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Abstract
Background: Radiomics has emerged as a new approach that can help identify imaging in-
formation associated with tumor pathophysiology. We developed and validated a radiomics 
nomogram for preoperative prediction of microvascular invasion (MVI) in hepatocellular car-
cinoma (HCC). Methods: Two hundred and eight patients with pathologically confirmed HCC 
(training cohort: n = 146; validation cohort: n = 62) who underwent preoperative gadoxetic 
acid-enhanced magnetic resonance (MR) imaging were included. Least absolute shrinkage 
and selection operator logistic regression was applied to select features and construct signa-
tures derived from MR images. Univariate and multivariate analyses were used to identify the 
significant clinicoradiological variables and radiomics signatures associated with MVI, which 
were then incorporated into the predictive nomogram. The performance of the radiomics no-
mogram was evaluated by its calibration, discrimination, and clinical utility. Results: Higher 
α-fetoprotein level (p = 0.046), nonsmooth tumor margin (p = 0.003), arterial peritumoral en-
hancement (p < 0.001), and the radiomics signatures of hepatobiliary phase (HBP) T1-weight-
ed images (p < 0.001) and HBP T1 maps (p < 0.001) were independent risk factors of MVI. The 
predictive model that incorporated the clinicoradiological factors and the radiomic features 
derived from HBP images outperformed the combination of clinicoradiological factors in the 
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training cohort (area under the curves [AUCs] 0.943 vs. 0.850; p = 0.002), though the validation 
did not have a statistical significance (AUCs 0.861 vs. 0.759; p = 0.111). The nomogram based 
on the model exhibited C-index of 0.936 (95% CI 0.895–0.976) and 0.864 (95% CI 0.761–0.967) 
in the training and validation cohort, fitting well in calibration curves (p > 0.05). Decision curve 
analysis further confirmed the clinical usefulness of the nomogram. Conclusions: The nomo-
gram incorporating clinicoradiological risk factors and radiomic features derived from HBP 
images achieved satisfactory preoperative prediction of the individualized risk of MVI in pa-
tients with HCC. © 2018 S. Karger AG, Basel

Introduction

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the third most 
frequent cause of cancer mortality worldwide [1]. Surgical resection and liver transplantation 
are potential curative treatments for HCC. However, tumor recurrence occurs in 70% of cases 
after hepatectomy and 25% after liver transplantation, with 5-year overall survival of around 
10–20% [2–4]. Microvascular invasion (MVI) is associated with aggressive biological features 
of HCC [5], which has been established as a risk factor for early recurrence and poor outcome 
[6–8]. To improve prognosis of HCC with MVI, anatomical subsegmentectomy or partial hepa-
tectomy with wide resection margin is recommended [6, 9]. Furthermore, given the scarcity 
of liver grafts and the possibility of tumor recurrence, some authors have proposed that liver 
transplantation is not suitable for the candidates with MVI [10, 11]. Therefore, preoperative 
knowledge of MVI can help stratify high-risk individuals for postoperative recurrence, thus 
aiding in treatment decision-making.

Currently, MVI is diagnosed by histopathology after surgery in most cases, which may 
hinder a rational treatment regimen. Fortunately, recent studies have shown that certain 
imaging modalities, particularly gadoxetic acid-enhanced magnetic resonance (MR) imaging, 
has great potential for predicting MVI. Radiological characteristics such as nonsmooth tumor 
margin [12, 13], arterial peritumoral enhancement [12–14], tumor hypointensity [15], and 
peritumoral hypointensity on hepatobiliary phase (HBP) images [13, 16] are noninvasive 
imaging biomarkers for MVI prediction. However, these qualitative findings suffer from limi-
tations including interobserver variability and lack of external validation [11]. 

Radiomics performs the high-throughput mining and quantification of routinely acquired 
radiologic images, which provides important insights into cancer phenotype and tumor 
microenvironment [17]. In contrast to tissue biomarkers, which invasively evaluate regional 
tumor microscopic heterogeneity, radiomic biomarkers noninvasively interrogate the entire 
tumor at the millimeter scale [18]. Quantitative parameters retrieved from computed tomog-
raphy (CT) and MR images have demonstrated improved diagnostic and prognostic precision 
in a variety of tumors including brain [19], nasopharynx [20], and lung [21] cancers. For MVI 
prediction, a recent investigation showed the promise of radiomic features extracted from 
preoperative CT images in HCCs less than 5 cm with an area under curve (AUC) of 0.8 [11]. 
Gadoxetic acid-enhanced MR imaging carries additional information on tumor microstructure 
[22, 23]. However, to the best of our knowledge, no studies published radiomic analysis of 
gadoxetic acid-enhanced MR images for MVI prediction.

