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Abstract

Lung cancer is the leading cause of cancer death in both sexesworldwide and has a predicted 5-year survival rate of

<20%. Immunotherapy targeting immune checkpoints such as the programmed death 1 (PD-1) signaling pathway

has led to a shift of paradigm in the treatment of advanced nonesmall-cell lung cancer (NSCLC) but remainswithout

effect in ~80% of patients. Accumulating evidence suggests that several immunosuppressive mechanisms may

work together in NSCLC. The contribution and cooperation between different immunosuppressive mechanisms in

NSCLC remain unknown. Recently, the CD39-adenosine pathway has gained increasing attention as a crucial

immunosuppressive mechanism and possible target for immunotherapy. Immune cells were extracted from lung

and tumor tissue after lung resection in 12 patients by combined enzymatic and mechanical tissue disaggregation.

A multiparameter flow cytometry panel was established to investigate the expression and coexpression of CD39

and PD-1 on key lymphocyte subtypes. Frequencies of CD39þ, PD-1þ, and CD39þ/PD-1þcells were higher among

both CD4þ and CD8þ T cells isolated fromNSCLC tumor tissue than in T cells from normal lung tissue. Similarly, the

frequency of FoxP3þ CD4þ T cells (Tregs) was highly significantly elevated in tumor tissue compared to adjacent

lung tissue. The consistent upregulation of CD39 on immune cells in tumor microenvironment indicates that the

CD39 signaling pathway may, in addition to the PD-1 pathway, represent another important mechanism for tumor-

induced immunosuppression in NSCLC. In addition, the present study indicates that a comprehensive immune

response profiling with flow cytometry may be both feasible and clinically relevant.

Translational Oncology (2020) 13, 17–24
Introduction
Lung cancer is the second most common cancer in both men and
women, and the leading cause of cancer death in both sexes,
accounting for more than 1 million deaths worldwide in 2012 [1].
Nonesmall-cell lung carcinoma (NSCLC) accounts for >85% of
cases and has a predicted 5-year survival rate of <20% [2].

NSCLC was considered a poorly immunogenic malignancy until
2012 [3], when the efficacy of an immune checkpoint inhibitor
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blocking the programmed death 1 (PD-1) signaling pathway in
NSCLC was reported [4]. This unanticipated finding led to a shift of
paradigm in the treatment of advanced NSCLC, and immunotherapy
has become a fourth pillar in the therapeutic approach, in addition to
surgery, radiation and chemotherapy [5]. Still, immunotherapy
remains without effect in ~80% of unselected patients with NSCLC,
and biomarkers to guide selection of patients remain highly needed [6].

CD4þ and CD8þ T cells are effector cells of the adaptive immune
system and fundamental in the antitumor immune response.
Tumor-specific CD4þ T helper (Th) cells are activated by
immunogenic signals from antigen-presenting cells, including
dendritic cells, macrophages, and B cells in the tumor microenviron-
ment (TME). Activated effector CD4þ T cells maintain and bolster
the adaptive antitumor immune response by interaction with
antigen-specific cytotoxic CD8þ T cells [5]. CD4þFoxP3þ

regulatory T cells (Treg) suppress antigen-specific effector T cell
responses via several direct and indirect mechanisms and play a pivotal
role in cancer immunosuppression [7]. In addition, activation of
adaptive immune cells can be regulated by a variety of inhibitory
signaling molecules expressed on various immune cells. These
regulatory circuits are considered immune checkpoint pathways and
primarily contribute to maintenance of self-tolerance and regulation
of immune responses and are particularly important in preventing
organ damage during chronic infections such as HIV and hepatitis C
virus (HCV). However, they can also be "hijacked" or exaggerated by
tumors leading to evasion of the adaptive antitumor immune response
[8,9]. Various tumor immune escape mechanisms are mediated by
immune cells that have been polarized in the TME towards
immunosuppressive instead of proinflammatory properties [10].

