far reaching implications for
clinical care and healthcare economics.
AI algorithms require major push to determine polygenic risk

scores and gene-gene interactions. As we have stated before,
hundreds of genes are involved in NDDs and the variability of
gene variants (both common and rare) contributes to the overall
pattern of brain function, as evidenced by fMRI and EEG, and
phenotype at the clinical level. The risk prediction for each
individual mutation is a complex process, as it will require a large
number cases and controls to quantify significance. Similarly,
predicting disease phenotypes from MRI and EEG data has similar
problems, and incorporating data across these biological levels
has challenges. For example, in epilepsy, siblings can share a very
similar genetic and environmental background, but some develop
epileptic seizures, while their siblings do not. In such cases, even
the background EEG can appear very similar in siblings, but the
exact factors causing one to have seizures is not well understood.
Even after quantifying risk factors, genetics lack well-established

statistical or computational model that can utilize multiple variant
or gene risk factors and combine them into a unified polygenic
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risk score. A neural network based approach on quantifying gene
score for polygenic trait (i.e height) using single nucleotide
polymorphism data showed promising improvements out per-
forming previous methods.95

Polygenic risk prediction in NDDs remains problematic in light
of the largely negative findings from underpowered genome-wide
association studies (GWAS). Recently, a genome wide association
study on large autism spectrum disorder and control cohort
identified five common variants that confers very small risk
factor.57 When the proportion from de novo risk factor is
substantially large, it is still not clear to what extent common
variants contributes into the genetic risk factor of neurodevelop-
mental disorders. Therefore, although common variants are likely
to play an important role, particularly in relation to quantitative
traits that merge with those in the population-at-large.
Regarding the inference of gene–gene interaction, the number

of permutations and combinations involving all the genes in our
genome is a massive exponential search space and there is no
efficient algorithm that can infer gene-gene interactions involving
more than few genes. Statistical significance for the large number
of interactions also suffers from the impact of multiple testing
thresholds.96,97 Although gene–gene interaction is likely a major
contributor to the phenotypic variance of NDDs, there is currently
no credible artificial intelligence algorithm able to cope with data
on this scale. Certainly, a large number of genes can be simplified
into a smaller number of protein–protein interactions or co-
expression networks using traditional statistical model or algo-
rithms, but as discussed subsequently, this is computationally NP-
hard.98 Adding to this complexity, there may be significant
overlaps between gene lists and/or protein/co-expression net-
works for different neurodevelopmental disorders, and so
discriminatory classification of, say, ASD vis-à-vis schizophrenia
adds further layers of complexity. This latter problem is perhaps
the most important one to consider, as this will inform the
translational capacity of the algorithm for precision medicine.
Although NDDs are mostly genetic in etiology, environment will

still impact on genetically driven brain patterning, and therefore
have the potential to influence disease severity. Recently multiple
independent reports have showen an association between
postzygotic mosaic mutations and autism spectrum disorders,
intellectual disability, epilepsy and other NDDs.48,60,88 Currently
the complex interactions between post zygotic mosaic mutations
and environment is poorly understood.
AI approaches are at the frontier for therapeutic intervention

and drug design. Currently, there are 51 food and drug
administration (FDA) approved targeted gene specific drugs for
neurology and psychiatric conditions. The advent of sequencing
technology has principally been focussed on facilitating the
implementation of early precision diagnostics. Precision thera-
peutics remains a major challenge for NDDs. Recently the advent
of genome editing technologies (i.e., CRISPR/cas9), and antisense
oligonucleotide therapy has allowed scientists to mimic cellular
phenotype, and help identify precise molecular targets. For
example, the application of CRISPR/cas9 helped knocked out a
functional copy of CHD8 gene in induced pluripotent stem cells
(iPSCs). The knockout iPSCs showed differential expression of
several thousands of genes in neural progenitors and impacts
early differentiating neurons.99 CRISPR/cas9 or other cas family
proteins are still error prone, and the experimental success is not
highly accurate. The future hope is that CRISPR/cas9, antisense
oligonucleotide therapy and gene therapy based technologies will
allow us to detect precise target molecules for most of the
mutated genes in NDD. This will eventually lead to the
experimental pathway to design target molecules (i.e., antisense
oligonucleotide, or siRNA) to inhibit or disrupt the faulty pathway.
Such drug design will require a major push on artificial
intelligence algorithm implementation.