In this study, we aimed to develop and validate a radiomics nomogram for preoperative 
prediction of MVI in HCC. This nomogram allows a preoperative prediction of the individu-
alized risk of MVI in patients with HCC and is particularly helpful for the therapeutic stratifi-
cation.
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Materials and Methods

Patients
Our hospital ethics committee approved this retrospective study and waived patient informed consent. 

An institutional database was searched for all patients who underwent preoperative gadoxetic acid-enhanced 
MR imaging from March 2012 to September 2017 and found 505 patients. The final cohort consisted of 208 
consecutive patients (183 men and 25 women; mean age, 55.5 ± 11.2 years) who met the following inclusion 
criteria (Fig. 1): (a) histologically confirmed HCC patients without evidence of grossly vascular invasion or 
extrahepatic metastasis at MR or CT imaging; (b) without history of prior intervention therapy or partial 
hepatectomy; (c) without bile duct tumor thrombosis; (d) gadoxetic acid-enhanced MRI within 1 month 
before surgery; (e) full description of HCC in the histopathologic report; (f) sufficient image quality. The 
cohort was divided into a training set (n = 146; 127 men and 19 women; mean age, 55.5 ± 10.9 years; from 
March 2012 to November 2016) and a time-independent validation set (n = 62; 56 men and 6 women; mean 
age, 55.5 ± 11.9 years; from December 2016 to September 2017) in a 7: 3 ratio according to the date of the 
MR examination.

Laboratory Tests and Histology
Demographic, preoperative liver function tests and α-fetoprotein (AFP) levels were collected from 

medical records. Specimens from curative hepatectomy were sampled at the junction of the tumor and 
adjacent liver tissues in a 1: 1 ratio, at the 12, 3, 6, and 9 o’clock reference positions [24]. Pathological char-
acteristics of tumor number, Edmondson-Steiner grade, MVI status, and cirrhosis of the noncancerous liver 
parenchyma were assessed in consensus by 2 dedicated pathologists from a team of experienced abdominal 
pathologists. MVI was defined as the presence of tumor in the portal vein, hepatic vein, or a large capsular 
vessel of the surrounding hepatic tissue lined with endothelium that was visible only on microscopy [24, 25]. 

MR Imaging
All study patients underwent gadoxetic acid-enhanced MR imaging using a 1.5T scanner (Magnetom 

Aera, Siemens Healthcare, Erlangen, Germany). Imaging sequences included axial T2-weighted imaging with 
fat suppression, diffusion-weighted imaging, in-phase and opposed-phase T1-weighted imaging, and pre-
contrast and post-contrast dynamic three-dimensional T1-weighted volumetric-interpolated breath-hold 
examination (VIBE) at arterial phase (20–30 seconds), portal venous phase (60–70 s), delayed phase (180 s) 
and HBP (20 min) after injection of 0.025 mmol/kg of gadoxetic acid (Primovist, Bayer Schering Pharma, 

Eligible patients who underwent preoperative gadoxetic acid-enhanced MRI and curative hepatectomy
from March 2012 to September 2017 (n = 505)

Patients were excluded (n = 297)
- Prior intervention therapy or partial 
 hepatectomy (n = 146)
- Pathology-confirmed malignancies
 were not HCC (n = 81)
- Inadequate histopathologic report (n = 17)
- Grossly vascular tumor thrombosis (n = 24)
- Insufficient image quality due to 
 motion artifact (n = 15)
- Incomplete MR images (n = 8)
- Bile duct tumor thrombosis (n = 6)

Inclusion criteria
- Histologically confirmed HCC patients without grossly
 vascular tumor thrombosis or extrahepatic metastasis
- Without history of prior intervention therapy or partial
 hepatectomy
- Without bile duct tumor thrombosis
- Gadoxetic acid-enhanced MRI within 1 month before
 surgery
- Full description of HCC in the histopathologic report
- Sufficient image quality

Final patient cohort with histologically confirmed HCC (n = 208)

Time-independent validation set (n = 62)Training set (n = 146)

Fig. 1. Flow diagram of the study enrolment patients.
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Berlin, Germany) into the cubital vein, followed by a 20-mL saline flush. Pre-contrast and HBP T1 mapping 
were also performed using a three-dimensional gradient-echo volumetric interpolated breath-hold exami-
nation with a dual flip-angle of 2 and 12°, and the quantitative precontrast and HBP T1 maps were automat-
ically reconstructed on a voxel-by-voxel basis after data acquisition using the MapIt processing tool (MapIt 
software, Siemens Healthcare). Image acquisition parameters are shown in online supplementary Table 1 
(for all online suppl. material, see www.karger.com/doi/10.1159/000494099). 