The PD-1 signaling pathway constitutes a major immunosuppres-
sive mechanism in the TME. PD-1 expression is a marker of
reversible T-cell exhaustion, and PD-1 may be upregulated on
tumor-infiltrating T cells because of persistent antigenic exposure in
the TME [11e13], making T cells ineffective in controlling tumor
cell expansion. Therapies targeting PD-1 and its ligand PD-L1 may
represent a game changer in treatment of advanced NSCLC [14].
PD-L1 expression in lung cancer tissues has been measured by
immunohistochemistry (IHC) in clinical trials, but the use of PD-L1
as a predictive biomarker has several limitations and remains
controversial [15e17]. In addition, standardization of available
PD-L1 IHC tests is currently lacking [18].

Extracellular adenosine triphosphate (ATP) released from dead,
decaying, or stressed cells is one of the major biochemical constituents
of the TME and was recently discovered to play a role in generating
tumor immunosuppression [19]. The ectonucleotidases CD39 and
CD73 are expressed on immune cells as well as on stromal cells and
degrade extracellular ATP via adenosine monophosphate to adeno-
sine, CD39 being the rate-limiting enzyme in the cascade [20]. In a
study from 2006, adenosine was shown to suppress T-cell
proliferation and effector functions by stimulating the A2A receptor
on T cells, and the adenosine pathway was proposed as a target for
cancer immunotherapy [21]. More recently, extracellular adenosine
was recognized as one of the most potent immunosuppressive factors
in the TME [19,22], and this pathway has emerged as a one of the key
metabolic pathways that regulate the antitumor immune response in
various types of cancers [9,23]. So far little is known of the expression
levels of CD39 on intratumoral T cells in NSCLC [24].

Several immunosuppressive mechanisms may work together in the
TME [19], and targeting one immune checkpoint may not be
sufficient to relieve tumor-induced immunosuppression. There are
several clinical trials ongoing that use a combination of different
checkpoint inhibitors in immunotherapy treatment of NSCLC [25].
However, the cooperation between different immunosuppressive
mechanisms in the TME in NSCLC remains largely unknown.

In this study, we investigated the expression of CD39 and PD-1 in
key immune cell subtypes in the TME of patients with NSCLC. The
objective was to provide an immune cell profile in the tumor after
lung resection in patients. Using a method of combined mechanical
and enzymatic tissue disintegration, we isolated immune cells from
NSCLC tumors and healthy tissue, phenotyped immune cell subsets,
and investigated checkpoint marker expression. Our results expand
the knowledge of the immunosuppressive mechanisms induced in the
NSCLC TME and might also contribute to optimizing and
personalizing immunotherapy in patients with NSCLC, with the
aim to select patients that will benefit from immunotherapy.

Materials and Methods

Study Population

Twelve patients with NSCLC who underwent thoracic surgery
with curative intention between February 2017 and March 2018
were included in the study. Inclusion criteria were subsolid or solid
tumors with a minimum size of 20 mm in diameter as estimated by
thoracic computed tomographic scan. The tumors were histologically
classified and subtyped according to the 2015 World Health
Organization classification of lung tumors [26]. None of the patients
had a previous lung cancer diagnosis, and all were treatment naïve.
Patient characteristics were as follows: sex (male/female, 8/4); median
age 74 years (range, 56e83); five patients had squamous cell
carcinomas (SCCs), and seven patients had adenocarcinomas.
Written informed consent was obtained from all subjects, and the
study was approved by the regional ethics committee (Ref.nr.: 2010/
1939).

For characteristics of the study population, see Table 1.