Recently the idea of repurposing drug is becoming a major area
of research as well. Finding out common pathway for approved
drugs can benefit multiple diseases. Finding out these shared
pathway relationship is complex and do not have enough
molecular and genomic data to establish a connection. For
example, mTOR pathway impacts a certain group of epilepsy
individuals and the same pathway found to be dysregulated in
tuberous sclerosis individuals.54,100 Hence, mTOR inhibitors have a
great potential to impact treatment outcome for individuals with
epilepsy carrying mTOR mutation or tuberous sclerosis related
epilepsy.

Challenges for artificial intelligence in relation to NDDs
There exist major complexities involving deep phenotypic and
large scale omics data. Artificial intelligence will eventually
radically transform healthcare delivery for patients with NDDs,
but there are major hurdles that need to be resolved. For example,
the modifying effect of environment is not well understood, but
may explain disease discordance in monozygotic twins and the
observation of different genetic risk factors in siblings. Identical
variants may have different phenotypic consequences, and even
recurrent large deletions, or bioinformatically predicted damaging
mutations, may result in phenotype among some but no apparent
consequences among others. Except in a few specific situations
(for example, fetal alcohol syndrome,101 and microcephaly
through infectious agents102), major environmental influences
on NDDs and their contributions to phenotypic severity or
heterogeneity are still unknown. Environmental impact is also
highly likely to be a source for inducing post-zygotic mutations,
recently shown to be associated with NDD.48,60 Moreover, these
environmental factors may differ between countries and con-
tinents. As such, artificial intelligence might capture structure in
data for one geographic location that is not relevant for disease
risk in another location. Unsupervised AI models (Box 2) can be
utilized to identify previously unknown sub-structures within NDD
cases based on environmental factors that are local population
(Fig. 3).
On the technical side, similar problems also arise due to

different methods, tools, and protocols being used to collect data.
For example, reliability and reproducibility of neuroimaging
findings depend hugely on many experimental factors.103

Similarly, population scale omics data suffer from batch effect
and technology specific biases.104,105 Thus, although large
databases may be available for machine learning approaches,
great care has to be taken in the quality and comparability of
datasets used. Otherwise, any structure and information extracted
from the data using artificial intelligence may be completely
trivially driven by the composition of the data.
Omics data are necessarily multidimensional, and characterized

by a large computational burden.106–108 Compounding this, with
the advent of single cell genomics, the genomic architecture of
NDDs is becoming apparent, and the formidable challenge this
introduces to the understanding of disease pathophysiology.
There are a large number of somatic variants that have been
identified that have the potential to impact phenotypic severity.

Box 2

Supervised AI Algorithm: In supervised learning algorithm, the training data
helps the algorithm learning a function that maps an input to an output based
on known or labeled input-output pairs.
Unsupervised AI Algorithm: Unsupervised learning is a type of machine
learning that involves unlabeled training data where the input-output relation-
ship is not known and the algorithm infers patterns (or possible solutions) within
datasets.
Semi-supervised AI Algorithm: Semi unsupervised learning is a type of machine
learning that involves a mix of known and unknown training data that helps the
algorithm to infer input-output relationships.
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For example, there is evidence of certain somatic mutations
associated with autism spectrum disorder, microcephaly, and
epilepsy.48,60,88 Recent analysis has also shown that up to 40% of
neurons could have a large mega base scale copy number
variation.109 Single cell genomics has also identified private
somatic mutations within each neuron.89 Although the contribu-
tion of somatic mutation to disease risk is not well understood,
this particular type of mutation will add unpredictable variance
within machine learning approaches and will impact replication
significantly.
Lack of proper training datasets (control and case) and

complexity on interpretability are two major issues in AI. Although
collaborative initiatives have resulted in the growing availability of
datasets that can be used for training, there is still a need for
larger, more complete biomedical datasets that are representative
of different populations and tissues. Initiatives such as 100,000
Genomes Consortium, MSSNG,76 The Simons Foundation Autism
Research Initiative,110 The Exome Aggregation Consortium,111

ENCODE Project Consortium,74 The Genotype-Tissue Expression
Consortium,112 Allen Brain Atlas73 offer huge potential for training
and testing AI algorithms, but only if the data are complete, and
similar, robust, measures have been used across samples and
tissues (Fig. 3). This is often an issue in NDDs where on the one
hand it may be difficult to engage the participant in all potential
assessments employed, and on the other hand different studies
may have used different measures.
Clinical implementation of artificial intelligence algorithms

should be informed by the needs of the healthcare practitioner
and their patients. Most artificial intelligence algorithms work as a
‘black box’, which may raise concern among health professionals,
and raise questions from clinical service users. To overcome this,
gold standard AI protocols need to be established that can be
understood by healthcare professionals. There is also a need to be
transparent about the limitations of AI methods. For example, in
genetic algorithms, it can be extremely difficult for clinicians to
decipher how through random operations (i.e., mutation, cross-
over) and variables the model reaches fitness convergence for
optimum solutions in a multidimensional search space.113