Qualitative Analysis of MR Images
MR images were reviewed independently by 2 abdominal radiologists with 20 and 10 years of MR expe-

rience respectively. In case of any discrepancy, a consensus was reached after discussion. Both radiologists 
were aware that the lesions were HCCs but were blinded to all other clinical, laboratory, and histopathologic 
information. When patients had multiple tumors, the largest one was analyzed. The 2 radiologists assessed 
the following image features of HCC: (a) tumor size, defined as the maximum diameter on transverse HBP 
T1-weighted image; (b) tumor margin, categorized as smooth margin and nonsmooth margin on HBP images, 
round or oval tumors with smooth contour were identified as smooth margin, while irregular tumors with 
budding portion at the periphery were classified as nonsmooth tumor margin [13]; (c) arterial peritumoral 
enhancement, defined as detectable crescent or polygonal shaped enhancement surrounding the border on 
the arterial phase images, which becomes isointense during the delayed phase [13]; (d) enhancement pattern, 
classified as typical dynamic enhancement, with arterial hypervascularity, and portal washout, as well as 
atypical dynamic enhancement; (e) radiologic capsule appearance, defined as a hyper-enhanced structure 
encasing the tumor during the portal venous or delayed phase; (f) tumor hypointensity on HBP images, 
presenting as hypointense tumor on HBP images, when compared with the surrounding liver parenchyma; 
and (g) peritumoral hypointensity on HBP, defined as wedge-shaped or flame-like hypointense areas of the 
hepatic parenchyma located outside of the tumor margin on HBP images [16]. 

Radiomics Analysis of MR Images
Workflow
The workflow of the radiomics analysis included tumor segmentation, feature extraction, feature 

selection, and model construction and evaluation (Fig. 2). 

Image Segmentation
Three-dimensional segmentation of HCC was performed by a radiologist with an 8-year work expe-

rience using ITK-SNAP software (http://www.radiantviewer.com). Regions of interests were manually 
drawn on the T2-weighted images, diffusion-weighted images with b values of 500 s/mm2, unenhanced and 
enhanced arterial phase, portal venous phase, delayed phase, and HBP T1-weighted images, as well as pre-
contrast T1 and HBP T1 maps, covering the whole tumor. The segmentation results were then validated by 
a senior radiologist with 18 years of work experience. A test-retest procedure was performed on a cohort of 
20 randomly selected tumors not only to test the reproducibility of the extracted features from repeat 
segmentation, but also to exclude the features with intraclass correlation coefficients lower than 0.80.

Radiomics Feature Extraction
Image filtration was implemented on original image with an undecimated wavelet transform [26], 

which decomposed the original image into 8 decompositions. A set of 647 radiomic features were extracted 
from each segmented lesion on both the original and filtered images. These features are used to quantify 
tumor size (e.g., volume), shape (e.g., compactness, sphericity) and intensity (e.g., histogram-derived statistics 
of mean, SD, root mean square, median), as well as textural matrices including the gray level co-occurrence 
matrix [27], gray-level run-length matrix [28], gray-level size-zone matrix [27] and the neighborhood gray-
tone difference matrix [29]. The detailed features are presented in online supplementary Table 2. All feature 
extraction was implemented using Matlab version 2014a (The MathWorks, Natick, MA, USA). 

Clinicoradiological Risk Factors
Individual variables were analyzed for significant differences in the training and validate cohort using 

the Student t test, Mann Whitney U test, or Fisher exact tests, as appropriate. The univariate analysis was 
used to assess the single factor for discriminating MVI presence in the training cohort, and those significant 
variables at univariate analysis were entered into multivariate logistic regression analysis to determine 
potential risk factors of MVI. 
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Radiomic Feature Selection and Model Building
For each sequence, the extracted radiomic features were standardized into a normal distribution with 

z-scores to eliminate index dimension differences of the data. Features with intraclass correlation coeffi-
cients lower than 0.80 were excluded (online suppl. Fig.  1). The least absolute shrinkage and selection 
operator method was used to select features [30, 31] (online suppl. Fig. 2). Logistic regression analysis was 
then utilized to integrate the selected features with Akaike’s information criterion as the stopping rule. 
Models with the minimum Akaike’s information criterion value generated the final radiomics signature 
(online suppl. Tables 3, 4). The fusion radiomics signature combined the single MR sequence signature that 
showed satisfying predictive efficacy with an AUC greater than 0.7 in both the training and validation cohorts. 
A predictive model was built by incorporating the clinicoradiological risk factors and fusion radiomics 
signature with multivariable logistic regression modeling.