Isolation of Mononuclear Cells From Tumor and Lung Tissue
Video-assisted thoracic surgery was performed in eight and open

thoracic surgery in four patients with NSCLC. After surgery, the lung
lobe was immediately placed on ice and transported to the laboratory
for processing. The pathologist obtained tissue samples, typically
1e3 cm3, from the tumor tissue and from macroscopically normal
lung tissue �3 cm from tumor within 30 min of the lobectomy.
Immune cells were extracted from tissues by optimized combined
enzymatic and mechanical disaggregation, as described by Quatro-
moni et al. [27]. In brief, tumor and lung tissue samples were rinsed
with serum-free HyClone DMEM/F12 media (Thermo Fisher
Scientific, Waltham, MA, US) and sliced into 1e2 mm3 pieces by
sterile microdissection. The tissue fragments were then incubated at
37 �C on an orbital shaker with a speed of 85 rpm for 45 min,
pipetted for 5e10 min, and then shaken for another 30e50 min in
HyClone Leibovitz L-15 media (Thermo Fisher Scientific) supple-
mented with the enzymes collagenases I (170 mg/L), II (56 mg/L), IV
(170 mg/L), DNase I (25 mg/L), and elastase (25 mg/L) (all
Worthington Biochemical, Lakewood, NJ, US) as described [27].
The resulting cell suspension was filtered through a 70-mm cell
strainer (BD Biosciences, San Jose, CA, US) and centrifuged for
5 min at 300 g. The cell pellet was washed in calcium-free
phosphate-buffered saline and resuspended in cell culture medium



Table 1. Basic Characteristics of the Study Population

Patient Age Smoker Tumour Subtype PDL1 pTNM Stadium Relapse

1 71e75 Former AC Acinary 0 pT2bN1M0 IIB No
2 76e80 Former AC Invasive mucinous 0 pTT2aN0M0 IB Yes
3 71e75 Former AC Micropapillary 1 pT1cN0M0 IA3 No
4 71e75 Current SCC Keratinizing SCC 15 pT3pN0M0 IIB No
5 71e75 Current AC Acinary 30 pT1cN0M1a IVA Yes
6 66e70 Never AC Acinary 0 pT3N1M0 IIIA Yes
7 81e85 Former SCC Nonkeratinizing SCC 0 pT2aN1M0 IIB Yes
8 71e75 Former SCC Nonkeratinizing SCC 0 pT3N0M0 IIB No
9 81e85 Former SCC Keratinizing SCC 0 pT2aN0M0 IB No
10 71e75 Former AC Micropapillary 0 pT3N2M0 IIIB No
11 76e80 Former SCC Keratinizing SCC 0 pT2bN0M0 IIA Yes
12 56e60 Current AC Cribriform 0 pT2aN2M0 IIIA No

F: female; M: male; AC: adenocarcinoma; SCC: squamous cell carcinoma; pTNM and Stadium: histopathologic TNMClassification of Malignant Tumours (8th edition); Relapse: After a minimum of 12
months of observation after surgery.
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(HyClone DMEM/F12 supplemented with 10% fetal calf serum
(FCS)). Mononuclear cells were isolated by density gradient
centrifugation at 600 g for 30 min without brakes at room
temperature (Lymphoprep, STEMCELL technologies, Cambridge,
UK). Contaminating red blood cells were lysed in 1 � BD Pharm
Lyse (BD Biosciences). Cells were washed twice and resuspended in
cell culture medium for further analysis.
Mitogen Stimulation of Mononuclear Cells
Mononuclear cells isolated from the tumors and from macro-

scopically normal tissue were incubated at 37 �C and 5% CO2 for
4 hours in Roswell Park Memorial Institute medium (Sigma-Aldrich
Corp., St. Louis, US) supplemented with 10% fetal calf serum
(Thermo Fisher Scientific) in the presence or absence of phor-
bol-12-myristate-13-acetate (Sigma-Aldrich) at 50 ng/ml and
ionomycin 1 mg/ml, in the presence of Protein Transport Inhibitor
Cocktail (500X) (eBioscience, Thermo Fisher Scientific).
Antibody Staining and Flow Cytometry
For surface antigen staining, the mononuclear cells were incubated