Ultimately, however, despite the complexity of different algo-
rithms, statistical models and tests are used to favor or refute
evidence (i.e., p-values, false discovery rates, area under the curve),
which can be understood by many professionals working in a
clinical setting.114

The datasets themselves, multidimensional in nature, will also
have been collected from multidisciplinary experts who may not
necessarily ‘talk the same language’. What one person may call
‘case’, therefore, may be ‘non-case’ to another, and genetic
variants may similarly vary in their interpretation in relation to
significance. In addition, pre-processing of data and, indeed, even
the design of the original study itself from which data are being
collated, may present additional confounds to data interpretation.
Fortunately, scientific methods have become much more trans-
parent in recent years, and accessing detailed information
pertaining to the methods used is often readily available for
datasets. Of course, it is equally important for such information to
be transparent in relation to the use of AI methods themselves.
One of the major setbacks in NDDs is the paucity of available

treatments. There has been a downshift in industry-sponsored
trials of potential compounds for the treatment of different NDDs.
This downshift includes issues related to drug design, the lack of
positive control and replication. This is unfortunate, as we are now
beginning to uncover different aspects of brain structure and
function at the molecular level that are associated with
phenotypic consequence. These compounds may be the focus
for potential drug development, and their known pathophysiology
may inform repurposing of existing compounds (Fig. 3). One of
the central complicating factor in compound screening, is the
three dimensional structure of proteins. The complexity of

predicting the tertiary structure from polypeptide sequence is a
computationally intractable problem.98 AI based prediction
algorithms can overcome such barriers through rigorous training
datasets of polypeptide sequences.
Genome editing, antisense oligonucleotide therapy are two

major technologies that show promise in facilitating an under-
standing of biology and consequently addressing the paucity of
available treatments for NDDs. Recently, the clustered regularly
interspaced short palindromic repeats (CRISPR) system showed
the ability to correct mutations in vitro79 and in vivo115 in
numerous diseases. Unfortunately, the CRISPR-Cas9 system
currently lacks target precision. Moreover, the blood–brain barrier
is a major challenge to deliver CRISPR like editing system in vivo
into the brain cells. Regarding the delivery of genome editing
machineries, recent efforts on vector and non-vector based CRISPR
system delivery shows limited success on breaking the blood-
brain barrier.116,117 For NDD, future treatment options should
implement AI based algorithms that can design genome editing
or antisense oligonucleotide design tools that are compatible with
the in vivo delivery mechanism. Without the integration AI based
algorithms, the potential of precision medicine will not be fully
realized in NDDs.
The paradigm shift promised by precision medicine will of

course impact frontline healthcare staff, who will need training in
its strengths and limitations, as well as the interpretation and
translation of AI-driven knowledge into information that is
clinically meaningful for patients. The healthcare sector will need
to build its high performance computation (HPC) capacity, and
innovators will need to devise sophisticated AI-platforms. Con-
sideration will need to be given to protection of data and the legal
framework by which such data are stored and shared. Indeed,
such considerations need to be happening significantly before any
implementation, meaning that even now such discussions should
be taking place. The sensitive nature of healthcare (and social
care) information demands an absolute watertight system both in
terms of storage and sharing, but also algorithm performance.
Having one’s data breached, or being given someone else’s
clinical information should not happen. Moreover, being given an
incorrect diagnosis as a result of algorithmic failure should also
never happen, particularly as it may be more difficult to identify
than clinician error.