MVI Prediction Model Evaluation
The receiver operating characteristics curves were plotted and AUCs were used to quantify the discrim-

inative efficacy for MVI prediction, and multiple comparisons of the curves were performed by the Delong test 
with Bonferroni-adjusted p values. The AUC with 95% CI, sensitivity, specificity, and accuracy were calculated.

Nomogram Construction and Evaluation
A radiomics nomogram was built on the predictive model as a graphical presentation. The discrimination 

performance of the nomogram was measured by Harrell’s C-index [32]. Calibration curves were plotted to 
analyze the diagnostic performance of the nomogram in both the training and validation cohorts [33]. The 
Hosmer-Lemeshow test was used to assess the agreement between nomogram-predicted MVI and actual MVI 
from the calibration curves [34]. Decision curve analysis was conducted to determine the clinical usefulness 
of the nomogram by quantifying the net benefits at different threshold probabilities on the overall cohort [35]. 

Tumor segmentation

Original image

3D visualization

Tumor
segmentation

Walvet filter

Shape feature

Intensity feature

Texture feature

LASSO selection

AIC selection

Radiomics signature

ROC curve

Nomogram

Calibration

Decision curve

Feature extraction Feature selection Model analysis Model evaluation

34

Fig. 2. Workflow of radiomics analysis. The radiomics workflow started with three-dimensional segmenta-
tion of tumor in MR images. After segmentation, radiomic features including shape, intensity and texture 
were extracted with or without wavelet filter of the images. Least absolute shrinkage and selection operator 
(LASSO) and Akaike information criteria (AIC) were used for the radiomic feature selection. Next, radiomics 
signature was built with the logistic regression model and receiver operating characteristic (ROC) curve was 
plotted. Finally, nomogram was developed and evaluated.
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Table 1. Comparisons of patient characteristics in training and validation datasets

Characteristics Training dataset (n = 146) Validation dataset (n =62)

MVI present MVI absent p value MVI present MVI absent p value

Age, years* 57 (51–60) 55 (46–61) 0.678 58 (45–64) 55 (44–63) 0.904
Gender 1.000 0.122

Male 30 (88.2) 97 (86.6) 15 (78.9) 41 (95.3)
Female 4 (11.8) 15 (13.4) 4 (21.1) 2 (4.7)

Etiology of liver disease 0.626 0.860
HBV 31 (91.2) 104 (92.9) 19 (100) 41 (95.3)
HCV 2 (5.9) 3 (2.7) 0 2 (4.7)
None or other 1 (2.9) 5 (4.5) 0 0

Total bilirubin 0.613 0.860
<20.4 μmol/L 32 (94.1) 100 (89.3) 19 (100) 41 (95.3)
>20.4 μmol/L 2 (5.9) 12 (10.7) 0 2 (4.7)

Alanine aminotransferase 0.295 1.000
<40 U/L 28 (82.4) 80 (71.4) 14 (73.7) 32 (74.4)
>40 U/L 6 (17.6) 32 (28.6) 5 (26.3) 11 (25.6)

Aspartate aminotransaminase 0.224 1.000
<35 U/L 29 (85.3) 82 (73.2) 15 (78.9) 33 (76.7)
>35 U/L 5 (14.7) 30 (26.8) 4 (21.1) 10 (23.3)

γ-Glutamyltransferase 0.720 0.950
<60 U/L 26 (76.5) 80 (71.4) 15 (78.9) 32 (74.4)
>60 U/L 8 (23.5) 32 (28.6) 4 (21.1) 11 (25.6)

Platelets 0.639 1.000
>125×109/L 16 (47.1) 60 (53.6) 10 (52.6) 22 (51.2)
<125×109/L 18 (52.9) 52 (46.4) 9 (47.4) 21 (48.8)

α-Fetoprotein 0.003 0.114
<20 ng/mL 9 (26.5) 67 (59.8) 7 (36.8) 26 (60.5)
20‒400 ng/mL 19 (55.9) 32 (28.6) 10 (52.6) 11 (25.6)
>400 ng/mL 6 (17.6) 13 (11.6) 2 (10.5) 6 (14)