for 15 min with fluorescence-labelled monoclonal antibodies:
BV421-CD206, BV421-PD-1, BV510-CD45, BV605-CD8,
BV711-CD25, BV711-CD19, BV785-CD3, BV785-CD274,
FITC-CD4, PerCP-Cy5.5-CD8, PerCP-Cy5.5-HLA-DR (all from
BD Biosciences), PE-CF594-CD4, PE-CF594-CD366 (BioLegend,
San Diego, CA, US), PE-Cy7-CD39 (eBioscience), AF647-PD-1,
AF700-CD16 (BD Biosciences), and eFluor780-Fixable Viability dye
(eBioscience). Intracellular staining with BV605-IFN-g (BD Bios-
ciences), AF488-IL17A, and AF647-FoxP3 (BD Biosciences) was
performed after fixation and permeabilization with the BD FoxP3
buffer set (BD Biosciences). For interferon gamma (IFN-g) and
interleukin (IL)-17, unstimulated cells were used as negative controls
for gating. For PD-1, a separate tube without anti-PD-1 staining was
used (Fluorescence Minus One) as control for gating.
A minimum of 100 000 and 200 000 cells for surface and

intracellular antigens, respectively, were acquired on a BD LSR II
flow cytometer (BD Biosciences). Gating and visualization were
performed in R Bioconductor (packages: flowCore, openCyto,
flowWorkspace, and ggcyto). Lymphocytes were identified as viable
CD45þ Side Scatter (SSc) low and Forward Scatter (FSc) low. T cells
were identified as CD3þ lymphocytes. CD4þ Th and CD8þ T cell
subsets were identified from CD3þ T cells and analysed for
expression of further markers or cytokine production. B cells were
identified as CD19þ CD3- lymphocytes. We also identified the
CD16þ subset of natural killer (NK) cells as CD3�CD19�-CD16þ

lymphocytes, which is reported to be the dominating NK cell subset
in peripheral blood and normal lung tissue [28]. CD56 was not part
of our flow cytometry panel, thus CD16�CD56þ NK cells were not
identified in our experimental setup. Macrophages were identified as
viable CD45þ SSchigh cells with high autofluorescence and displayed
high expression of CD206. In normal human lung, CD206 is
ubiquitously expressed in macrophage populations [29,30].

Statistical Methods
Group comparison for continuous and categorical data was performed

by Wilcoxon signed-rank sum test or Mann-Whitney U Test and
Pearson chi-squared test, respectively. Spearman's rank correlation test
was used to determine correlation. Statistical analyses were performed in
R: A Language and Environment for Statistical computing (R Core
Team, R Foundation for Statistical Computing, Vienna, Austria). A P
value of <0.05 was considered to be statistically significant.

Results

Tumor-infiltrating T Cells in NSCLC Display Augmented
Expression and Coexpression of PD-1 and CD39

PD-1 was highly expressed on CD4þ and CD8þ T cells from both
tumor and macroscopically normal lung tissue from the same
patients, although significantly higher in tumor T cells [median
(IQR): 71.5% (59.5e75.0) versus 51.6% (46.6e63.0) on CD4þ T
cells, P < 0.01 and 75.2% (65.0e77.1) versus 47.5% (31.3e53.4)
on CD8þ T cells, P < 0.01, respectively].

The fractions of CD4þ and CD8þ T cells expressing CD39 were
also significantly higher in tumor than in lung tissue [median (IQR):
50.0% (42.7e53.6) versus 21.7% (14.1e41.5) on CD4þ, P < 0.01
and 41.7% (25.9e43.9) versus 8.0% (5.6e17.1) on CD8þ,
P < 0.01, respectively].

Frequencies of CD39þPD-1þ double positive CD4þ and CD8þ

T cells were also consistently and highly significantly higher in T cells
isolated from NSCLC tumor tissue than those from normal lung
tissue [median (IQR): 34.9% (31.0e43.3) versus 10.7% (8.2e19.9)
on CD4, P < 0.01 and 34.6% (15.9e39.0) versus 4.3% (3.4e8.0)
for CD8, P < 0.01, respectively].

Flow cytometry dot plots displaying CD39 and PD-1 expression
on CD4þ (a) and CD8þ (b) T cells from a representative tumor and
lung tissue as well as data quantification from all patients (c) are
shown in Figure 1.