Opportunities for ML in NDDs
The challenges described above, both in terms of the vicissitudi-
nous nature of diagnostic labels that are poorly defined in the first
place, and the high levels of variability observed across multiple
levels of biological measurements, may also be reframed as real
opportunities for ML. At its most radical, a completely unsuper-
vised approach may identify new, and more biologically mean-
ingful, diagnostic categories. One paradigm would see clinical and
biological data pooled together, or alternatively biological data
could ‘drive’ the generation of new diagnostic entities. This is very
different from existing uses of ML which are predicated on the
existence of diagnostic categories such as ASD, ADHD, and others.
This does, however, introduce the risk of ‘overfitting’ data. In
addition, of course, throwing out the baby with the bathwater
may not be entirely appropriate, and so we also advocate ML
endeavors that attempt to use existing diagnostic constructs
according to available underlying biological data. Some such
approaches have been reasonably successful in correct diagnostic
assignment, and are more immediately implementable in clinical
practice, as current treatment algorithms are very much focussed
on these very diagnostic categories. Natural language processing
(NLP) is another emerging field of machine intelligence that can
automatically transform clinical text into structured clinical
data.118 NLP algorithms can analyze digital health records and
psychiatric notes to identify relatedness among patients’
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phenotypes and their associated genetic markers. Although
scientists have been working on NLP algorithms for the last few
decades, significant improvements are still required from extract-
ing text to understanding the clinical and biological relevance. ML
approaches may be used to parse clinical text in the form of
diagnostic reports. It is fairly standard practice for NDD diagnoses
to be made following detailed assessment comprising clinical
interview and objective testing such as IQ and other aspects of
cognition. These assessments are typically summarized as a
detailed report. Such reports contain rich data, that, theoretically,
could be extracted using a suitable algorithm. This approach is
based on the valid assumption that such data contain the unique
insight of expert clinicians that might otherwise be overlooked in
more formal measurements, or using pure biological data.
Analyzing data across multiple levels of biological function is

also an attractive proposal in ML. By way of example, historically
EEG has shown variable success in the identification of distinct
neurophysiological patterns of impairment between ASD and
controls. In brief, there is no consistent pattern of brain activation
in response to particular stimuli that consistently differentiates the
ASD from the non-ASD brain. However, there is strong reason to
continue to pursue EEG-identified biomarkers for brain disorders,
because as a method it represents a cost-effective, objective way
of facilitating diagnosis that could easily be implemented in the
clinical setting. ML algorithms with the capacity to handle longer
EEG tracings (24 h for example) may be one potential avenue for
exploration. Alternatively, consideration might be given to the
ways in which other biological signals, from fMRI perhaps,
improves the interpretability of EEG signals.
Finally, NDDs are not static disorders, but evolve over time, and

one of its biggest challenges is the unpredictable nature of the
progression. Thus, there is considerable within-subject variability
in how the disorder changes over time, which is often neglected
in the context of research studies. The challenge is to understand
the manifestation of wide ranges of phenotypes during develop-
mental stages in an individual that arises from the same genetic
and neuronal substrate.39,47,58 Application of artificial intelligence
algorithm on longitudinal studies can be designed to capture the
pattern of disease progression over time and the variability at the
personal or sub-population level.
Bearing in mind how long it takes a compound to go from

original identification to eventual therapeutic use, ML algorithms
will also have a significant role to play in parsing the large
volumes of data generated during drug-development, as well as
prioritizing molecules based on their known biological properties.
Integrating genomics within the artificial intelligence drug
development algorithm will enhance the implementation of
precision medicine for NDD. Genomic profile can add the
sensitivity that the artificial intelligence algorithm requires to
design drug at the individual or a sub population level. Treatment
response in NDDs is one other area of healthcare delivery that
could benefit from ML, and this extends to the management of
mental health disorders more generally. Despite much research,
predicting treatment responsiveness remains very poorly under-
stood. This is particularly important as many treatments require a
period of time before efficacy (or lack thereof) is established.
Consequently, patients may remain essentially untreated for many
weeks, months if identifying a successful drug requires several
attempts. There will, of course, be many reasons why there is such
large variation in treatment response, and ML offers the
opportunity to identify structure in multidimensional data that
captures such things as metabolism, absorption, and disorder
characteristics (severity, comorbidity and so forth).

CONCLUSIONS
Artificial intelligence is already impacting healthcare, and it is
hoped that some of the successes achieved so far in cancer and

cardiovascular disease will also be seen in the NDDs. This will
necessarily involve the integrated use of existing and new
supervised and unsupervised learning approaches, as well as an
HPC infrastructure that can manage the multidimensional nature
of the emerging omics data. There needs to be major investment
in new treatments that will map onto different disease categories
and subcategories, and researchers need to step away from
existing diagnostic constructs to embrace a more intermediate
biologically driven level of phenotype that may map more neatly
onto treatment response and clinical outcomes. The healthcare
sector, which is already financially stretched, has a formidable task
ahead: there needs to be a development of infrastructure,
expertize in knowledge translation among healthcare profes-
sionals, and engagement with the service users themselves in
developing new clinical pathways. Short term investment in ML
will certainly have long term gains, both in terms of financial
savings resulting from precision medicine, but also the ultimate
improvement in the health of the population (Box 2).
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