Edmondson-Steiner grade 0.020 0.445
Grade I 0 2 (1.8) 0 2 (4.7)
Grade II 16 (47.1) 79 (70.5) 8 (42.1) 22 (51.2)
Grade III 18 (52.9) 31 (27.7) 11 (57.9) 19 (44.2)

Cirrhosis of background liver 0.803 1.000
Absent 11 (32.4) 41 (36.6) 8 (42.1) 18 (41.9)
Present 23 (67.6) 71 (63.4) 11 (57.9) 25 (58.1)

Number of tumors 0.720 0.068
Solitary 27 93 13 39
Multiple 7 19 6 4

MR imaging features
Tumor size, cm* 2.4 (1.5–3.1) 1.7 (1.3–2.7) 0.049 2.2 (1.2–3.5) 1.7 (1.0–2.7) 0.144
Tumor margin <0.001 0.004
Smooth margin 7 (20.6) 73 (65.2) 5 (26.3) 30 (69.8)
Non-smooth margin 27 (79.4) 39 (34.8) 14 (73.7) 13 (30.2)
Peritumoral enhancement <0.001 0.112

Absent 11 (32.4) 90 (80.4) 9 (47.4) 31 (72.1)
Present 23 (67.6) 22 (19.6) 10 (52.6) 12 (27.9)

Enhancement pattern 0.460 0.590
Typical 26 (76.5) 94 (83.9) 19 (100) 40 (93)
Atypical 8 (23.5) 18 (16.1) 0 3 (7)

Radiologic capsule 0.612 0.434
Absent 5 (14.7) 23 (20.5) 1 (5.3) 7 (16.3)
Present 29 (85.3) 89 (79.5) 18 (94.7) 36 (83.7)

Tumor hypointensity on HBP 1.000 1.000
Absent 1 (2.9) 4 (3.6) 0 1 (2.3)
Present 33 (97.1) 108 (96.4) 19 (100) 42 (97.7)

Peritumoral hypointensity on HBP image 0.006 0.068
Absent 24 (70.6) 102 (91.1) 13 (68.4) 39 (90.7)
Present 10 (29.4) 10 (8.9) 6 (31.6) 4 (9.3)

Unless otherwise noted, data are shown as number of patients, with the percentage in parentheses. 
* Data are medians, with interquartile ranges in parentheses.
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Statistical Analysis
All the statistical analyses were performed using the SPSS (version 20, Chicago, IL, USA) and R software 

(version 3.4.1, Boston, MA, USA). A two-tailed p value less than 0.05 was considered statistically significant.

Results

Clinicoradiological Characteristics
Comparisons of clinicoradiological characteristics are shown in Table 1. No statistical 

difference was found in clinicoradiological factors between the training and validation cohorts 
(p = 0.070–0.987), except for enhancement pattern (p = 0.024) in MR imaging characteristics. 

Univariate analysis showed serum AFP levels, Edmondson-Steiner HCC grade, tumor 
size, nonsmooth tumor margins, arterial peritumoral enhancement, and peritumoral hypoin-
tensity on HBP images were significantly related to MVI (p < 0.05). At the multivariate analysis, 
AFP levels (OR 1.903; 95% CI 1.018–3.644; p = 0.046), nonsmooth tumor margins (OR 4.817; 
95% CI 1.781–14.412; p = 0.003), and arterial peritumoral enhancement (OR 5.322; 95% CI 
2.033–14.551; p < 0.001) were independent predictors of MVI. The AUCs of combining the 3 
predictors were 0.850 (95% CI 0.784–0.915) in the training cohort and 0.759 (95% CI 0.641–
0.876) in the validation cohort (Table 2). Examples of typical radiological characteristics of 
MVI-positive and MVI-negative HCCs are shown in Figure 3.

Performance of Radiomics Signature Using Single MR Sequence
The predictive performance of single radiomics signature on each MR sequence is summa-

rized in online supplementary Table 5. For MVI prediction, the HBP T1-weighted image 
signature yielded an OR of 2.537 (95% CI 1.720–4.650, p < 0.001), and the HBP T1 map 
signature yielded an OR of 2.467 (95% CI 1.469–4.752; p < 0.001). Noticeably, radiomics 
signatures of HBP T1-weighted images and HBP T1 maps achieved satisfying performance, 
with AUCs of 0.754 (95% CI 0.668–0.840) and 0.858 (95% CI 0.788–0.929) in the training 
cohort, and AUCs of 0.705 (95% CI 0.570–0.840) and 0.721 (95% CI 0.583–0.859) in the vali-
dation cohort. Thus, HBP T1-weighted images and HBP T1 maps were further analyzed. The 