Figure 1. CD39 and PD-1 on CD4þ and CD8þ T cells in NSCLC. A representative example of flow cytometry data. Expression and
coexpression of PD-1 and CD39 were significantly higher in (A) CD4þ and (B) CD8þ T cells from tumor tissue than from adjacent
normal lung. (C) Boxplots showing expression and coexpression of CD39 and PD-1 on CD4þ and CD8þ T cells in paired samples
from tumor tissue and in adjacent normal lung (Wilcoxon signed-rank sum test).
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Tumor-infiltrating FoxP3þ CD4þ T Regulatory Cells Express
Both CD39 and PD-1

The FoxP3þ fraction of CD4þ T cells (Treg) was highly
significantly elevated in tumor compared with cells from adjacent
lung tissue [median (IQR): 12.8% (6.1e15.8) versus 2.3%
(1.6e3.6), P < 0.01]. The vast majority of Tregs in both tumor
and lung expressed CD39 (Figure 2), although the fraction of Tregs
expressing CD39 was significantly higher in tumor than in such cells
from adjacent lung tissue [median (IQR): 94.2% (92.0e97.3) versus
85.4% (73.1e90.5), P < 0.01]. PD-1 was commonly expressed by
Tregs in both groups, but PD-1þ fractions were significantly larger in
tumor Tregs [median (IQR): 74.4% (60.8e82.0) versus 53.2%
(43.4e66.0), P < 0.01] (see Supplementary Figure 1).
Figure 2. CD39 and FoxP3 expression in CD4þ T cells in NSCLC. Flo
samples, showing increased fraction of CD39þ FoxP3þ in CD4þ

Numbers displayed are CD39þ FoxP3þ fractions of CD4þ T cells.
Immune Cell Composition in NSCLC Tumor and Normal
Lung Tissue

Main lymphocyte populations from lung and tumor tissue are
displayed in Figure 3A. There were higher frequencies of CD19þ B
cells among lymphocytes isolated from tumor than in lymphocytes
from lung tissue [median (IQR): 9.2% (2.2e15.1) versus 1.3%
(0.5e2.4), P < 0.01], whereas CD16þ NK cells were fewer in tumor
tissue [median (IQR): 4.9% (3.6e7.1) versus 29.5% (18.5e32.8),
P < 0.01]. CD4þ Th1 cells were defined as the IFN-gþ-producing
CD4þ T cells after in vitro mitogen stimulation. CD4þ Th1 cell
frequencies were lower in T cells isolated from tumor than in T cells
isolated from lung tissue [median (IQR): 34.4% (20.5e48.1) versus
50.6% (35.0e60.8), P < 0.05], while fractions of CD8þ T cells
w cytometry data from (A) a representative patient and (B) all
T cells from tumor compared with adjacent normal lung tissue.



Figure 3. Fractions of main lymphocyte subsets and expression of CD39 and PD1 in B cells and NK cells in lymphocytes from lung and tumor
tissue. (A) Main lymphocyte subsets as fractions of parent population (Lymphocytes are given as fractions of viable leucocytes;
lymphocyte subsets are given as fractions of lymphocytes). (B) Fractions of CD4þ T cells expressing IFN-g was lower in TILs
compared with cells from lung tissue. (C) Expression of CD39 and (D) PD1 in CD16þ NK cells and CD19þ B cells from lung and
tumor tissue. CD39 was consistently higher in TILs in CD16þ NK cells, B cells, and macrophages. Wilcoxon signed-rank sum test
was used to calculate P-values. TILs: Tumor-infiltrating lymphocytes.
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producing IFN-g were similar in tumor and lung (median: 60.2%
versus 65.1%, P ¼ 0.41) (Figure 3B).

Tumor-associated Macrophages, CD19þ B Cells, and CD16þ

NK Cells in TME Express CD39
We further determined the frequencies of CD39þ cells on other

tumor-infiltrating immune cell subsets (Figure 3C). CD39 expression
on CD206þ macrophages, CD19þ B cells, and CD16þ NK cells
were analyzed in immune cells isolated from tumor or normal lung
tissue. Similar to other tumor-infiltrating immune cell subsets,
tumor-associated macrophages (TAM) showed more than three-fold
higher fractions of CD39þ cells than lung macrophages [median
(IQR): 40.1% (22.0e60.6) versus 7.4% (5.9e14.9), P < 0.01]. The
mean fluorescence intensity of macrophages for CD39 was also
significantly higher in tumor (P < 0.01).
Expression of CD39 was higher in both B cells [median (IQR):

98.2% (96.2e98.8) in tumor versus 90.0% (85.5e93.9) in lung,
P < 0.05] and CD16þ NK cells in tumor than in such cells in lung
tissue [median (IQR): 8.6% (6.3e17.7) in tumor versus 2.6%
(1.5e6.7) in lung, P < 0.05] (Figure 3C).

The Relationship Between TME Phenotyping Results and
Clinical Patient Data
All patients were observed for 12 months after surgery and

categorized according to documented recurrence of lung cancer. We
then investigated if frequency of CD39, PD-1, or CD39/PD-1
coexpression on tumour-infiltrating lymphocytes (TILs) from these
patients correlated to stage or recurrence of lung cancer (Figure 4).
Three out of the 5 patients who relapsed had high frequencies (~40%
or more) of double-positive CD39þPD1þ cells among both the
CD8þ and CD4þ TILs. From one of the relapsed patients, we
obtained only a very small number of TILs due to extensive cell death
in one of the relapsed patients.

Discussion
This study provides novel information about coexpression of the
ectonucleotidase CD39 and the checkpoint molecule PD-1 on
tumor-infiltrating immune cells in NSCLC, indicating that adenosine
and PD1 signaling pathways for immunosuppression and tumor
immune-escape may be acting simultaneously. Expression of these
key immunosuppression markers was found to be much higher in
both CD4þ and CD8þ T cells from tumor than in such cells from
adjacent normal lung tissue. CD39 was also upregulated on a variety
of other immune cells, including CD16þ NK cells, B cells, and
macrophages. Furthermore, CD39þ FoxP3þ regulatory T cells were
highly enriched in the TME. The consistent upregulation of CD39
on immune cells in TME indicate that the CD39 signaling pathway
may, in addition to the PD-1 pathway, represent another important
mechanism for tumor-induced immunosuppression in NSCLC.

Few reports exist on expression of CD39 on TILs in NSCLC
[31e33]. O'Brien et al. performed a thorough analysis of TIL function
in NSCLC and reported increased expression of CD39 in CD8þ TILs
compared with lung tissue-resident lymphocytes [32]. Interestingly,
they did not find any correlation between TIL hypofunction and
expression of CD39 or PD-1. Simoni et al. reported on expression of
CD39 on CD8þ TILs in human lung and colorectal cancer assessed by
mass cytometry [33]. They did not report fractions in normal lung
tissue. Interestingly, transcriptomic profiling of CD39þ CD8þ TILs



Figure 4. TILs expressing CD39 and PD-1 and relapse of NSCLC. (A) Fractions of tumor-infiltrating CD4þ T cells coexpressing CD39 and
PD1 correlated significantly with clinical stage in patients with NSCLC. A trend towards correlation was found in fractions of
tumor-infiltrating CD8þ T cells coexpressing CD39 and PD1. (B) Spearman's rank correlation test was used to determine correlation.
TILs: Tumor-infiltrating lymphocytes. Patients with relapse of NSCLC within the first 12 months after surgery are displayed in red
points.

22 Ectonucleotidase CD39 and Checkpoint Signalling Tøndell et al. Translational Oncology Vol. 13, No. 1, 2020
revealed enrichment in genes related to cell proliferation and
exhaustion. In addition to confirming the data on CD39 expression
from these studies, the present study present novel data on CD39 on
CD4þ TILs and PD1/CD39 coexpression. Elevated CD39 expression
has been associated with poor outcome and advanced state in gastric
cancer [34], hepatocellular carcinoma [35], and chronic lymphocytic
leukemia [36]. To our knowledge, there are no reports on coexpression
of CD39 and PD-1 in NSCLC.