Table 2. Predictive efficacy of the clinicoradiological factors, radiomics signature and the predictive model

Different models Training dataset (n = 146) Validation dataset (n = 62)

sensitivity, 
%

specificity, 
%

accuracy, 
%

AUC (95% CI) sensitivity, 
%

specificity, 
%

accuracy, 
%

AUC (95% CI)

Imaging traits
+AFP

85.3 71.4 74.7 0.850 
(0.784–0.915)

73.7 67.4 69.4 0.759
(0.641–0.876)

HBP T1-w 
image

88.2 68.8 73.3 0.754 
(0.668–0.840)

63.2 65.1 64.5 0.705 
(0.570–0.840)

HBP T1 map 91.2 68.8 74.0 0.858
(0.788–0.929)

89.5 46.5 59.7 0.721 
(0.583–0.859)

Fusion radiomics
signature

88.2 84.8 85.6 0.895 
(0.837–0.953)

84.2 74.4 77.4 0.837 
(0.730–0.945)

Predictive 
model

88.2 87.5 87.7 0.943 
(0.905–0.980)

89.5 81.4 83.9 0.861 
(0.750–0.970)

AUC, area under curve; HBP, hepatobiliary phase; T1-w, T1-weighted image; AFP, α-fetoprotein. Imaging traits refer to the 
non-smooth tumor margin and arterial peritumoral enhancement. Fusion radiomics signature represents the fusion radiomics 
signature of the HBP T1-weighted images and HBP T1 maps. The predictive model consists of radiomic features of HBP T1-weighted 
image and HBP T1 map, serum AFP level and imaging traits.
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detailed feature information and the formulas of HBP T1-weighted images and HBP T1 maps 
radiomics signatures construction is provided in online supplementary Table 6 and online 
supplementary Formula. 

Performance of Fusion Radiomics Signature Using Multi-Sequence 
The fusion radiomics signature of the HBP T1-weighted images and HBP T1 maps was 

generated with the formula provided in the online Supplementary Formula. The distribution 
of the fusion radiomics signature is plotted in online supplementary Figure 3. There were 
significant differences of the fusion radiomic signatures between MVI-positive and MVI-
negative HCCs in both the training (0.268 ± 1.485 vs. –3.447 ± 3.015; p < 0.001) and validation 
cohorts (0.197 ± 2.151 vs. –3.810 ± 5.006; p < 0.001).

The fusion radiomics signature achieved better predictive efficacy for MVI than HBP 
T1-weighted image signature in both the training (AUCs 0.895 vs. 0.754; p = 0.002) and vali-
dation cohorts (AUCs 0.837 vs. 0.705; p = 0.040; Table 2; Fig. 4). The fusion radiomics signature 
performed better than the HBP T1 map signature in the validation cohort (AUCs 0.837 vs. 
0.721; p = 0.037), but no statistical difference was found in the training cohort (0.895 vs. 
0.858; p = 0.236). 

MVI Prediction Model
The MVI prediction model incorporated significant clinicoradiological factors with the 

fusion radiomics signature of HBP images. This model exhibited AUC of 0.943 (95% CI 0.905–
0.980) in the training cohort with sensitivity, specificity, and accuracy of 88.2, 87.5, and 87.7% 
respectively. Applied in the validation cohort, the model yielded AUC of 0.861 (95% CI 0.750–
0.970) with sensitivity, specificity, and accuracy of 89.5, 81.4, and 83.9% respectively. 

MVI-positive

MVI-negative

a b c

d e f

Fig. 3. Representative gadoxetic acid-enhanced MR images of microvascular invasion (MVI)-positive and 
MVI-negative hepatocellular carcinoma. a Axial arterial phase image shows a hypervascular tumor (long ar-
row) with peritumoral enhancement (short arrows) in hepatic segment V, and (b) hepatobiliary phase (HBP) 
T1-weighted image and (c) HBP T1 map show nonsmooth tumor margin, suggestive of presence of MVI. d 
Axial arterial phase image displays a hypervascular mass (long arrow) without peritumoral enhancement in 
hepatic segment VI, and (e) HBP T1-weighted image and (f) HBP T1 map display smooth tumor margin, in-
dicative of absence of MVI. Note HBP T1-weighted image shows hypointensity, while HBP T1 map displays 
hyperintensity, compared with surrounding liver parenchyma. 
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Moreover, the predictive model outperformed the combination of clinicoradiological factors 
(AUCs 0.943 vs. 0.850; p = 0.002) and fusion radiomics signature of HBP images (AUCs: 0.943 
vs. 0.895; p = 0.031) in the training cohort. However, the performance of predictive model did 
not differ from that of the combination of clinicoradiological factors (AUCs 0.861 vs. 0.759;  
p = 0.111) and fusion radiomics signature of HBP images (AUCs 0.861 vs. 0.837; p = 0.548) in 
the validation cohort.
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Development and Validation of the Nomogram
The nomogram based on the predictive model is presented in Figure 5a. Satisfactory 

predictive performances of the nomogram were obtained with a C-index of 0.936 (95% CI 
0.895–0.976) in the training cohort and a C-index of 0.864 (95% CI 0.761–0.967) in the vali-
dation cohort. Calibration curves (Fig. 5b, c) showed that the predicted probabilities of the 
nomogram were closely aligned with the actual MVI estimates in both the training (p = 0.983) 
and validation cohort (p = 0.329). Decision curve for the nomogram is demonstrated in Figure 
5d. The net benefit of the decision curve for the predictive nomogram is higher than that for 
assuming all patients have MVI when the threshold probability was greater than 2%. This 
suggests that basing therapy strategy on our nomogram will improve clinical outcome.

Discussion

In this work, we showed radiomics signatures of HBP T1-weighted images and HBP T1 
maps were capable of predicting MVI in patients with HCC, and the fusion radiomics signature 
of HBP images could discriminate MVI-positive HCC with high sensitivity. Furthermore, we 
developed and validated a predictive model that incorporated serum AFP level, nonsmooth 
tumor margin, arterial peritumoral enhancement, and the fusion radiomics signature derived 
from HBP images, which exhibited high accuracy for preoperatively predicting MVI. Impor-
tantly, the conglomerate of the radiomics signature and clinicoradiological risk factors in the 
nomogram provides a straightforward, noninvasive and robust approach for personalized 
prediction of MVI before surgery.

This represents the first study to report the radiomics analysis on gadoxetic acid-
enhanced MR imaging for preoperative prediction of MVI. Our results revealed that radiomics 
signatures of HBP T1-weighted images and HBP T1 maps achieved optimal performance 
among all the MR sequences, and the fusion radiomics signature of HBP images allowed MVI 
status to be stratified with favorable efficacy in both the training and validation cohorts. 
Previously, Zheng et al. [11] suggested that radiomics signature derived from preoperative 
CT images could be a potential predictor of MVI in HCC, with an AUC of 0.80 in tumors less 
than 5 cm. Predicting MVI with radiomic features in HBP images, we obtained an AUC of 0.943 
and 0.861 in the training and time-independent validation cohorts. Noticeably, the fusion 
radiomics signature achieved a high sensitivity in both the training and validation cohorts. It 
was not surprising that the radiomics signature derived from HBP images performed better 
than that derived from CT in previous report because the intensity of HCC on HBP T1-weighted 
images was significantly correlated with MVI [15]. Besides HBP T1-weighted images, we 
conducted an additional radiomics analysis on HBP T1 map, as T1 map permitted more 
reliable quantitative measurement of signal intensity by overcoming some intrinsic limita-
tions of T1-weighted image, and acquisitions with variable flip angles for T1 mapping can be 

Fig. 5. Nomogram for predicting microvascular invasion (MVI) probabilities, calibration of the nomogram and 
decision curve in the overall patients. a Nomogram for predicting microvascular invasion probabilities, calibra-
tion curves in the (b) training and (c) validation datasets, and (d) decision curve in the overall patients. a A ra-
diomics nomogram integrated the fusion radiomics signature extracted from hepatobiliary phase images with 
clinicoradiological factors including serum AFP level, nonsmooth tumor margin and arterial peritumoral en-
hancement. b, c Calibration curves of the nomogram in the training and validation datasets; X-axis is nomogram-
predicted probability of MVI. Y-axis is observed MVI, and the diagonal dashed line indicates the ideal prediction 
by a perfect model. d Decision curve for the nomogram predicting the MVI in the overall patients. The green line 
is the net benefit of assuming that all patients have MVI; the black line is the net benefit of assuming no patients 
have MVI; and the pink line is expected net benefit of per patient based on the predictive nomogram.
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easily incorporated into routine liver MR imaging [36]. In this study, the fusion radiomics 
signatures of HBP T1-weighted images and HBP T1 map achieved better efficacy than HBP 
T1-weighted image signature alone in both the training and validation cohort, and this indi-
cated that HBP T1 map could serve as a complementary modality for predicting MVI.