Lizotte et al. demonstrated increased fraction of PD-1þ CD4þ and
CD8þ TILs in NSCLC compared to normal lung by flow cytometry
[37]. In line with our results, this study reported higher fractions of
CD19þ B cells (6.2 ± 1% of total live cells) and FoxP3þ CD4þ Treg
cells in samples from tumor than in normal lung, while NK cells were
rarer in tumor. Another recent study investigated the expression of
PD-1 and PD-L1 in TILs by flow cytometry [38] and reported higher
fractions of PD-1þ CD8þ T cells in tumor than in normal lung,
which is consistent with our findings.

In a recent meta-analysis on tumor-infiltrating immune cells in
NSCLC using IHC, high levels of NK cells, M1 macrophages, and
CD8þ T cells were associated with favorable prognosis, whereas M2
macrophages and regulatory T cells predicted worse prognosis [39].
Accumulation of regulatory T cells in the TME was also associated with
disease recurrence after surgery in NSCLC in another study [40].
However, few studies have investigated immune cell subsets andmarkers
of immunosuppression in the NSCLC TME by flow cytometry.

ATP is released in high amounts to the TME from dying cells and
contributes to inflammation. Adenosine on the other hand exerts
profound immune suppressive effects, skewing T cells, macrophages,
and Dendritic cells (DCs) to suppressive phenotypes and stabilizing
immune-suppressive Tregs [9]. CD39 is expressed on a variety of
tumor-infiltrating immune cells and some tumor cells [9], and can be
upregulated due to hypoxia [9]. Increased expression of CD39 leads
to augmented concentration of adenosine in the TME. Our finding
of a trend towards higher fractions of CD39þPD-1þ CD4þ and
CD8þ TILs in more advanced stage in NSCLC is coherent with
reports on expression of CD39 linked to poor prognosis in several
human cancers [9,22].
Increased fractions of Tregs and B cells and increased expression of
CD39 on both cell subsets as found in our study are further indicative
of a primarily immunosuppressive TME in NSCLC. Intriguingly,
CD39 is induced in a positive feedback loop by adenosine signaling
via its receptor in Tregs, resulting in strong immunoregulatory
activity [9,41]. Tregs from TILs in NSCLC substantially suppressed
the induction of cytotoxic T lymphocytes against autologous tumor
cells in one study [42]. In several human cancers, high infiltration of
Tregs has been associated with poor prognosis [39,43]. Accordingly,
Tregs may represent an important target for NSCLC antitumor
immunotherapy [43,44]. B cells are potent APCs and can regulate the
phenotype of TAM [45e47], resulting in suppression of cytotoxic T
cells [12,48], possibly contributing to the immunosuppression of the
TME in NSCLC.

With the increasing options for immunotherapy, and possibly
combinational regimes, an immune response profile in NSCLC may
provide a means to target immunotherapy to the specific
immunosuppressive mechanism(s) active in the individual patient
and tumor.

This study has some limitations. First, the number of patients is
limited, which may moderate the confidence in our results regarding
the TME immune cell profile of NSCLC. Furthermore, we included
patients with both adenocarcinoma and SCC, tumors that might have
dissimilar patterns of antitumor immune responses. However, our
results do not indicate any difference in our major findings between
patients with adenocarcinoma and SCC.

In conclusion, our results suggest that further studies on the CD39
CD73 adenosine pathway should be undertaken, as it may be an
important mechanism for tumor-induced immune suppression in
NSCLC. The present study supports the feasibility of immune
response profiling in the TME by flow cytometry. A comprehensive
study on the immune response profile in NSCLC investigated in
relation to recurrence in a greater number of patients is warranted. In
the future, information from profiling of the TME and the antitumor
immune response may be used to tailor immunotherapy in selected
patients suffering from recurrent disease or possibly as adjuvant
immunotherapy after surgery [49].
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