During the construction of the fusion radiomics signature with 10 radiomic features, we 
discovered 3 features that were in concordance with the biological characteristics of HCC 
with MVI: sphericity (HBP T1 map_ori_Sph_dis), root mean square (HBP T1-w_Coif1_fos_
root_ mean_square), and median of the intensity histogram (HBP T1 map_Coif4_fos_median). 
According to histology, MVI-positive HCC has an aggressive tendency to invade the tumor 
capsule and protrude into the noncancerous parenchyma, which leads to a higher frequency 
of irregular tumor margins [37]. The root mean square of the histogram represents the 
discrete degree of gray level in different tumor areas on the image, and the variance between 
the MVI-positive and MVI-negative HCC could be attributed to intratumoral heterogeneity 
(e.g., tumor cellularity, micro-necrosis, and inflammation) induced by MVI [38]. The presence 
of MVI contributed to a lower median of the intensity histogram because the lower signal 
intensity was found to be more frequent for MVI-positive HCCs than for MVI-negative HCCs 
[15]. The 7 other features derived from texture analysis also yielded significant information, 
which may further reflect macroscopic heterogeneities of MVI-positive HCCs.

In addition to the radiomics analysis, we also evaluated the preoperative clinicoradio-
logical factors. Our results recapitulated previous findings that serum AFP levels, nonsmooth 
tumor margins and arterial peritumoral enhancement were independent variables asso-
ciated with MVI. We observed the same trend of serum AFP levels increasing with the like-
lihood of MVI in HCC [25, 39]. Recent studies with gadoxetic acid also demonstrated that 
nonsmooth tumor margin on HBP images was a significant descriptor of MVI [12, 13]. Patho-
logic data showed that a single nodular type with extranodular growth or a confluent multi-
nodular type was more frequently observed in MVI-positive HCC cases [40, 41], resulting in 
nonsmooth tumor margin as a feature of MVI-positive HCC on MR images. Additionally, prior 
studies [12, 13] are consistent with our results that arterial peritumoral enhancement on 
gadoxetic acid-enhanced MR imaging was a significant predictor of MVI. The explanation 
suggested by these reports was that compensatory arterial hyperperfusion occurs in the area 
of reduced portal flow due to minute portal branch occlusions caused by microscopic tumor 
thrombin in the adjacent nontumor hepatic parenchyma. 

In the predictive model for MVI, we incorporated the fusion radiomics signature derived 
from HBP images and the significant clinicoradiological variables. The predictive model 
discriminated better than the combination of clinicoradiological risk factors in the training 
cohort. In this regard, the use of the fusion radiomics signature of HBP images could improve 
the predictive efficacy for MVI compared with clinicoradiological features alone. 

Moreover, the nomogram based on the predictive model showed satisfactory predictive 
performance across the spectrum of MVI predictions in both the training cohort (C-index: 
0.936) and validation cohort (C-index: 0.864) with good calibration. Lei et al. [25] first 
developed an MVI predictive nomogram based on clinicoradiological factors alone, yielding 
C-indexes of 0.81 and 0.80 in the training and validation cohort, respectively, which was less 
accurate than our nomogram. This also suggested the supplementary value of radiomic 
signature of HBP image in MVI prediction. Therefore, our nomogram represents an 
improvement on the basis of the radiomics signatures by extracting essential information 
related to MVI over the entire HCC in the HBP images. The use of our proposed nomogram 
may be an important method of assisting surgeon in therapeutic decision making, and this 
may promote personalized therapeutic regime in HCC patients.

There are some limitations to this study. On the one hand, this was a single-center retro-
spective study. Therefore, results from our database should be supplemented with further 
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prospective validation by larger cohorts from other centers. On the other hand, we did not 
include genomic factors related with MVI. Banerjee et al. [42] mapped CT image features to 
91 genes to predict histological MVI with high accuracy. However, technological complicity 
and high costs of multi-gene expression assays make radiogenomic venous invasion difficult 
to apply in routine clinical setting. 

In conclusion, radiomic features of HBP T1-weighted images and HBP T1 maps are 
potential biomarkers for predicting MVI in patients with HCC. The predictive nomogram that 
incorporates clinicoradiological risk factors and fusion radiomics signatures of HBP images 
achieves satisfactory preoperative prediction of the individualized risk assessment of MVI. 
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